Abstract

The development of highly efficient light-controlled functional fiber elements has become indispensable to optical fiber communication systems. Traditional nonlinearity-based optical fiber devices suffer from the demerits of complex/expensive components, high peak power requirements, and poor efficiency. In this study, we utilize colloidal quantum dots (CQDs) to develop a light-controlled optical fiber interferometer (FI) for the all-optical control of the transmission spectrum. A specially designed exposed-core microstructure fiber (ECMF) is utilized to form the functional structure. Two types of PbS CQDs with absorption wavelengths around 1180 nm and 1580 nm, respectively, are deposited on the ECMF to enable the functional FI. The wavelength and power of control light are key factors for tailoring the FI transmission spectrum. A satisfactory recovery property and linear relationship between the spectrum shift and the power of control light at certain wavelength are achieved. The highest wavelength shift sensitivity of our light-controlled FI is 4.6 pm/mW, corresponding to an effective refractive index (RI) change of 5 × 10−6 /mW. We established a theoretical model to reveal that the RI of the CQD layer is governed by photoexcitation dynamics in CQD with the light absorption at certain wavelength. The concentration of charge carriers in the CQD layer can be relatively high under light illumination owing to their small size-related quantum confinement, which implies that low light power (mW-level in this work) can change the refractive index of the CQDs. Meanwhile, the absorption wavelength of quantum dots can be easily tuned via CQD size control to match specific operating wavelength windows. We further apply the CQD-based FI as a light-controllable fiber filter (LCFF) in a 50-km standard single-mode fiber-based communication system with 12.5-Gbps on-off keying direct modulation. Chirp management and dispersion compensation are successfully achieved by using the developed LCFF to obtain error-free transmission. CQDs possess excellent solution processability, and they can be deposited uniformly and conformally on various substrates such as fibers, silicon chips, and other complex structure surfaces, offering a powerful new degree of freedom to develop light control devices for optical communication.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
InGaN µLEDs integrated onto colloidal quantum dot functionalized ultra-thin glass

K. Rae, C. Foucher, B. Guilhabert, M. S. Islim, L. Yin, D. Zhu, R. A. Oliver, D. J. Wallis, H. Haas, N. Laurand, and M. D. Dawson
Opt. Express 25(16) 19179-19184 (2017)

Random lasing in a colloidal quantum dot-doped disordered polymer

Mingxuan Cao, Yating Zhang, Xiaoxian Song, Yongli Che, Haiting Zhang, Haitao Dai, Guizhong Zhang, and Jianquan Yao
Opt. Express 24(9) 9325-9331 (2016)

Passively mode-locked Yb fiber laser with PbSe colloidal quantum dots as saturable absorber

