Abstract

In this paper, we experimentally demonstrate the second harmonic generation of long-range surface plasmon polaritons via quasi-phase matching in lithium niobate. After depositing a 9/13 nm thick Au film on periodically poled lithium niobate, TiO2 of about 2.3 μm in thickness is evaporated on the sample as a refractive-index-matching material. This dielectric (periodically poled lithium niobate)–metal(Au)–dielectric(TiO2) sandwich structure can support the transmission of long-range surface plasmon polaritons through it. By designing a moderate ferroelectric domain period of periodically poled lithium niobate, the phase mismatch between the fundamental wave and second harmonic wave of the long-range surface plasmon polaritons can be compensated and a second harmonic wave can be generated effectively. This can be used to provide integrated plasmonic devices with attractive applications in quantum and classic information processing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical second harmonic generation by long-range surface plasmon polaritons excited by a finite 1-D beam

M. Fukui, S. Tago, H. Dohi, and O. Tada
Appl. Opt. 24(8) 1220-1223 (1985)

Tunable-chirp pulse compression in quasi-phase-matched second-harmonic generation

A. M. Schober, G. Imeshev, and M. M. Fejer
Opt. Lett. 27(13) 1129-1131 (2002)

Direct quasi-phase-matched fourth-harmonic generation

Xianfeng Chen, Yuping Chen, and Yuxing Xia
Appl. Opt. 44(6) 1028-1031 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
    [Crossref] [PubMed]
  2. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
    [Crossref] [PubMed]
  3. S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
    [Crossref] [PubMed]
  4. I. Epstein, Y. Tsur, and A. Arie, “Surface plasmons wavefront and spectral shaping by near-field holography,” Laser Photonics Rev. 10(3), 360–381 (2016).
    [Crossref]
  5. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
    [Crossref]
  6. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  7. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
    [Crossref]
  8. M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
    [Crossref]
  9. Y. Ming, W. Zhang, Z. Chen, Z. Wu, J. Tang, F. Xu, L. Zhang, and Y. Lu, “Squeezing a surface plasmon through quadratic nonlinear interactions,” ACS Photonics 3(11), 2074–2082 (2016).
    [Crossref]
  10. A. Ji, T. V. Raziman, J. Butet, R. P. Sharma, and O. J. Martin, “Optical forces and torques on realistic plasmonic nanostructures: a surface integral approach,” Opt. Lett. 39(16), 4699–4702 (2014).
    [Crossref] [PubMed]
  11. T. V. Raziman and O. J. F. Martin, “Internal optical forces in plasmonic nanostructures,” Opt. Express 23(15), 20143–20157 (2015).
    [Crossref] [PubMed]
  12. F. Yang and Z. Lei Mei, “Guiding SPPs with PT-symmetry,” Sci. Rep. 5(1), 14981 (2015).
    [Crossref] [PubMed]
  13. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  14. J. Yao and Y. Wang, “Quasi-phase matching technology,” in Nonlinear Optics and Solid-State Lasers, pp. 319–382 (2011).
  15. B. Yang, Y. Y. Yue, R. E. Lu, X. H. Hong, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Rigorous intensity and phase-shift manipulation in optical frequency conversion,” Sci. Rep. 6(1), 27457 (2016).
    [Crossref] [PubMed]
  16. Z. Qi, T. Li, and S. N. Zhu, “highly-confined second harmonic generation in nano-scale slot waveguides,” J. Phys. D Appl. Phys. 41(2), 025109 (2008).
    [Crossref]
  17. A. Rose and D. R. Smith, “Broadly tunable quasi-phase-matching in nonlinear metamaterials,” Phys. Rev. A 84(1), 013823 (2011).
    [Crossref]
  18. A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
    [Crossref] [PubMed]
  19. N. Mattiucci, M. J. Bloemer, and G. D’Aguanno, “Phase-matched second harmonic generation at the Dirac point of a 2-D photonic crystal,” Opt. Express 22(6), 6381–6390 (2014).
    [Crossref] [PubMed]
  20. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(1), 484–588 (2009).
    [Crossref]
  21. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  22. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasi-phase matching,” Phys. Rev. B 82(15), 155107 (2010).
    [Crossref]
  23. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [Crossref] [PubMed]
  24. D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
    [Crossref]
  25. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
    [Crossref]
  26. NANOLN, ( http://www.nanoln.com/en/ ).
  27. T. A. Rost, H. Lin, T. A. Rabson, R. C. Baumann, and D. L. Callahan, “Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering,” J. Appl. Phys. 72(9), 4336–4343 (1992).
    [Crossref]
  28. R. J. Isaifan, A. Samara, W. Suwaileh, D. Johnson, W. Yiming, A. A. Abdallah, and B. Aïssa, “Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly,” Sci. Rep. 7(1), 9466 (2017).
    [Crossref] [PubMed]
  29. N. Mattiucci, G. D’Aguanno, and M. J. Bloemer, “Long range plasmon assisted all-optical switching at telecommunication wavelengths,” Opt. Lett. 37(2), 121–123 (2012).
    [Crossref] [PubMed]
  30. Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
    [Crossref]
  31. W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
    [Crossref] [PubMed]
  32. M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
    [Crossref]
  33. H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
    [Crossref] [PubMed]
  34. H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
    [Crossref] [PubMed]

