Abstract

A long-term stable picosecond dissipative soliton (DS) is achieved for the first time using nonlinear polarization evolution. The environmental stabilization is performed by a Faraday mirror, which can cancel environmentally induced changes in the birefringence of the fiber. The laser cavity with all-polarization-maintaining fiber components generates DS pulses with 2.9 nJ single pulse energy and 5.9 ps pulse width. The output power test over 2 hours shows the excellent mode-locking stability of this design.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear polarization evolution of ultrashort pulses in polarization maintaining fibers

Jan Szczepanek, Tomasz M. Kardaś, Czesław Radzewicz, and Yuriy Stepanenko
Opt. Express 26(10) 13590-13604 (2018)

Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski
Opt. Express 21(18) 20556-20564 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  2. L. Zhang, J. Zhou, Z. Wang, X. Gu, and Y. Feng, “SESAM Mode-Locked, Environmentally Stable, and Compact Dissipative Soliton Fiber Laser,” IEEE Photonics Technol. Lett. 26(13), 1314–1316 (2014).
    [Crossref]
  3. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
    [Crossref]
  4. J. H. Im, S. Y. Choi, F. Rotermund, and D. I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010).
    [Crossref] [PubMed]
  5. J. Szczepanek, T. M. Kardaś, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40(15), 3500–3503 (2015).
    [Crossref] [PubMed]
  6. J. Zhou and X. Gu, “32-nJ 615-fs Stable Dissipative Soliton Ring Cavity Fiber Laser With Raman Scattering,” IEEE Photonics Technol. Lett. 28(4), 453–456 (2016).
    [Crossref]
  7. W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
    [Crossref]
  8. D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett. 9(9), 662–668 (2012).
    [Crossref]
  9. D. Mortag, D. Wandt, U. Morgner, D. Kracht, and J. Neumann, “Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 µm,” Opt. Express 19(2), 546–551 (2011).
    [Crossref] [PubMed]
  10. D. S. Kharenko, V. A. Gonta, and S. A. Babin, “50 nJ 250 fs all-fibre Raman-free dissipative soliton oscillator,” Laser Phys. Lett. 13(2), 025107 (2016).
    [Crossref]
  11. Y. Wang, L. Zhang, Z. Zhuo, and S. Guo, “Cross-splicing method for compensating fiber birefringence in polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution,” Appl. Opt. 55(21), 5766–5770 (2016).
    [Crossref] [PubMed]
  12. J. Szczepanek, T. M. Kardaś, C. Radzewicz, and Y. Stepanenko, “Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers,” Opt. Lett. 42(3), 575–578 (2017).
    [Crossref] [PubMed]
  13. C. K. Nielsen and S. R. Keiding, “All-fiber mode-locked fiber laser,” Opt. Lett. 32(11), 1474–1476 (2007).
    [Crossref] [PubMed]
  14. A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
    [Crossref]
  15. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
    [Crossref] [PubMed]
  16. L. Zhang, A. R. El-Damak, Y. Feng, and X. Gu, “Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion,” Opt. Express 21(10), 12014–12021 (2013).
    [Crossref] [PubMed]

2017 (2)

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

J. Szczepanek, T. M. Kardaś, C. Radzewicz, and Y. Stepanenko, “Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers,” Opt. Lett. 42(3), 575–578 (2017).
[Crossref] [PubMed]

2016 (3)

Y. Wang, L. Zhang, Z. Zhuo, and S. Guo, “Cross-splicing method for compensating fiber birefringence in polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution,” Appl. Opt. 55(21), 5766–5770 (2016).
[Crossref] [PubMed]

D. S. Kharenko, V. A. Gonta, and S. A. Babin, “50 nJ 250 fs all-fibre Raman-free dissipative soliton oscillator,” Laser Phys. Lett. 13(2), 025107 (2016).
[Crossref]

J. Zhou and X. Gu, “32-nJ 615-fs Stable Dissipative Soliton Ring Cavity Fiber Laser With Raman Scattering,” IEEE Photonics Technol. Lett. 28(4), 453–456 (2016).
[Crossref]

2015 (1)

2014 (1)

L. Zhang, J. Zhou, Z. Wang, X. Gu, and Y. Feng, “SESAM Mode-Locked, Environmentally Stable, and Compact Dissipative Soliton Fiber Laser,” IEEE Photonics Technol. Lett. 26(13), 1314–1316 (2014).
[Crossref]

2013 (1)

2012 (2)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett. 9(9), 662–668 (2012).
[Crossref]

2011 (1)

2010 (3)

J. H. Im, S. Y. Choi, F. Rotermund, and D. I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010).
[Crossref] [PubMed]

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

2007 (1)

1988 (1)

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Amrani, F.

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Babin, S. A.

D. S. Kharenko, V. A. Gonta, and S. A. Babin, “50 nJ 250 fs all-fibre Raman-free dissipative soliton oscillator,” Laser Phys. Lett. 13(2), 025107 (2016).
[Crossref]

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett. 9(9), 662–668 (2012).
[Crossref]

Bao, Q.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Choi, S. Y.

Cleff, C.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Dobner, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Doran, N. J.

Doubek, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

El-Damak, A. R.

Fedoruk, M. P.

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett. 9(9), 662–668 (2012).
[Crossref]

Feng, Y.

L. Zhang, J. Zhou, Z. Wang, X. Gu, and Y. Feng, “SESAM Mode-Locked, Environmentally Stable, and Compact Dissipative Soliton Fiber Laser,” IEEE Photonics Technol. Lett. 26(13), 1314–1316 (2014).
[Crossref]

L. Zhang, A. R. El-Damak, Y. Feng, and X. Gu, “Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion,” Opt. Express 21(10), 12014–12021 (2013).
[Crossref] [PubMed]

Fischer, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Giunta, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Gonta, V. A.

