Abstract

We investigate two approaches for the spectral broadening and compression of 1-ps long pulses of a thin-disk laser amplifier running at 50 kHz repetition rate at 1030 nm wavelength. We find that with a single, 2.66-m long stretched flexible hollow fiber filled with xenon gas, Fourier transform limited output pulse duration of 66 fs can be directly reached. For larger pulse shortening, we applied a hybrid cascaded approach involving a BBO-based pre-compressor and a long hollow fiber. We could achieve 33-times temporal shortening of 1-ps pulses down to a duration of 30 fs at an overall efficiency of ~29% with an output power level of 3.7 W. These results demonstrate the potential of stretched flexible fibers with their free length scalability for shortening laser pulses of moderate peak power.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

6 February 2018: A typographical correction was made to the title.


OSA Recommended Articles
Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber

Florian Emaury, Coralie Fourcade Dutin, Clara J. Saraceno, Mathis Trant, Oliver H. Heckl, Yang Y. Wang, Cinia Schriber, Frederic Gerome, Thomas Südmeyer, Fetah Benabid, and Ursula Keller
Opt. Express 21(4) 4986-4994 (2013)

Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers

C. J. Saraceno, O. H. Heckl, C. R. E. Baer, T. Südmeyer, and U. Keller
Opt. Express 19(2) 1395-1407 (2011)

60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller
Opt. Lett. 28(5) 367-369 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  2. J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
    [Crossref] [PubMed]
  3. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-Amplifier,” Opt. Express 17(15), 12230–12245 (2009).
    [Crossref] [PubMed]
  4. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
    [Crossref] [PubMed]
  5. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [Crossref] [PubMed]
  6. S. Backus, M. Kirchner, R. Lemons, D. Schmidt, C. Durfee, M. Murnane, and H. Kapteyn, “Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system,” Opt. Express 25(4), 3666–3674 (2017).
    [Crossref] [PubMed]
  7. J. Rothhardt, S. Hädrich, J. C. Delagnes, E. Cormier, and J. Limpert, “High Average Power Near-Infrared Few-Cycle Lasers,” Laser Photonics Rev. 11(4), 1700043 (2017).
    [Crossref]
  8. J. Rothhardt, S. Hädrich, H. Carstens, N. Herrick, S. Demmler, J. Limpert, and A. Tünnermann, “1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power,” Opt. Lett. 36(23), 4605–4607 (2011).
    [Crossref] [PubMed]
  9. S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
    [Crossref] [PubMed]
  10. L. Lavenu, M. Natile, F. Guichard, Y. Zaouter, M. Hanna, E. Mottay, and P. Georges, “High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage,” Opt. Express 25(7), 7530–7537 (2017).
    [Crossref] [PubMed]
  11. N. V. Didenko, A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev, V. S. Pazyuk, S. Y. Tenyakov, and V. V. Bryukhanov, “Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser,” Quantum Electron. 46(8), 675–678 (2016).
    [Crossref]
  12. J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, and A. Tünnermann, “53 W average power few-cycle fiber laser system generating soft x rays up to the water window,” Opt. Lett. 39(17), 5224–5227 (2014).
    [Crossref] [PubMed]
  13. S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, and J. Limpert, “Energetic sub-2-cycle laser with 216 W average power,” Opt. Lett. 41(18), 4332–4335 (2016).
    [Crossref] [PubMed]
  14. K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
    [Crossref] [PubMed]
  15. T. Nagy, M. Forster, and P. Simon, “Flexible hollow fiber for pulse compressors,” Appl. Opt. 47(18), 3264–3268 (2008).
    [Crossref] [PubMed]
  16. T. Nagy, V. Pervak, and P. Simon, “Optimal pulse compression in long hollow fibers,” Opt. Lett. 36(22), 4422–4424 (2011).
    [Crossref] [PubMed]
  17. M. Bradler, C. Homann, and E. Riedle, “Broadband difference frequency mixing between visible and near-infrared pulses for few-cycle pulse generation with stable carrier-envelope phase,” Appl. Phys. B 113(1), 19–25 (2013).
    [Crossref]
  18. C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
    [Crossref] [PubMed]
  19. A. Ryabov and P. Baum, “Electron microscopy of electromagnetic waveforms,” Science 353(6297), 374–377 (2016).
    [Crossref] [PubMed]
  20. V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
    [Crossref] [PubMed]
  21. W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3,” Opt. Lett. 39(23), 6604–6607 (2014).
    [Crossref] [PubMed]
  22. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28(20), 1987–1989 (2003).
    [Crossref] [PubMed]
  23. R. Desalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
    [Crossref] [PubMed]
  24. X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2):χ(2) nonlinearity,” Opt. Lett. 24(23), 1777–1779 (1999).
    [Crossref] [PubMed]
  25. B.-H. Chen, T. Nagy, and P. Baum, “Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation,” Opt. Lett.submitted.

2017 (3)

2016 (4)

N. V. Didenko, A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev, V. S. Pazyuk, S. Y. Tenyakov, and V. V. Bryukhanov, “Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser,” Quantum Electron. 46(8), 675–678 (2016).
[Crossref]

S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, and J. Limpert, “Energetic sub-2-cycle laser with 216 W average power,” Opt. Lett. 41(18), 4332–4335 (2016).
[Crossref] [PubMed]

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

A. Ryabov and P. Baum, “Electron microscopy of electromagnetic waveforms,” Science 353(6297), 374–377 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

2013 (3)

2011 (2)

2010 (2)

2009 (1)

2008 (1)

2003 (1)

1999 (1)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

1992 (1)

Abdolvand, A.

