Abstract

In this work, we analyze the role of strain on a set of silicon racetrack resonators presenting different orientations with respect to the applied strain. The strain induces a variation of the resonance wavelength, caused by the photoelastic variation of the material refractive index as well as by the mechanical deformation of the device. In particular, the mechanical deformation alters both the resonator perimeter and the waveguide cross-section. Finite element simulations taking into account all these effects are presented, providing good agreement with experimental results. By studying the role of the resonator orientation we identify interesting features, such as the tuning of the resonance shift from negative to positive values and the possibility of realizing strain insensitive devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing

Li Fan, Leo T. Varghese, Yi Xuan, Jian Wang, Ben Niu, and Minghao Qi
Opt. Express 20(18) 20564-20575 (2012)

Characterization of a photonic strain sensor in silicon-on-insulator technology

Wouter J. Westerveld, Jose Pozo, Peter J. Harmsma, Ruud Schmits, Erik Tabak, Teun C. van den Dool, Suzanne M. Leinders, Koen W.A. van Dongen, H. Paul Urbach, and Mirvais Yousefi
Opt. Lett. 37(4) 479-481 (2012)

High-frequency electro-optic measurement of strained silicon racetrack resonators

M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi
Opt. Lett. 40(22) 5287-5290 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Harris, A. Elias, and H.-J. Chung, “Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies,” Journal of materials science 51, 2771–2805 (2016).
    [Crossref]
  2. B. Wang, S. Bao, S. Vinnikova, P. Ghanta, and S. Wang, “Buckling analysis in stretchable electronics,” npj Flexible Electronics 1, 5 (2017).
    [Crossref]
  3. C.-H. Chou, J.-K. Chuang, and F.-C. Chen, “High-performance flexible waveguiding photovoltaics,” Scientific reports 3, 2244 (2013).
    [Crossref] [PubMed]
  4. T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
    [Crossref] [PubMed]
  5. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Optical Materials Express 3, 1313–1331 (2013).
    [Crossref]
  6. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
    [Crossref]
  7. Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Scientific reports 2, 622 (2012).
    [Crossref] [PubMed]
  8. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
    [Crossref]
  9. F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).
  10. W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected Topics in Quantum Electronics 20, 1–10 (2014).
    [Crossref]
  11. L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Optics express 20, 20564–20575 (2012).
    [Crossref] [PubMed]
  12. S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
    [Crossref] [PubMed]
  13. D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
    [Crossref]
  14. M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, “Nonlinear silicon photonics,” Journal of Optics 19, 093002 (2017).
    [Crossref]
  15. Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Japanese Journal of Applied Physics 47, 2910 (2008).
    [Crossref]
  16. M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).
    [Crossref] [PubMed]
  17. COMSOL Multiphysics® v. 5.2. http://www.comsol.com . COMSOL AB, Stockholm, Sweden.
  18. P. Segall, Earthquake and volcano deformation (Princeton University Press, 2010).
  19. J. Wortman and R. Evans, “Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium,” Journal of applied physics 36, 153–156 (1965).
    [Crossref]
  20. M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” Journal of microelectromechanical systems 19, 229–238 (2010).
    [Crossref]
  21. This estimation is approximated because the spot displacement is determined not only by the sample deflection, but also by the variation of the beam position on mirror M2. This is caused both by the sample movement Δz in the z direction, and by the distance z0 between the sample surface and the mirror M2. Since L = 3.73 m, we have L ≫ z0 = 0.1 m. Moreover ΔH ≫ Δz, being ΔH ∼ cm and Δz < 150 μm. Thus, the approximation δ ∼ ΔH/L is valid.
  22. W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology 23, 1308–1318 (2005).
    [Crossref]
  23. R. Edwards, G. Coles, and W. Sharpe, “Comparison of tensile and bulge tests for thin-film silicon nitride,” Experimental Mechanics 44, 49–54 (2004).
    [Crossref]
  24. M. Huang, “Stress effects on the performance of optical waveguides,” International Journal of Solids and Structures 40, 1615–1632 (2003).
    [Crossref]
  25. S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser & photonics reviews 6, 145–177 (2012).
    [Crossref]
  26. F. P. Beer, R. Johnston, J. Dewolf, and D. Mazurek, Mechanics of Materials (McGraw-Hill, 2006).
  27. In the evaluation of the effective refractive index, one should consider that the curved waveguide supports different modes with respect to the straight waveguide. However, since the radius of curvature is much greater than the wavelength and since we are interested in the strain-induced refractive index variation, we performed the simulations considering straight waveguides.