2017 (2)

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

R. J. Isaifan, A. Samara, W. Suwaileh, D. Johnson, W. Yiming, A. A. Abdallah, and B. Aïssa, “Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly,” Sci. Rep. 7(1), 9466 (2017).
[Crossref] [PubMed]

2016 (5)

B. Yang, Y. Y. Yue, R. E. Lu, X. H. Hong, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Rigorous intensity and phase-shift manipulation in optical frequency conversion,” Sci. Rep. 6(1), 27457 (2016).
[Crossref] [PubMed]

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

I. Epstein, Y. Tsur, and A. Arie, “Surface plasmons wavefront and spectral shaping by near-field holography,” Laser Photonics Rev. 10(3), 360–381 (2016).
[Crossref]

Y. Ming, W. Zhang, Z. Chen, Z. Wu, J. Tang, F. Xu, L. Zhang, and Y. Lu, “Squeezing a surface plasmon through quadratic nonlinear interactions,” ACS Photonics 3(11), 2074–2082 (2016).
[Crossref]

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (4)

N. Mattiucci, M. J. Bloemer, and G. D’Aguanno, “Phase-matched second harmonic generation at the Dirac point of a 2-D photonic crystal,” Opt. Express 22(6), 6381–6390 (2014).
[Crossref] [PubMed]

A. Ji, T. V. Raziman, J. Butet, R. P. Sharma, and O. J. Martin, “Optical forces and torques on realistic plasmonic nanostructures: a surface integral approach,” Opt. Lett. 39(16), 4699–4702 (2014).
[Crossref] [PubMed]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

2013 (2)

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

2012 (2)

2011 (5)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

A. Rose and D. R. Smith, “Broadly tunable quasi-phase-matching in nonlinear metamaterials,” Phys. Rev. A 84(1), 013823 (2011).
[Crossref]

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
[Crossref] [PubMed]

2010 (1)

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasi-phase matching,” Phys. Rev. B 82(15), 155107 (2010).
[Crossref]

2009 (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(1), 484–588 (2009).
[Crossref]

2008 (1)

Z. Qi, T. Li, and S. N. Zhu, “highly-confined second harmonic generation in nano-scale slot waveguides,” J. Phys. D Appl. Phys. 41(2), 025109 (2008).
[Crossref]

2007 (1)

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

2006 (1)

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

1997 (1)

1992 (1)

T. A. Rost, H. Lin, T. A. Rabson, R. C. Baumann, and D. L. Callahan, “Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering,” J. Appl. Phys. 72(9), 4336–4343 (1992).
[Crossref]

Abdallah, A. A.

R. J. Isaifan, A. Samara, W. Suwaileh, D. Johnson, W. Yiming, A. A. Abdallah, and B. Aïssa, “Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly,” Sci. Rep. 7(1), 9466 (2017).
[Crossref] [PubMed]

Aïssa, B.