D. S. Kharenko, V. A. Gonta, and S. A. Babin, “50 nJ 250 fs all-fibre Raman-free dissipative soliton oscillator,” Laser Phys. Lett. 13(2), 025107 (2016).
[Crossref]

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Gu, X.

J. Zhou and X. Gu, “32-nJ 615-fs Stable Dissipative Soliton Ring Cavity Fiber Laser With Raman Scattering,” IEEE Photonics Technol. Lett. 28(4), 453–456 (2016).
[Crossref]

L. Zhang, J. Zhou, Z. Wang, X. Gu, and Y. Feng, “SESAM Mode-Locked, Environmentally Stable, and Compact Dissipative Soliton Fiber Laser,” IEEE Photonics Technol. Lett. 26(13), 1314–1316 (2014).
[Crossref]

L. Zhang, A. R. El-Damak, Y. Feng, and X. Gu, “Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion,” Opt. Express 21(10), 12014–12021 (2013).
[Crossref] [PubMed]

Guo, S.

Hänsel, W.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Holzwarth, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Hoogland, H.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Im, J. H.

Kardas, T. M.

Keiding, S. R.

Kharenko, D. S.

D. S. Kharenko, V. A. Gonta, and S. A. Babin, “50 nJ 250 fs all-fibre Raman-free dissipative soliton oscillator,” Laser Phys. Lett. 13(2), 025107 (2016).
[Crossref]

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett. 9(9), 662–668 (2012).
[Crossref]

Knize, R. J.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Komarov, A.

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Komarov, K.

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Kracht, D.

Loh, K. P.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Mayer, P.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Meshcheriakov, D.

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Michalska, M.

Morgner, U.

Mortag, D.

Neumann, J.

Nielsen, C. K.

Podivilov, E. V.

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett. 9(9), 662–668 (2012).
[Crossref]

Radzewicz, C.

Rotermund, F.

Sanchez, F.

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Schmid, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Shtyrina, O. V.

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett. 9(9), 662–668 (2012).
[Crossref]

Steinmetz, T.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Stepanenko, Y.

Szczepanek, J.

Tang, D.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Wandt, D.

Wang, Y.

Wang, Z.

L. Zhang, J. Zhou, Z. Wang, X. Gu, and Y. Feng, “SESAM Mode-Locked, Environmentally Stable, and Compact Dissipative Soliton Fiber Laser,” IEEE Photonics Technol. Lett. 26(13), 1314–1316 (2014).
[Crossref]

Wood, D.

Yarutkina, I. A.

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett. 9(9), 662–668 (2012).
[Crossref]

Yeom, D. I.

Zhang, H.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Zhang, L.

Zhao, L.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

Zhou, J.

J. Zhou and X. Gu, “32-nJ 615-fs Stable Dissipative Soliton Ring Cavity Fiber Laser With Raman Scattering,” IEEE Photonics Technol. Lett. 28(4), 453–456 (2016).
[Crossref]

L. Zhang, J. Zhou, Z. Wang, X. Gu, and Y. Feng, “SESAM Mode-Locked, Environmentally Stable, and Compact Dissipative Soliton Fiber Laser,” IEEE Photonics Technol. Lett. 26(13), 1314–1316 (2014).
[Crossref]

Zhuo, Z.

Appl. Opt. (1)

Appl. Phys. B (1)

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Appl. Phys. Lett. (1)

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Zhang, J. Zhou, Z. Wang, X. Gu, and Y. Feng, “SESAM Mode-Locked, Environmentally Stable, and Compact Dissipative Soliton Fiber Laser,” IEEE Photonics Technol. Lett. 26(13), 1314–1316 (2014).
[Crossref]

J. Zhou and X. Gu, “32-nJ 615-fs Stable Dissipative Soliton Ring Cavity Fiber Laser With Raman Scattering,” IEEE Photonics Technol. Lett. 28(4), 453–456 (2016).
[Crossref]

Laser Phys. Lett. (2)

D. S. Kharenko, V. A. Gonta, and S. A. Babin, “50 nJ 250 fs all-fibre Raman-free dissipative soliton oscillator,” Laser Phys. Lett. 13(2), 025107 (2016).
[Crossref]

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett. 9(9), 662–668 (2012).
[Crossref]

Nat. Photonics (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (1)

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the laser system, WDM: wavelength division multiplexer; FM: Faraday mirror.
Fig. 2
Fig. 2 (a) Laser output power as a function of pump power under the DS and NL working regions and (b) Output spectra of the mode locked laser under the DS and NL working regions
Fig. 3
Fig. 3 RF spectrum of the DS (a) and NL (b) pulses, measured with a resolution bandwidth of 10 Hz with a span of 1 MHz separation. The inset shows the harmonic peaks with a span of 500 MHz separation.
Fig. 4
Fig. 4 Autocorrelation traces of the DS (a) and NL (b) pulses. The inset shows the corresponding pulse train. (c) Output power stability test in a duration of 2 hours. The inset shows the enlarged graph.
Fig. 5
Fig. 5 (a) Schematic diagram of the theoretical analysis model for the NPE section. (b) Calculated reflection through the NPE device as a function of normalized input power for three different splicing angles. Experimental (c) and calculated (d) DS output spectra for the three splicing angles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α : ( 1 α ) = sin 2 θ : cos 2 θ
| E O U T | 2 = | E I N | 2 2 α ( 1 α ) { 1 + cos [ ( 1 2 α ) | E I N | 2 × 2 π n 2 L / λ ] }
| E O U T | 2 = | E I N | 2 2 α ( 1 α ) { 1 cos [ ( 1 2 α ) | E I N | 2 × 2 π n 2 L / λ ] }

Metrics