2017 (2)

B. Wang, S. Bao, S. Vinnikova, P. Ghanta, and S. Wang, “Buckling analysis in stretchable electronics,” npj Flexible Electronics 1, 5 (2017).
[Crossref]

M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, “Nonlinear silicon photonics,” Journal of Optics 19, 093002 (2017).
[Crossref]

2016 (4)

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

K. Harris, A. Elias, and H.-J. Chung, “Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies,” Journal of materials science 51, 2771–2805 (2016).
[Crossref]

2015 (2)

M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).
[Crossref] [PubMed]

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
[Crossref] [PubMed]

2014 (2)

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
[Crossref]

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected Topics in Quantum Electronics 20, 1–10 (2014).
[Crossref]

2013 (3)

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Optical Materials Express 3, 1313–1331 (2013).
[Crossref]

C.-H. Chou, J.-K. Chuang, and F.-C. Chen, “High-performance flexible waveguiding photovoltaics,” Scientific reports 3, 2244 (2013).
[Crossref] [PubMed]

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

2012 (3)

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Scientific reports 2, 622 (2012).
[Crossref] [PubMed]

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Optics express 20, 20564–20575 (2012).
[Crossref] [PubMed]

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser & photonics reviews 6, 145–177 (2012).
[Crossref]

2010 (1)

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” Journal of microelectromechanical systems 19, 229–238 (2010).
[Crossref]

2008 (1)

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Japanese Journal of Applied Physics 47, 2910 (2008).
[Crossref]

2005 (1)

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology 23, 1308–1318 (2005).
[Crossref]

2004 (1)

R. Edwards, G. Coles, and W. Sharpe, “Comparison of tensile and bulge tests for thin-film silicon nitride,” Experimental Mechanics 44, 49–54 (2004).
[Crossref]

2003 (1)

M. Huang, “Stress effects on the performance of optical waveguides,” International Journal of Solids and Structures 40, 1615–1632 (2003).
[Crossref]

1965 (1)

J. Wortman and R. Evans, “Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium,” Journal of applied physics 36, 153–156 (1965).
[Crossref]

Amemiya, Y.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Japanese Journal of Applied Physics 47, 2910 (2008).
[Crossref]

Ayucar, J. Á.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Bao, S.

B. Wang, S. Bao, S. Vinnikova, P. Ghanta, and S. Wang, “Buckling analysis in stretchable electronics,” npj Flexible Electronics 1, 5 (2017).
[Crossref]

Beer, F. P.

F. P. Beer, R. Johnston, J. Dewolf, and D. Mazurek, Mechanics of Materials (McGraw-Hill, 2006).

Bernard, M.

M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).
[Crossref] [PubMed]

Bianchi, A.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Borghi, M.

M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, “Nonlinear silicon photonics,” Journal of Optics 19, 093002 (2017).
[Crossref]

M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).
[Crossref] [PubMed]

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Cai, H.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser & photonics reviews 6, 145–177 (2012).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Castellan, C.

M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, “Nonlinear silicon photonics,” Journal of Optics 19, 093002 (2017).
[Crossref]

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Cheben, P.

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology 23, 1308–1318 (2005).
[Crossref]

Chen, F.-C.