R. J. Isaifan, A. Samara, W. Suwaileh, D. Johnson, W. Yiming, A. A. Abdallah, and B. Aïssa, “Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly,” Sci. Rep. 7(1), 9466 (2017).
[Crossref] [PubMed]

Arie, A.

I. Epstein, Y. Tsur, and A. Arie, “Surface plasmons wavefront and spectral shaping by near-field holography,” Laser Photonics Rev. 10(3), 360–381 (2016).
[Crossref]

Aussenegg, F. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Bakhru, H.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Baumann, R. C.

T. A. Rost, H. Lin, T. A. Rabson, R. C. Baumann, and D. L. Callahan, “Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering,” J. Appl. Phys. 72(9), 4336–4343 (1992).
[Crossref]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(1), 484–588 (2009).
[Crossref]

Bloemer, M. J.

Butet, J.

Callahan, D. L.

T. A. Rost, H. Lin, T. A. Rabson, R. C. Baumann, and D. L. Callahan, “Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering,” J. Appl. Phys. 72(9), 4336–4343 (1992).
[Crossref]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Chen, Z.

Y. Ming, W. Zhang, Z. Chen, Z. Wu, J. Tang, F. Xu, L. Zhang, and Y. Lu, “Squeezing a surface plasmon through quadratic nonlinear interactions,” ACS Photonics 3(11), 2074–2082 (2016).
[Crossref]

Cheng, Q. Q.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Cui, G.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

D’Aguanno, G.

Drezet, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Epstein, I.

I. Epstein, Y. Tsur, and A. Arie, “Surface plasmons wavefront and spectral shaping by near-field holography,” Laser Photonics Rev. 10(3), 360–381 (2016).
[Crossref]

Gao, J.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

Gao, Z. D.

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

Gong, Y. X.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

He, Y.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Hohenau, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Hong, X. H.

B. Yang, Y. Y. Yue, R. E. Lu, X. H. Hong, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Rigorous intensity and phase-shift manipulation in optical frequency conversion,” Sci. Rep. 6(1), 27457 (2016).
[Crossref] [PubMed]

Hu, W.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasi-phase matching,” Phys. Rev. B 82(15), 155107 (2010).
[Crossref]

Hu, X. K.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasi-phase matching,” Phys. Rev. B 82(15), 155107 (2010).
[Crossref]

Huang, D.

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
[Crossref] [PubMed]

Isaifan, R. J.

R. J. Isaifan, A. Samara, W. Suwaileh, D. Johnson, W. Yiming, A. A. Abdallah, and B. Aïssa, “Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly,” Sci. Rep. 7(1), 9466 (2017).
[Crossref] [PubMed]

Ji, A.

Jin, H.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

Johnson, D.

R. J. Isaifan, A. Samara, W. Suwaileh, D. Johnson, W. Yiming, A. A. Abdallah, and B. Aïssa, “Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly,” Sci. Rep. 7(1), 9466 (2017).
[Crossref] [PubMed]

Jundt, D. H.

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kim, M. S.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Kivshar, Y. S.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

Koller, D.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Krenn, J. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Kung, A. H.

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

Lapine, M.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

Lee, J.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Lei Mei, Z.

F. Yang and Z. Lei Mei, “Guiding SPPs with PT-symmetry,” Sci. Rep. 5(1), 14981 (2015).
[Crossref] [PubMed]

Leitner, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Leng, H. Y.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

Levy, M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Li, L.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Li, T.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Z. Qi, T. Li, and S. N. Zhu, “highly-confined second harmonic generation in nano-scale slot waveguides,” J. Phys. D Appl. Phys. 41(2), 025109 (2008).
[Crossref]

Lin, H.

T. A. Rost, H. Lin, T. A. Rabson, R. C. Baumann, and D. L. Callahan, “Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering,” J. Appl. Phys. 72(9), 4336–4343 (1992).
[Crossref]

Liu, F. M.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Lu, R. E.