Kaihua Wei, Shanhui Fan, Qingguang Chen, and Xiaomin Lai
Opt. Express 25(21) 24901-24906 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
    [Crossref]
  2. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
    [Crossref] [PubMed]
  3. K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, D. G. Jia, H. X. Zhang, and Y. M. Zhang, “Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system,” Opt. Commun. 281(12), 3286–3290 (2008).
    [Crossref]
  4. W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
    [Crossref] [PubMed]
  5. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
    [Crossref] [PubMed]
  6. G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Analysis and optimization of an all-fiber device based on photonic crystal fiber with integrated electrodes,” Opt. Express 18(3), 2842–2848 (2010).
    [Crossref] [PubMed]
  7. X. Yang, Y. Liu, Y. Zheng, S. Li, L. Yuan, T. Yuan, and C. Tong, “A capillary optical fiber modulator derivates from magnetic fluid,” Opt. Commun. 304, 83–86 (2013).
    [Crossref]
  8. R. Normandin, D. C. Houghton, and M. Simard-Normandin, “All-optical, silicon based, fiber optic modulator using a near cutoff region,” Can. J. Phys. 67(67), 412–419 (1989).
    [Crossref]
  9. K. H. Schoenbach, V. K. Lakdawala, R. Germer, and S. T. Ko, “An optically controlled closing and opening semiconductor switch,” J. Appl. Phys. 63(7), 2460–2463 (1988).
    [Crossref]
  10. C. Lee, P. Mak, and A. DeFonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum Electron. 16(3), 277–288 (1980).
    [Crossref]
  11. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  12. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photonics Technol. Lett. 15(1), 36–38 (2003).
    [Crossref]
  13. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
    [Crossref]
  14. A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear Optical Loop Mirrors: Investigation Solution and Experimental Validation for Undesirable Counterpropagating Effects in All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
    [Crossref]
  15. D. Gammon, “Electrons in artificial atoms,” Nature 405(6789), 899–900 (2000).
    [Crossref] [PubMed]
  16. A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271(5251), 933–937 (1996).
    [Crossref]
  17. Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
    [Crossref] [PubMed]
  18. J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum Junction Solar Cells,” Nano Lett. 12(9), 4889–4894 (2012).
    [Crossref] [PubMed]
  19. L. Ding, C. Fan, Y. Zhong, T. Li, and J. Huang, “A sensitive optic fiber sensor based on CdSe QDs fluorophore for nitric oxide detection,” Sens. Actuators B Chem. 185, 70–76 (2013).
    [Crossref]
  20. R. Tabassum and B. D. Gupta, “Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium,” J. Opt. 18(1), 015004 (2016).
    [Crossref]
  21. A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature Sensing Using Colloidal-Core Photonic Crystal Fiber,” IEEE Sens. J. 12(1), 195–200 (2012).
    [Crossref]
  22. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
    [Crossref] [PubMed]
  23. Y. Rao, M. Deng, D. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
    [Crossref]
  24. M. Jiang, Q. Li, J. Wang, W. Yao, Z. Jin, Q. Sui, J. Shi, F. Zhang, L. Jia, and W. Dong, “Optical Response of Fiber-Optic Fabry-Perot Refractive-Index Tip Sensor Coated With Polyelectrolyte Multilayer Ultra-Thin Films,” J. Lightwave Technol. 31(14), 2321–2326 (2013).
    [Crossref]
  25. Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6, 21682 (2016).
  26. R. Saran and R. J. Curry, “Lead sulphide nanocrystal photodetector technologies,” Nat. Photonics 10(2), 81–92 (2016).
    [Crossref]
  27. E. H. Sargent, “Infrared Quantum Dots,” Adv. Mater. 17(5), 515–522 (2005).
    [Crossref]
  28. M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
    [Crossref]
  29. H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
    [Crossref] [PubMed]
  30. M. T. Crisp and N. A. Kotov, “Preparation of nanoparticle coatings on surfaces of complex geometry,” Nano Lett. 3(2), 173–177 (2003).
    [Crossref]
  31. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
    [Crossref] [PubMed]
  32. Z. Li, L. Yi, H. Ji, and W. Hu, “100-Gb/s TWDM-PON based on 10G optical devices,” Opt. Express 24(12), 12941–12948 (2016).
    [Crossref] [PubMed]

2016 (4)

R. Tabassum and B. D. Gupta, “Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium,” J. Opt. 18(1), 015004 (2016).
[Crossref]

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6, 21682 (2016).

R. Saran and R. J. Curry, “Lead sulphide nanocrystal photodetector technologies,” Nat. Photonics 10(2), 81–92 (2016).
[Crossref]

Z. Li, L. Yi, H. Ji, and W. Hu, “100-Gb/s TWDM-PON based on 10G optical devices,” Opt. Express 24(12), 12941–12948 (2016).
[Crossref] [PubMed]

2015 (1)

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
[Crossref]

2014 (2)

H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
[Crossref] [PubMed]

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

2013 (3)

X. Yang, Y. Liu, Y. Zheng, S. Li, L. Yuan, T. Yuan, and C. Tong, “A capillary optical fiber modulator derivates from magnetic fluid,” Opt. Commun. 304, 83–86 (2013).
[Crossref]