C.-H. Chou, J.-K. Chuang, and F.-C. Chen, “High-performance flexible waveguiding photovoltaics,” Scientific reports 3, 2244 (2013).
[Crossref] [PubMed]

Chen, H.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser & photonics reviews 6, 145–177 (2012).
[Crossref]

Chen, Y.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Scientific reports 2, 622 (2012).
[Crossref] [PubMed]

Chiaretti, G.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Chou, C.-H.

C.-H. Chou, J.-K. Chuang, and F.-C. Chen, “High-performance flexible waveguiding photovoltaics,” Scientific reports 3, 2244 (2013).
[Crossref] [PubMed]

Chuang, J.-K.

C.-H. Chou, J.-K. Chuang, and F.-C. Chen, “High-performance flexible waveguiding photovoltaics,” Scientific reports 3, 2244 (2013).
[Crossref] [PubMed]

Chung, H.-J.

K. Harris, A. Elias, and H.-J. Chung, “Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies,” Journal of materials science 51, 2771–2805 (2016).
[Crossref]

Coles, G.

R. Edwards, G. Coles, and W. Sharpe, “Comparison of tensile and bulge tests for thin-film silicon nitride,” Experimental Mechanics 44, 49–54 (2004).
[Crossref]

Dai, D.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

Danto, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
[Crossref]

de Jong, N.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
[Crossref] [PubMed]

Dewolf, J.

F. P. Beer, R. Johnston, J. Dewolf, and D. Mazurek, Mechanics of Materials (McGraw-Hill, 2006).

Edwards, R.

R. Edwards, G. Coles, and W. Sharpe, “Comparison of tensile and bulge tests for thin-film silicon nitride,” Experimental Mechanics 44, 49–54 (2004).
[Crossref]

Elias, A.

K. Harris, A. Elias, and H.-J. Chung, “Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies,” Journal of materials science 51, 2771–2805 (2016).
[Crossref]

Enne, R.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Evans, R.

J. Wortman and R. Evans, “Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium,” Journal of applied physics 36, 153–156 (1965).
[Crossref]

Fan, L.

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Optics express 20, 20564–20575 (2012).
[Crossref] [PubMed]

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Feng, S.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser & photonics reviews 6, 145–177 (2012).
[Crossref]

Fournier, M.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Fowler, D.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Gambini, F.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Gao, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

Ghanta, P.

B. Wang, S. Bao, S. Vinnikova, P. Ghanta, and S. Wang, “Buckling analysis in stretchable electronics,” npj Flexible Electronics 1, 5 (2017).
[Crossref]

Ghulinyan, M.

M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).
[Crossref] [PubMed]

Harris, K.

K. Harris, A. Elias, and H.-J. Chung, “Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies,” Journal of materials science 51, 2771–2805 (2016).
[Crossref]

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

He, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

Hofbauer, M.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Hopcroft, M. A.

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” Journal of microelectromechanical systems 19, 229–238 (2010).
[Crossref]

Hu, J.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Optical Materials Express 3, 1313–1331 (2013).
[Crossref]

Huang, M.

M. Huang, “Stress effects on the performance of optical waveguides,” International Journal of Solids and Structures 40, 1615–1632 (2003).
[Crossref]

Janz, S.

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology 23, 1308–1318 (2005).
[Crossref]

Jinno, H.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

Johnston, R.

F. P. Beer, R. Johnston, J. Dewolf, and D. Mazurek, Mechanics of Materials (McGraw-Hill, 2006).

Kaltenbrunner, M.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

Kenny, T. W.

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” Journal of microelectromechanical systems 19, 229–238 (2010).
[Crossref]

Kim, M.-S.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Kitanosako, H.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

Koizumi, M.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Kopp, C.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Labeye, P.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Lamontagne, B.