B. Yang, Y. Y. Yue, R. E. Lu, X. H. Hong, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Rigorous intensity and phase-shift manipulation in optical frequency conversion,” Sci. Rep. 6(1), 27457 (2016).
[Crossref] [PubMed]

Lu, Y.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Y. Ming, W. Zhang, Z. Chen, Z. Wu, J. Tang, F. Xu, L. Zhang, and Y. Lu, “Squeezing a surface plasmon through quadratic nonlinear interactions,” ACS Photonics 3(11), 2074–2082 (2016).
[Crossref]

Lu, Y. Q.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasi-phase matching,” Phys. Rev. B 82(15), 155107 (2010).
[Crossref]

Luo, X. W.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

Maier, S. A.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Martin, O. J.

Martin, O. J. F.

Mattiucci, N.

McEnery, K. R.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Ming, Y.

Y. Ming, W. Zhang, Z. Chen, Z. Wu, J. Tang, F. Xu, L. Zhang, and Y. Lu, “Squeezing a surface plasmon through quadratic nonlinear interactions,” ACS Photonics 3(11), 2074–2082 (2016).
[Crossref]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Osgood, R. M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Özdemir, S. K.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Qi, Z.

Z. Qi, T. Li, and S. N. Zhu, “highly-confined second harmonic generation in nano-scale slot waveguides,” J. Phys. D Appl. Phys. 41(2), 025109 (2008).
[Crossref]

Qin, Y. Q.

B. Yang, Y. Y. Yue, R. E. Lu, X. H. Hong, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Rigorous intensity and phase-shift manipulation in optical frequency conversion,” Sci. Rep. 6(1), 27457 (2016).
[Crossref] [PubMed]

Rabson, T. A.

T. A. Rost, H. Lin, T. A. Rabson, R. C. Baumann, and D. L. Callahan, “Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering,” J. Appl. Phys. 72(9), 4336–4343 (1992).
[Crossref]

Raziman, T. V.

Rose, A.

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
[Crossref] [PubMed]

A. Rose and D. R. Smith, “Broadly tunable quasi-phase-matching in nonlinear metamaterials,” Phys. Rev. A 84(1), 013823 (2011).
[Crossref]

Rost, T. A.

T. A. Rost, H. Lin, T. A. Rabson, R. C. Baumann, and D. L. Callahan, “Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering,” J. Appl. Phys. 72(9), 4336–4343 (1992).
[Crossref]

Samara, A.

R. J. Isaifan, A. Samara, W. Suwaileh, D. Johnson, W. Yiming, A. A. Abdallah, and B. Aïssa, “Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly,” Sci. Rep. 7(1), 9466 (2017).
[Crossref] [PubMed]

Shadrivov, I. V.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

Sharma, R. P.

Smith, D. R.

A. Rose and D. R. Smith, “Broadly tunable quasi-phase-matching in nonlinear metamaterials,” Phys. Rev. A 84(1), 013823 (2011).
[Crossref]

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
[Crossref] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Sun, C.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Suwaileh, W.

R. J. Isaifan, A. Samara, W. Suwaileh, D. Johnson, W. Yiming, A. A. Abdallah, and B. Aïssa, “Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly,” Sci. Rep. 7(1), 9466 (2017).
[Crossref] [PubMed]

Tame, M. S.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Tang, J.

Y. Ming, W. Zhang, Z. Chen, Z. Wu, J. Tang, F. Xu, L. Zhang, and Y. Lu, “Squeezing a surface plasmon through quadratic nonlinear interactions,” ACS Photonics 3(11), 2074–2082 (2016).
[Crossref]

Tsur, Y.

I. Epstein, Y. Tsur, and A. Arie, “Surface plasmons wavefront and spectral shaping by near-field holography,” Laser Photonics Rev. 10(3), 360–381 (2016).
[Crossref]

Tu, S. Y.

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Wan, W.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

Wang, H.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Wang, S. M.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Wang, W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Wei, D.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Wu, Z.

Y. Ming, W. Zhang, Z. Chen, Z. Wu, J. Tang, F. Xu, L. Zhang, and Y. Lu, “Squeezing a surface plasmon through quadratic nonlinear interactions,” ACS Photonics 3(11), 2074–2082 (2016).
[Crossref]

Wu, Z. J.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasi-phase matching,” Phys. Rev. B 82(15), 155107 (2010).
[Crossref]

Xia, J. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Xiao, M.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Xu, F.