L. Ding, C. Fan, Y. Zhong, T. Li, and J. Huang, “A sensitive optic fiber sensor based on CdSe QDs fluorophore for nitric oxide detection,” Sens. Actuators B Chem. 185, 70–76 (2013).
[Crossref]

M. Jiang, Q. Li, J. Wang, W. Yao, Z. Jin, Q. Sui, J. Shi, F. Zhang, L. Jia, and W. Dong, “Optical Response of Fiber-Optic Fabry-Perot Refractive-Index Tip Sensor Coated With Polyelectrolyte Multilayer Ultra-Thin Films,” J. Lightwave Technol. 31(14), 2321–2326 (2013).
[Crossref]

2012 (3)

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum Junction Solar Cells,” Nano Lett. 12(9), 4889–4894 (2012).
[Crossref] [PubMed]

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature Sensing Using Colloidal-Core Photonic Crystal Fiber,” IEEE Sens. J. 12(1), 195–200 (2012).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

2011 (2)

W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[Crossref] [PubMed]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (3)

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[Crossref] [PubMed]

K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, D. G. Jia, H. X. Zhang, and Y. M. Zhang, “Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system,” Opt. Commun. 281(12), 3286–3290 (2008).
[Crossref]

Y. Rao, M. Deng, D. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

2005 (2)

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear Optical Loop Mirrors: Investigation Solution and Experimental Validation for Undesirable Counterpropagating Effects in All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[Crossref]

2003 (2)

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photonics Technol. Lett. 15(1), 36–38 (2003).
[Crossref]

M. T. Crisp and N. A. Kotov, “Preparation of nanoparticle coatings on surfaces of complex geometry,” Nano Lett. 3(2), 173–177 (2003).
[Crossref]

2002 (1)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

2000 (1)

D. Gammon, “Electrons in artificial atoms,” Nature 405(6789), 899–900 (2000).
[Crossref] [PubMed]

1996 (1)

A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271(5251), 933–937 (1996).
[Crossref]

1989 (1)

R. Normandin, D. C. Houghton, and M. Simard-Normandin, “All-optical, silicon based, fiber optic modulator using a near cutoff region,” Can. J. Phys. 67(67), 412–419 (1989).
[Crossref]

1988 (1)

K. H. Schoenbach, V. K. Lakdawala, R. Germer, and S. T. Ko, “An optically controlled closing and opening semiconductor switch,” J. Appl. Phys. 63(7), 2460–2463 (1988).
[Crossref]

1980 (1)

C. Lee, P. Mak, and A. DeFonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum Electron. 16(3), 277–288 (1980).
[Crossref]

Adinolfi, V.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Alivisatos, A. P.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271(5251), 933–937 (1996).
[Crossref]

Alkeskjold, T.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Amassian, A.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Anawati, A.

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Badding, J. V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Bakr, O. M.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Bassi, P.

Bjarklev, A.

Bogoni, A.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear Optical Loop Mirrors: Investigation Solution and Experimental Validation for Undesirable Counterpropagating Effects in All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[Crossref]

Bozolan, A.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature Sensing Using Colloidal-Core Photonic Crystal Fiber,” IEEE Sens. J. 12(1), 195–200 (2012).
[Crossref]

Cao, W.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photonics Technol. Lett. 15(1), 36–38 (2003).
[Crossref]

Carey, G.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Chesini, G.

Cordeiro, C. M. B.

Crisp, M. T.

M. T. Crisp and N. A. Kotov, “Preparation of nanoparticle coatings on surfaces of complex geometry,” Nano Lett. 3(2), 173–177 (2003).
[Crossref]

Curry, R. J.

R. Saran and R. J. Curry, “Lead sulphide nanocrystal photodetector technologies,” Nat. Photonics 10(2), 81–92 (2016).
[Crossref]

Davis, C.