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology 23, 1308–1318 (2005).
[Crossref]

Lee, J.-M.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Lei, T.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser & photonics reviews 6, 145–177 (2012).
[Crossref]

Leinders, S.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
[Crossref] [PubMed]

Leinders, S. M.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected Topics in Quantum Electronics 20, 1–10 (2014).
[Crossref]

Lemonnier, O.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Li, H.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Scientific reports 2, 622 (2012).
[Crossref] [PubMed]

Li, L.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Optical Materials Express 3, 1313–1331 (2013).
[Crossref]

Li, M.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Scientific reports 2, 622 (2012).
[Crossref] [PubMed]

Lin, H.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Optical Materials Express 3, 1313–1331 (2013).
[Crossref]

Liu, L.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
[Crossref]

Luo, X.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser & photonics reviews 6, 145–177 (2012).
[Crossref]

Ma, Z.

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Optical Materials Express 3, 1313–1331 (2013).
[Crossref]

Mancinelli, M.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).
[Crossref] [PubMed]

Manganelli, C. L.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Matsuhisa, N.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

Mazurek, D.

F. P. Beer, R. Johnston, J. Dewolf, and D. Mazurek, Mechanics of Materials (McGraw-Hill, 2006).

Merget, F.

M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).
[Crossref] [PubMed]

Muilwijk, P. M.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected Topics in Quantum Electronics 20, 1–10 (2014).
[Crossref]

Musgraves, J. D.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
[Crossref]

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Niu, B.

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Optics express 20, 20564–20575 (2012).
[Crossref] [PubMed]

Nix, W. D.

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” Journal of microelectromechanical systems 19, 229–238 (2010).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
[Crossref] [PubMed]

Ortuño, R.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Oton, C. J.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Parés, G.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Pasquale, F. D.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Pavesi, L.

M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, “Nonlinear silicon photonics,” Journal of Optics 19, 093002 (2017).
[Crossref]

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).
[Crossref] [PubMed]

Picard, M.-J.

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology 23, 1308–1318 (2005).
[Crossref]

Pintus, P.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Poon, A. W.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser & photonics reviews 6, 145–177 (2012).
[Crossref]

Pozo, J.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
[Crossref] [PubMed]

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected Topics in Quantum Electronics 20, 1–10 (2014).
[Crossref]

Preve, G. B.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Pucker, G.

M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).
[Crossref] [PubMed]

Qi, M.

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Optics express 20, 20564–20575 (2012).
[Crossref] [PubMed]

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Richardson, K.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
[Crossref]

Romagnoli, M.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Segall, P.

P. Segall, Earthquake and volcano deformation (Princeton University Press, 2010).

Sharpe, W.

R. Edwards, G. Coles, and W. Sharpe, “Comparison of tensile and bulge tests for thin-film silicon nitride,” Experimental Mechanics 44, 49–54 (2004).
[Crossref]

Signorini, S.

M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, “Nonlinear silicon photonics,” Journal of Optics 19, 093002 (2017).
[Crossref]

Snyder, B.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
[Crossref] [PubMed]

Someya, T.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

Stracca, S.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Tachibana, Y.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

Tanushi, Y.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Japanese Journal of Applied Physics 47, 2910 (2008).
[Crossref]

Tarr, N. G.

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology 23, 1308–1318 (2005).
[Crossref]

Testa, F.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Tokunaga, T.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Japanese Journal of Applied Physics 47, 2910 (2008).
[Crossref]

Tondini, S.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Trenti, A.

M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, “Nonlinear silicon photonics,” Journal of Optics 19, 093002 (2017).
[Crossref]

Urbach, H.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
[Crossref] [PubMed]

Urbach, H. P.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected Topics in Quantum Electronics 20, 1–10 (2014).
[Crossref]

van den Dool, T. C.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected Topics in Quantum Electronics 20, 1–10 (2014).
[Crossref]

Van Neer, P.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
[Crossref] [PubMed]

Varghese, L. T.