Y. Ming, W. Zhang, Z. Chen, Z. Wu, J. Tang, F. Xu, L. Zhang, and Y. Lu, “Squeezing a surface plasmon through quadratic nonlinear interactions,” ACS Photonics 3(11), 2074–2082 (2016).
[Crossref]

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasi-phase matching,” Phys. Rev. B 82(15), 155107 (2010).
[Crossref]

Xu, P.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

Yang, B.

B. Yang, Y. Y. Yue, R. E. Lu, X. H. Hong, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Rigorous intensity and phase-shift manipulation in optical frequency conversion,” Sci. Rep. 6(1), 27457 (2016).
[Crossref] [PubMed]

Yang, F.

F. Yang and Z. Lei Mei, “Guiding SPPs with PT-symmetry,” Sci. Rep. 5(1), 14981 (2015).
[Crossref] [PubMed]

Yang, X.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

Yiming, W.

R. J. Isaifan, A. Samara, W. Suwaileh, D. Johnson, W. Yiming, A. A. Abdallah, and B. Aïssa, “Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly,” Sci. Rep. 7(1), 9466 (2017).
[Crossref] [PubMed]

Yu, W. J.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

Yu, Z. Y.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasi-phase matching,” Phys. Rev. B 82(15), 155107 (2010).
[Crossref]

Yuan, Y.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Yue, Y. Y.

B. Yang, Y. Y. Yue, R. E. Lu, X. H. Hong, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Rigorous intensity and phase-shift manipulation in optical frequency conversion,” Sci. Rep. 6(1), 27457 (2016).
[Crossref] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Zhang, C.

B. Yang, Y. Y. Yue, R. E. Lu, X. H. Hong, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Rigorous intensity and phase-shift manipulation in optical frequency conversion,” Sci. Rep. 6(1), 27457 (2016).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Zhang, L.

Y. Ming, W. Zhang, Z. Chen, Z. Wu, J. Tang, F. Xu, L. Zhang, and Y. Lu, “Squeezing a surface plasmon through quadratic nonlinear interactions,” ACS Photonics 3(11), 2074–2082 (2016).
[Crossref]

Zhang, W.

Y. Ming, W. Zhang, Z. Chen, Z. Wu, J. Tang, F. Xu, L. Zhang, and Y. Lu, “Squeezing a surface plasmon through quadratic nonlinear interactions,” ACS Photonics 3(11), 2074–2082 (2016).
[Crossref]

Zhang, Y.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Zhao, G.

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

Zhong, M. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

Zhong, W.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Zhou, J. W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zhu, S. N.

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Z. Qi, T. Li, and S. N. Zhu, “highly-confined second harmonic generation in nano-scale slot waveguides,” J. Phys. D Appl. Phys. 41(2), 025109 (2008).
[Crossref]

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

Zhu, Y.

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

Zhu, Y. Y.

B. Yang, Y. Y. Yue, R. E. Lu, X. H. Hong, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Rigorous intensity and phase-shift manipulation in optical frequency conversion,” Sci. Rep. 6(1), 27457 (2016).
[Crossref] [PubMed]

ACS Nano (1)

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

Y. Ming, W. Zhang, Z. Chen, Z. Wu, J. Tang, F. Xu, L. Zhang, and Y. Lu, “Squeezing a surface plasmon through quadratic nonlinear interactions,” ACS Photonics 3(11), 2074–2082 (2016).
[Crossref]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(1), 484–588 (2009).
[Crossref]

Appl. Phys. Lett. (3)

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89(18), 181101 (2006).
[Crossref]

D. Wei, Y. Zhu, W. Zhong, G. Cui, H. Wang, Y. He, Y. Zhang, Y. Lu, and M. Xiao, “Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal,” Appl. Phys. Lett. 110(26), 261104 (2017).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