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

de Matos, C. J. S.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature Sensing Using Colloidal-Core Photonic Crystal Fiber,” IEEE Sens. J. 12(1), 195–200 (2012).
[Crossref]

DeFonzo, A.

C. Lee, P. Mak, and A. DeFonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum Electron. 16(3), 277–288 (1980).
[Crossref]

Deng, M.

Y. Rao, M. Deng, D. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Ding, L.

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6, 21682 (2016).

L. Ding, C. Fan, Y. Zhong, T. Li, and J. Huang, “A sensitive optic fiber sensor based on CdSe QDs fluorophore for nitric oxide detection,” Sens. Actuators B Chem. 185, 70–76 (2013).
[Crossref]

Dong, H.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Dong, W.

Dong, X.

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Duan, D.

Y. Rao, M. Deng, D. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Duan, J.

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6, 21682 (2016).

Ebendorff-Heidepriem, H.

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6, 21682 (2016).

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Fan, C.

L. Ding, C. Fan, Y. Zhong, T. Li, and J. Huang, “A sensitive optic fiber sensor based on CdSe QDs fluorophore for nitric oxide detection,” Sens. Actuators B Chem. 185, 70–76 (2013).
[Crossref]

Foo, T. C.

Franco, M. A. R.

Fu, Q.

H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
[Crossref] [PubMed]

Furukawa, M.

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum Junction Solar Cells,” Nano Lett. 12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Gammon, D.

D. Gammon, “Electrons in artificial atoms,” Nature 405(6789), 899–900 (2000).
[Crossref] [PubMed]

Germer, R.

K. H. Schoenbach, V. K. Lakdawala, R. Germer, and S. T. Ko, “An optically controlled closing and opening semiconductor switch,” J. Appl. Phys. 63(7), 2460–2463 (1988).
[Crossref]

Gerosa, R. M.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature Sensing Using Colloidal-Core Photonic Crystal Fiber,” IEEE Sens. J. 12(1), 195–200 (2012).
[Crossref]

Ghelfi, P.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear Optical Loop Mirrors: Investigation Solution and Experimental Validation for Undesirable Counterpropagating Effects in All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[Crossref]

Goldhar, J.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photonics Technol. Lett. 15(1), 36–38 (2003).
[Crossref]

Gopalan, V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Guo, J.

Gupta, B. D.

R. Tabassum and B. D. Gupta, “Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium,” J. Opt. 18(1), 015004 (2016).
[Crossref]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

He, J.

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
[Crossref]

He, R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

He, S.

Healy, N.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Hermann, D.

Hill, I.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Ho, P. T.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photonics Technol. Lett. 15(1), 36–38 (2003).
[Crossref]

Hoogland, S.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum Junction Solar Cells,” Nano Lett. 12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Houghton, D. C.

R. Normandin, D. C. Houghton, and M. Simard-Normandin, “All-optical, silicon based, fiber optic modulator using a near cutoff region,” Can. J. Phys. 67(67), 412–419 (1989).
[Crossref]

Hu, L.

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
[Crossref]

H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
[Crossref] [PubMed]

Hu, W.

Huang, J.

L. Ding, C. Fan, Y. Zhong, T. Li, and J. Huang, “A sensitive optic fiber sensor based on CdSe QDs fluorophore for nitric oxide detection,” Sens. Actuators B Chem. 185, 70–76 (2013).
[Crossref]

Ibrahim, T. A.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photonics Technol. Lett. 15(1), 36–38 (2003).
[Crossref]

Jain, P. K.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Ji, H.

Jia, D. G.

K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, D. G. Jia, H. X. Zhang, and Y. M. Zhang, “Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system,” Opt. Commun. 281(12), 3286–3290 (2008).
[Crossref]

Jia, L.

Jiang, M.

Jin, S.

Jin, Z.

Jing, W. C.