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Optics express 20, 20564–20575 (2012).
[Crossref] [PubMed]

Verweij, M. D.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
[Crossref] [PubMed]

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected Topics in Quantum Electronics 20, 1–10 (2014).
[Crossref]

Vinnikova, S.

B. Wang, S. Bao, S. Vinnikova, P. Ghanta, and S. Wang, “Buckling analysis in stretchable electronics,” npj Flexible Electronics 1, 5 (2017).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Wang, B.

B. Wang, S. Bao, S. Vinnikova, P. Ghanta, and S. Wang, “Buckling analysis in stretchable electronics,” npj Flexible Electronics 1, 5 (2017).
[Crossref]

Wang, J.

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Optics express 20, 20564–20575 (2012).
[Crossref] [PubMed]

Wang, S.

B. Wang, S. Bao, S. Vinnikova, P. Ghanta, and S. Wang, “Buckling analysis in stretchable electronics,” npj Flexible Electronics 1, 5 (2017).
[Crossref]

Westerveld, W.

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
[Crossref] [PubMed]

Westerveld, W. J.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected Topics in Quantum Electronics 20, 1–10 (2014).
[Crossref]

Witzens, J.

M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).
[Crossref] [PubMed]

Wortman, J.

J. Wortman and R. Evans, “Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium,” Journal of applied physics 36, 153–156 (1965).
[Crossref]

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology 23, 1308–1318 (2005).
[Crossref]

Xuan, Y.

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Optics express 20, 20564–20575 (2012).
[Crossref] [PubMed]

Ye, W. N.

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology 23, 1308–1318 (2005).
[Crossref]

Yokota, T.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

Yokoyama, S.

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Japanese Journal of Applied Physics 47, 2910 (2008).
[Crossref]

Yousefi, M.

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected Topics in Quantum Electronics 20, 1–10 (2014).
[Crossref]

Yukita, W.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

Zalar, P.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

Zecevic, N.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Zhang, P.

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Optical Materials Express 3, 1313–1331 (2013).
[Crossref]

Zhou, W.

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Optical Materials Express 3, 1313–1331 (2013).
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Zimmermann, H.

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

Zou, Y.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
[Crossref]

Experimental Mechanics (1)

R. Edwards, G. Coles, and W. Sharpe, “Comparison of tensile and bulge tests for thin-film silicon nitride,” Experimental Mechanics 44, 49–54 (2004).
[Crossref]

IEEE J. Select Topics in Quantum Electronics (1)

F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” IEEE J. Select Topics in Quantum Electronics 22, 155–168 (2016).

IEEE Journal of Selected Topics in Quantum Electronics (1)

W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C. van den Dool, M. D. Verweij, M. Yousefi, and H. P. Urbach, “Characterization of integrated optical strain sensors based on silicon waveguides,” IEEE Journal of Selected Topics in Quantum Electronics 20, 1–10 (2014).
[Crossref]

International Journal of Solids and Structures (1)

M. Huang, “Stress effects on the performance of optical waveguides,” International Journal of Solids and Structures 40, 1615–1632 (2003).
[Crossref]

Japanese Journal of Applied Physics (1)

Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Japanese Journal of Applied Physics 47, 2910 (2008).
[Crossref]

Journal of applied physics (1)

J. Wortman and R. Evans, “Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium,” Journal of applied physics 36, 153–156 (1965).
[Crossref]

Journal of Lightwave Technology (1)

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology 23, 1308–1318 (2005).
[Crossref]

Journal of materials science (1)

K. Harris, A. Elias, and H.-J. Chung, “Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies,” Journal of materials science 51, 2771–2805 (2016).
[Crossref]

Journal of microelectromechanical systems (1)

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” Journal of microelectromechanical systems 19, 229–238 (2010).
[Crossref]

Journal of Optics (2)

M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, “Nonlinear silicon photonics,” Journal of Optics 19, 093002 (2017).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016).
[Crossref]

Laser & Photonics Reviews (1)