J. Appl. Phys. (1)

T. A. Rost, H. Lin, T. A. Rabson, R. C. Baumann, and D. L. Callahan, “Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering,” J. Appl. Phys. 72(9), 4336–4343 (1992).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Qi, T. Li, and S. N. Zhu, “highly-confined second harmonic generation in nano-scale slot waveguides,” J. Phys. D Appl. Phys. 41(2), 025109 (2008).
[Crossref]

Laser Photonics Rev. (1)

I. Epstein, Y. Tsur, and A. Arie, “Surface plasmons wavefront and spectral shaping by near-field holography,” Laser Photonics Rev. 10(3), 360–381 (2016).
[Crossref]

Nano Lett. (1)

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[Crossref] [PubMed]

Nat. Commun. (1)

S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, “A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide,” Nat. Commun. 7, 11490 (2016).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Nat. Phys. (1)

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Phys. Rev. A (1)

A. Rose and D. R. Smith, “Broadly tunable quasi-phase-matching in nonlinear metamaterials,” Phys. Rev. A 84(1), 013823 (2011).
[Crossref]

Phys. Rev. B (1)

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasi-phase matching,” Phys. Rev. B 82(15), 155107 (2010).
[Crossref]

Phys. Rev. Lett. (4)

H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, “Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal,” Phys. Rev. Lett. 111(2), 023603 (2013).
[Crossref] [PubMed]

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

Sci. Rep. (3)

R. J. Isaifan, A. Samara, W. Suwaileh, D. Johnson, W. Yiming, A. A. Abdallah, and B. Aïssa, “Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly,” Sci. Rep. 7(1), 9466 (2017).
[Crossref] [PubMed]

F. Yang and Z. Lei Mei, “Guiding SPPs with PT-symmetry,” Sci. Rep. 5(1), 14981 (2015).
[Crossref] [PubMed]

B. Yang, Y. Y. Yue, R. E. Lu, X. H. Hong, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Rigorous intensity and phase-shift manipulation in optical frequency conversion,” Sci. Rep. 6(1), 27457 (2016).
[Crossref] [PubMed]

Other (3)

J. Yao and Y. Wang, “Quasi-phase matching technology,” in Nonlinear Optics and Solid-State Lasers, pp. 319–382 (2011).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

NANOLN, ( http://www.nanoln.com/en/ ).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the sample.
Fig. 2
Fig. 2 Experimental setup to measure SH.(a) Confocal micro-Raman spectrometer. (b) Two-dimensional scanning system.
Fig. 3
Fig. 3 (a) SH signal versus transmission distance, captured in Fig. 2(a). (b) Energy distribution on the surface of the sample collected by fiber taper scanning (Fig. 2(b)). The axis shows the step number. The coordinate is the step number of the moving taper, and the step distance of the scanning is 3 μm. The wavelength of the FW is 1600 nm.
Fig. 4
Fig. 4 QPM results. (a) The intensity of SH vs. the FW wavelength. (b) SH captured by the CMRS in Fig. 2(a). (c) SH collected by the scanning system in Fig. 2(b).

Tables (2)

Tables Icon

Table 1 PPLN period versus Au film thickness under the QPM condition.

Tables Icon

Table 2 Parameters of the quadratic fitting of SH versus reference FW.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

e 4 k 1 a = k 1 / ε 1 k 2 / ε 2o k 1 / ε 1 + k 2 / ε 2o k 1 / ε 1 k 3 / ε 3 k 1 / ε 1 + k 3 / ε 3 .
k i 2 = β 2 k 0 2 ε i , i = I, III when the layer is an isotropic material,
k i 2 = ε 2o ε 2e β 2 k i 2 ε 2o , i = II when LiNbO 3 is an anisotropic material.
d dx a w (x)=i w 4 a 2w a w* e i( β 2w β w* β w )x ε 0 E z 2w ( E z w* ) 2 d 33 (x,z)dz , d dx a 2w (x)=i w 4 ( a w ) 2 e i(2 β w β 2w )x ε 0 E z 2w* ( E z w ) 2 d 33 (x,z)dz
G m = 2π Λ =real( β 2w )2real( β w ) .

Metrics