K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, D. G. Jia, H. X. Zhang, and Y. M. Zhang, “Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system,” Opt. Commun. 281(12), 3286–3290 (2008).
[Crossref]

Kemp, K. W.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Kim, Y.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photonics Technol. Lett. 15(1), 36–38 (2003).
[Crossref]

Kirmani, A. R.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Ko, S. T.

K. H. Schoenbach, V. K. Lakdawala, R. Germer, and S. T. Ko, “An optically controlled closing and opening semiconductor switch,” J. Appl. Phys. 63(7), 2460–2463 (1988).
[Crossref]

Kotov, N. A.

M. T. Crisp and N. A. Kotov, “Preparation of nanoparticle coatings on surfaces of complex geometry,” Nano Lett. 3(2), 173–177 (2003).
[Crossref]

Krishnamurthi, M.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Labelle, A.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Lakdawala, V. K.

K. H. Schoenbach, V. K. Lakdawala, R. Germer, and S. T. Ko, “An optically controlled closing and opening semiconductor switch,” J. Appl. Phys. 63(7), 2460–2463 (1988).
[Crossref]

Lee, C.

C. Lee, P. Mak, and A. DeFonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum Electron. 16(3), 277–288 (1980).
[Crossref]

Lee, C. H.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photonics Technol. Lett. 15(1), 36–38 (2003).
[Crossref]

Levina, L.

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum Junction Solar Cells,” Nano Lett. 12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Li, J.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photonics Technol. Lett. 15(1), 36–38 (2003).
[Crossref]

Li, M.

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
[Crossref]

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
[Crossref] [PubMed]

Li, Q.

Li, S.

X. Yang, Y. Liu, Y. Zheng, S. Li, L. Yuan, T. Yuan, and C. Tong, “A capillary optical fiber modulator derivates from magnetic fluid,” Opt. Commun. 304, 83–86 (2013).
[Crossref]

Li, T.

L. Ding, C. Fan, Y. Zhong, T. Li, and J. Huang, “A sensitive optic fiber sensor based on CdSe QDs fluorophore for nitric oxide detection,” Sens. Actuators B Chem. 185, 70–76 (2013).
[Crossref]

Li, Z.

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Liu, H.

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
[Crossref]

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
[Crossref] [PubMed]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum Junction Solar Cells,” Nano Lett. 12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Liu, K.

K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, D. G. Jia, H. X. Zhang, and Y. M. Zhang, “Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system,” Opt. Commun. 281(12), 3286–3290 (2008).
[Crossref]

Liu, Y.

X. Yang, Y. Liu, Y. Zheng, S. Li, L. Yuan, T. Yuan, and C. Tong, “A capillary optical fiber modulator derivates from magnetic fluid,” Opt. Commun. 304, 83–86 (2013).
[Crossref]

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Mak, P.

C. Lee, P. Mak, and A. DeFonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum Electron. 16(3), 277–288 (1980).
[Crossref]

Minor, J.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Monro, T. M.

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6, 21682 (2016).

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

Moore, R.

Nielsen, M.

Ning, Z.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Normandin, R.

R. Normandin, D. C. Houghton, and M. Simard-Normandin, “All-optical, silicon based, fiber optic modulator using a near cutoff region,” Can. J. Phys. 67(67), 412–419 (1989).
[Crossref]

Pan, J.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Peacock, A. C.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Peng, G. D.

K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, D. G. Jia, H. X. Zhang, and Y. M. Zhang, “Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system,” Opt. Commun. 281(12), 3286–3290 (2008).
[Crossref]

Poti, L.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear Optical Loop Mirrors: Investigation Solution and Experimental Validation for Undesirable Counterpropagating Effects in All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[Crossref]

Prill Sempere, L.

Qian, W.

Rao, Y.

Y. Rao, M. Deng, D. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Riishede, J.

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Rollny, L.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Romero, M. A.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature Sensing Using Colloidal-Core Photonic Crystal Fiber,” IEEE Sens. J. 12(1), 195–200 (2012).
[Crossref]

Ruan, Y.

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6, 21682 (2016).