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser & photonics reviews 6, 145–177 (2012).
[Crossref]

Nature Photonics (1)

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014).
[Crossref]

npj Flexible Electronics (1)

B. Wang, S. Bao, S. Vinnikova, P. Ghanta, and S. Wang, “Buckling analysis in stretchable electronics,” npj Flexible Electronics 1, 5 (2017).
[Crossref]

Optical Materials Express (1)

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Optical Materials Express 3, 1313–1331 (2013).
[Crossref]

Optics express (1)

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Optics express 20, 20564–20575 (2012).
[Crossref] [PubMed]

Optics letters (1)

M. Borghi, M. Mancinelli, F. Merget, J. Witzens, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “High-frequency electro-optic measurement of strained silicon racetrack resonators,” Optics letters 40, 5287–5290 (2015).
[Crossref] [PubMed]

Science advances (1)

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016).
[Crossref] [PubMed]

Scientific reports (3)

C.-H. Chou, J.-K. Chuang, and F.-C. Chen, “High-performance flexible waveguiding photovoltaics,” Scientific reports 3, 2244 (2013).
[Crossref] [PubMed]

S. Leinders, W. Westerveld, J. Pozo, P. Van Neer, B. Snyder, P. O’Brien, H. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (omus) based on a silicon photonic ring resonator on an acoustical membrane,” Scientific reports 5, 14328 (2015).
[Crossref] [PubMed]

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Scientific reports 2, 622 (2012).
[Crossref] [PubMed]

Other (5)

COMSOL Multiphysics® v. 5.2. http://www.comsol.com . COMSOL AB, Stockholm, Sweden.

P. Segall, Earthquake and volcano deformation (Princeton University Press, 2010).

F. P. Beer, R. Johnston, J. Dewolf, and D. Mazurek, Mechanics of Materials (McGraw-Hill, 2006).

In the evaluation of the effective refractive index, one should consider that the curved waveguide supports different modes with respect to the straight waveguide. However, since the radius of curvature is much greater than the wavelength and since we are interested in the strain-induced refractive index variation, we performed the simulations considering straight waveguides.