Russell, P. S. J.

Saran, R.

R. Saran and R. J. Curry, “Lead sulphide nanocrystal photodetector technologies,” Nat. Photonics 10(2), 81–92 (2016).
[Crossref]

Sargent, E. H.

H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
[Crossref] [PubMed]

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum Junction Solar Cells,” Nano Lett. 12(9), 4889–4894 (2012).
[Crossref] [PubMed]

E. H. Sargent, “Infrared Quantum Dots,” Adv. Mater. 17(5), 515–522 (2005).
[Crossref]

Sazio, P. J. A.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Scaffardi, M.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear Optical Loop Mirrors: Investigation Solution and Experimental Validation for Undesirable Counterpropagating Effects in All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[Crossref]

Schmidt, M. A.

Schoenbach, K. H.

K. H. Schoenbach, V. K. Lakdawala, R. Germer, and S. T. Ko, “An optically controlled closing and opening semiconductor switch,” J. Appl. Phys. 63(7), 2460–2463 (1988).
[Crossref]

Scolari, L.

Serrão, V. A.

Shi, J.

Simard-Normandin, M.

R. Normandin, D. C. Houghton, and M. Simard-Normandin, “All-optical, silicon based, fiber optic modulator using a near cutoff region,” Can. J. Phys. 67(67), 412–419 (1989).
[Crossref]

Sparks, J. R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Sui, Q.

Sun, J. P.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Sutherland, B.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Tabassum, R.

R. Tabassum and B. D. Gupta, “Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium,” J. Opt. 18(1), 015004 (2016).
[Crossref]

Tang, J.

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
[Crossref]

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
[Crossref] [PubMed]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum Junction Solar Cells,” Nano Lett. 12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Tong, C.

X. Yang, Y. Liu, Y. Zheng, S. Li, L. Yuan, T. Yuan, and C. Tong, “A capillary optical fiber modulator derivates from magnetic fluid,” Opt. Commun. 304, 83–86 (2013).
[Crossref]

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Tyagi, H. K.

Voznyy, O.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
[Crossref] [PubMed]

Wang, J.

Wang, X.

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum Junction Solar Cells,” Nano Lett. 12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Warren-Smith, S. C.

Wei, H.

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Xia, Z.

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
[Crossref]

H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
[Crossref] [PubMed]

Xu, J.

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Yang, X.

X. Yang, Y. Liu, Y. Zheng, S. Li, L. Yuan, T. Yuan, and C. Tong, “A capillary optical fiber modulator derivates from magnetic fluid,” Opt. Commun. 304, 83–86 (2013).
[Crossref]

Yao, W.

Yi, L.

Yuan, L.

X. Yang, Y. Liu, Y. Zheng, S. Li, L. Yuan, T. Yuan, and C. Tong, “A capillary optical fiber modulator derivates from magnetic fluid,” Opt. Commun. 304, 83–86 (2013).
[Crossref]

Yuan, T.

X. Yang, Y. Liu, Y. Zheng, S. Li, L. Yuan, T. Yuan, and C. Tong, “A capillary optical fiber modulator derivates from magnetic fluid,” Opt. Commun. 304, 83–86 (2013).
[Crossref]

Zhang, F.

Zhang, H. X.

K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, D. G. Jia, H. X. Zhang, and Y. M. Zhang, “Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system,” Opt. Commun. 281(12), 3286–3290 (2008).
[Crossref]

Zhang, J. Z.

K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, D. G. Jia, H. X. Zhang, and Y. M. Zhang, “Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system,” Opt. Commun. 281(12), 3286–3290 (2008).
[Crossref]

Zhang, S.

Zhang, Y. M.

K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, D. G. Jia, H. X. Zhang, and Y. M. Zhang, “Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system,” Opt. Commun. 281(12), 3286–3290 (2008).
[Crossref]

Zhang, Z.

Zhao, C. L.

Zhao, J.

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
[Crossref]

Zheng, Y.