This estimation is approximated because the spot displacement is determined not only by the sample deflection, but also by the variation of the beam position on mirror M2. This is caused both by the sample movement Δz in the z direction, and by the distance z0 between the sample surface and the mirror M2. Since L = 3.73 m, we have L ≫ z0 = 0.1 m. Moreover ΔH ≫ Δz, being ΔH ∼ cm and Δz < 150 μm. Thus, the approximation δ ∼ ΔH/L is valid.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Sketch of the experimental setup. It is formed by a tunable laser source, a fiber polarization controller, an input-output alignment stage, a screw-equipped sample holder and an InGaAs photodetector. (b) Zoom-in picture of the screw-equipped sample holder. On the sample it is depicted a resonator whose main axis is rotated of an angle α with respect to the y direction. The resonator dimensions are deliberately out of scale. (c) Off-scale picture of the waveguide cross section with nominal dimensions.
Fig. 2
Fig. 2 (a) On the left: 3D simulation boundary conditions for beam bending. The prescribed displacement and the fixed constraint on the top represent the supports, while the arrow describes the screw displacement. On the right: volumetric strain εv superimposed in color scale over the beam deformation evaluated applying a displacement of 150 μm to the sample center. Displacements are emphasized by a factor of 10. (b) Setup used to measure the sample curvature. The black line describes the HeNe laser path when the sample is undeformed, while the gray path corresponds to the deformed sample. (c) Rotation of the normal to the surface θ as a function of the position on the sample surface for three different screw displacement Δz values. The experimental data (points) are compared with simulations (straight lines).
Fig. 3
Fig. 3 (a) Drop port spectrum of one analyzed resonator. (b–c) Drop port spectra of two resonators oriented with different angles α. The different colors refer to measurements taken with different screw-applied displacements Δz. (d–e) Dependence on Δz of the resonance wavelength evaluated from a Lorentian fit of the spectra. The top axes report the corresponding volumetric strain evaluated from the 3D macroscopic simulation. The gray lines are linear fits of the experimental points. (f) Resonance shift per strain unit for resonators oriented with different angles α. Errorbars represent 95% confidence bounds resulting from the linear fits.
Fig. 4
Fig. 4 (a) Wavelength dependence of the group index of the resonator with an orientation angle α = 60°. The experimental value is evaluated from the FSR, while the simulated result derives from a FEM simulation of a waveguide with a cross section of 390 nm × 243 nm. (b) Wavelength dependence of the quality factor of the same resonator. (c) Comparison between the simulated dependence of the group index on the waveguide width (black) and the experimental value (blue), from which the actual width of the waveguide is determined (red). The light colors represent the errorbars. (d) Waveguide width evaluated from the experimental group index for the resonators analyzed in this work.
Fig. 5
Fig. 5 (a) Out of scale model showing the effect of strain on the resonator. The unstrained resonator shape (in black) is modified by strain into the magenta shape. (b) Simulated dependence of the resonator perimeter P on the applied volumetric strain εV for different resonator orientation angles. (c) Dependence of the perimeter variation per unit of volumetric strain on the orientation angle. The corresponding resonance shift is shown on the right axis.
Fig. 6
Fig. 6 (a) Simulation domain of the local 3D strain simulation of the waveguide. (b) Color scale strain distribution in the waveguide cross-section in the simulation domain center.
Fig. 7
Fig. 7 (a) Photoelastic variation of the effective refractive index in the straight and in the curved part of the resonator as a function of the resonator orientation. (b) Photoelastic contribution to the resonance wavelength shift. (c–d) Waveguide width and height in the straight part of the resonator as a function of the applied strain and for different orientations. (e) Waveguide deformation effect on the effective refractive index in the straight and in the curved part of the resonator. (f) Contribution of the waveguide deformation to the resonance wavelength shift.
Fig. 8
Fig. 8 Resonance shift as a function of the resonator orientation angle. The experimental data are shown as black dots. The simulated contributions to the resonance shift of perimeter variation (blue), photoelastic effect (light blue) and waveguide deformation (green) add up providing the total simulated resonance shift (magenta). The dashed lines show the orientation angle corresponding to the strain insensitive resonator.

Tables (1)

Tables Icon

Table 1 Material parameters used in this work.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

m λ m = 2 L n s + 2 π R n ¯ c ,
n ¯ c = 1 π 0 π n c ( γ ) d γ .
d d ε v n s ( ε v , λ ) = n s ε v + n s λ λ ε v d d ε v n ¯ c ( ε v , λ ) = n ¯ c ε v + n ¯ c λ λ ε v .
n s ε v = n s ε v | ph + n s ε v | def n ¯ c ε v = n ¯ c ε v | ph + n ¯ c ε v | def .
λ m ε v = λ m per ε v + λ m ph ε v + λ m def ε v ,
λ m per ε v = λ m n s P n g P ε v ,
λ m ph ε v = λ m P n g ( 2 L n s ε v | ph + 2 π R n ¯ c ε v | ph ) ,
λ m def ε v = λ m P n g ( 2 L n s ε v | def + 2 π R n ¯ c ε v | def ) .
ε x x = ε x x cos 2 α + ε y y sin 2 α + 2 ε x y sin α cos α ,
ε y y = ε x x sin 2 α + ε y y cos 2 α 2 ε x y sin α cos α .
L = L ( 1 + ε y y ) ,
R a = R ( 1 + ε y y ) R b = R ( 1 + ε x x ) .
P = 2 L + 2 π R a 2 + R b 2 2 .
n c ( γ ) = n s cos 2 ( γ ) + n sin 2 ( γ ) ,
h = h ( 1 + ε ¯ z z ) w = w ( 1 + ε ¯ x x ) .

Metrics