X. Yang, Y. Liu, Y. Zheng, S. Li, L. Yuan, T. Yuan, and C. Tong, “A capillary optical fiber modulator derivates from magnetic fluid,” Opt. Commun. 304, 83–86 (2013).
[Crossref]

Zheng, Z.

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
[Crossref]

Zhitomirsky, D.

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum Junction Solar Cells,” Nano Lett. 12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Zhong, Y.

L. Ding, C. Fan, Y. Zhong, T. Li, and J. Huang, “A sensitive optic fiber sensor based on CdSe QDs fluorophore for nitric oxide detection,” Sens. Actuators B Chem. 185, 70–76 (2013).
[Crossref]

Zhou, D.

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
[Crossref]

H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
[Crossref] [PubMed]

Zhu, T.

Y. Rao, M. Deng, D. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Adv. Mater. (2)

H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E. H. Sargent, and J. Tang, “Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids,” Adv. Mater. 26(17), 2718–2724 (2014).
[Crossref] [PubMed]

E. H. Sargent, “Infrared Quantum Dots,” Adv. Mater. 17(5), 515–522 (2005).
[Crossref]

Appl. Phys. Lett. (1)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[Crossref]

Can. J. Phys. (1)

R. Normandin, D. C. Houghton, and M. Simard-Normandin, “All-optical, silicon based, fiber optic modulator using a near cutoff region,” Can. J. Phys. 67(67), 412–419 (1989).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Lee, P. Mak, and A. DeFonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum Electron. 16(3), 277–288 (1980).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear Optical Loop Mirrors: Investigation Solution and Experimental Validation for Undesirable Counterpropagating Effects in All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1115–1123 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photonics Technol. Lett. 15(1), 36–38 (2003).
[Crossref]

IEEE Sens. J. (1)

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature Sensing Using Colloidal-Core Photonic Crystal Fiber,” IEEE Sens. J. 12(1), 195–200 (2012).
[Crossref]

J. Appl. Phys. (1)

K. H. Schoenbach, V. K. Lakdawala, R. Germer, and S. T. Ko, “An optically controlled closing and opening semiconductor switch,” J. Appl. Phys. 63(7), 2460–2463 (1988).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

R. Tabassum and B. D. Gupta, “Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium,” J. Opt. 18(1), 015004 (2016).
[Crossref]

Nano Lett. (2)

M. T. Crisp and N. A. Kotov, “Preparation of nanoparticle coatings on surfaces of complex geometry,” Nano Lett. 3(2), 173–177 (2003).
[Crossref]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, “Quantum Junction Solar Cells,” Nano Lett. 12(9), 4889–4894 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J. P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, “Air-stable n-type colloidal quantum dot solids,” Nat. Mater. 13(8), 822–828 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

R. Saran and R. J. Curry, “Lead sulphide nanocrystal photodetector technologies,” Nat. Photonics 10(2), 81–92 (2016).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Nature (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

D. Gammon, “Electrons in artificial atoms,” Nature 405(6789), 899–900 (2000).
[Crossref] [PubMed]

Opt. Commun. (2)

K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, D. G. Jia, H. X. Zhang, and Y. M. Zhang, “Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system,” Opt. Commun. 281(12), 3286–3290 (2008).
[Crossref]

X. Yang, Y. Liu, Y. Zheng, S. Li, L. Yuan, T. Yuan, and C. Tong, “A capillary optical fiber modulator derivates from magnetic fluid,” Opt. Commun. 304, 83–86 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Sci. Rep. (1)

Y. Ruan, L. Ding, J. Duan, H. Ebendorff-Heidepriem, and T. M. Monro, “Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications,” Sci. Rep. 6, 21682 (2016).

Science (1)

A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271(5251), 933–937 (1996).
[Crossref]

Sens. Actuators A Phys. (1)

Y. Rao, M. Deng, D. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Sens. Actuators B Chem. (1)

L. Ding, C. Fan, Y. Zhong, T. Li, and J. Huang, “A sensitive optic fiber sensor based on CdSe QDs fluorophore for nitric oxide detection,” Sens. Actuators B Chem. 185, 70–76 (2013).
[Crossref]

Sensors Actuat. B (1)

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He, L. Hu, Z. Xia, J. Tang, and H. Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” Sensors Actuat. B 217, 198–201 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Characterization of fabricated CQD and fiber structure. (a) Absorption spectra of the two kinds solution-processed PbS CQD as measured by a UV-vis/NIR spectrophotometer. (b) The ECMF cross-sectional image was observed by means of a scanning electron microscope (SEM). (c) SEM image of PbS CQD on the surface of the fiber, the insert was the profile of the CQD layer, the insert image was the profile of the CQD layer, the typical thickness was about 100 nm.
Fig. 2
Fig. 2 Experimental setup for colloidal quantum dot -based light control FI. Two laser wavelengths of 1550 nm and 980 nm were used in the experiment to examine the two types of CQDs synthesized in the study. The CQDs were deposited along the exposed air hole in the ECMF.
Fig. 3
Fig. 3 Experiment result of the FI structure and the 1580-nm-absorption-wavelength CQD-based device controlled by C-band light. (a) Power response of “blank” structure without the quantum dots when injected by the BBL. With change in the BBL power, only an intensity change (no phase change) is observed. (b) FI transmission spectrum as a function of BBL power. (c) FI transmission spectrum power as a function of SSL power with the BBL being used to at constant power to observe the optical spectrum.
Fig. 4
Fig. 4 Light control experiment with 1180-nm quantum dots deposited FI. (a) FI transmission spectrum as a function of BBL power. The spectra exhibit no wavelength shift with the control power changing from 15 to 45 mW. (b) FI transmission spectrum power as a function of SSL power with the BBL being used to at constant power to observe the optical spectrum. The spectra exhibit no wavelength shift with the control power of 1550 nm changing from 0 to 12 mW. (c) Light control experimental result for 1180-nm quantum dots with the control light wavelength of 980 nm. An obvious red shift of the wavelength is observed, which confirms that the 980-nm laser changes the refractive index of the CQDs.
Fig. 5
Fig. 5 Results of experiment to investigate the recovery property of the fabricated FI deposited with 1580-nm CQD. The power of the BBL source is increased from 15 to 50 mW in steps of 5 mW from step 1 to step 7. Subsequently, the BBL power is decreased from 50 to 15 mW in steps 7 to 13. Every measuring point is stabilized for 5 min.
Fig. 6
Fig. 6 Calculation result of RI at 1550 nm for various CQD sizes as a function of the relative light intensity absorbed by the CQD. The relationship between the RI change and the number of electrons is linear.
Fig. 7
Fig. 7 Experiment result of the CQD enabled device in transmission system. (a) Experimental setup for 50-km 12.5-Gbps OOK signal communication. (b) Optical spectrum of the DML after filtered by the LCFF. The black curve denotes the spectrum of the “operating” light from the DML after modulation by the 12.5-Gbps OOK signal. Corresponding to the different pump powers, the output wavelength curves are indicated in pink, green, and blue. (c) BER curves of the system for various input powers. The back-to-back (BTB in the figure) experiment result is indicated by the black curve, while that for the system without the LCFF is indicated by the red curve and it was directly transmitted in 50-km SSMF. By tuning the control power, the LCFF can be used to shift the spectrum to the position where the long-wavelength portion of the light source is filtered.

Tables (1)

Tables Icon

Table 1 Light source setup for different type of CQD in the experiment.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ=2π n eff L/λ
W shift =2Δ n eff ΔλL/λ
ε ˜ = ε b N× q 2 ε 0 m e ( ω 2 +jω τ 1 )
N=x×αIτ/V
Vx× V QD
n= ( ( ε ' 2 +ε " 2 ) 1 2 +ε' )/2

Metrics