Abdou Ahmed, M.

Andersen, T. V.

Apolonski, A.

Backus, S.

Bauer, D.

Baum, P.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

A. Ryabov and P. Baum, “Electron microscopy of electromagnetic waveforms,” Science 353(6297), 374–377 (2016).
[Crossref] [PubMed]

V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
[Crossref] [PubMed]

W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3,” Opt. Lett. 39(23), 6604–6607 (2014).
[Crossref] [PubMed]

B.-H. Chen, T. Nagy, and P. Baum, “Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation,” Opt. Lett.submitted.

Biegert, J.

Bradler, M.

M. Bradler, C. Homann, and E. Riedle, “Broadband difference frequency mixing between visible and near-infrared pulses for few-cycle pulse generation with stable carrier-envelope phase,” Appl. Phys. B 113(1), 19–25 (2013).
[Crossref]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Bryukhanov, V. V.

N. V. Didenko, A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev, V. S. Pazyuk, S. Y. Tenyakov, and V. V. Bryukhanov, “Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser,” Quantum Electron. 46(8), 675–678 (2016).
[Crossref]

Carstens, H.

Chen, B.-H.

B.-H. Chen, T. Nagy, and P. Baum, “Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation,” Opt. Lett.submitted.

Cormier, E.

De Silvestri, S.

Delagnes, J. C.

J. Rothhardt, S. Hädrich, J. C. Delagnes, E. Cormier, and J. Limpert, “High Average Power Near-Infrared Few-Cycle Lasers,” Laser Photonics Rev. 11(4), 1700043 (2017).
[Crossref]

Demmler, S.

Desalvo, R.

Didenko, N. V.

N. V. Didenko, A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev, V. S. Pazyuk, S. Y. Tenyakov, and V. V. Bryukhanov, “Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser,” Quantum Electron. 46(8), 675–678 (2016).
[Crossref]

Drozdy, A.

Durfee, C.

Ehberger, D.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

Eidam, T.

Forster, M.

Frosz, M. H.

Fülöp, J. A.

Gabler, T.

Georges, P.

Giesen, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Gotschall, T.

Gottschall, T.

Graf, T.

Guichard, F.

Hädrich, S.

Hagan, D. J.

Hanf, S.

Hanna, M.

Herrick, N.

Hoffmann, A.

Hoffmann, H. D.

Homann, C.

M. Bradler, C. Homann, and E. Riedle, “Broadband difference frequency mixing between visible and near-infrared pulses for few-cycle pulse generation with stable carrier-envelope phase,” Appl. Phys. B 113(1), 19–25 (2013).
[Crossref]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Jójárt, P.

Kapteyn, H.

Kealhofer, C.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

Keller, U.

Kienel, M.

Killi, A.

Kirchner, M.

Klas, R.

Klenke, A.

Konyashchenko, A. V.

N. V. Didenko, A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev, V. S. Pazyuk, S. Y. Tenyakov, and V. V. Bryukhanov, “Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser,” Quantum Electron. 46(8), 675–678 (2016).
[Crossref]

Kostryukov, P. V.

N. V. Didenko, A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev, V. S. Pazyuk, S. Y. Tenyakov, and V. V. Bryukhanov, “Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser,” Quantum Electron. 46(8), 675–678 (2016).
[Crossref]

Krausz, F.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

Krebs, M.

Lavenu, L.

Lemons, R.

Limpert, J.

J. Rothhardt, S. Hädrich, J. C. Delagnes, E. Cormier, and J. Limpert, “High Average Power Near-Infrared Few-Cycle Lasers,” Laser Photonics Rev. 11(4), 1700043 (2017).
[Crossref]

S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, and J. Limpert, “Energetic sub-2-cycle laser with 216 W average power,” Opt. Lett. 41(18), 4332–4335 (2016).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, and A. Tünnermann, “53 W average power few-cycle fiber laser system generating soft x rays up to the water window,” Opt. Lett. 39(17), 5224–5227 (2014).
[Crossref] [PubMed]

S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, H. Carstens, N. Herrick, S. Demmler, J. Limpert, and A. Tünnermann, “1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power,” Opt. Lett. 36(23), 4605–4607 (2011).
[Crossref] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

Liu, X.

Lombosi, C.

Losev, L. L.

N. V. Didenko, A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev, V. S. Pazyuk, S. Y. Tenyakov, and V. V. Bryukhanov, “Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser,” Quantum Electron. 46(8), 675–678 (2016).
[Crossref]

Major, Z.

Mak, K. F.

Mans, T.

Metzger, T.

Mottay, E.

Müller, M.

Murnane, M.

Nagy, T.

Natile, M.

Negel, J.-P.

Nisoli, M.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Osvay, K.

Pazyuk, V. S.

N. V. Didenko, A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev, V. S. Pazyuk, S. Y. Tenyakov, and V. V. Bryukhanov, “Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser,” Quantum Electron. 46(8), 675–678 (2016).
[Crossref]

Pervak, V.

Poprawe, R.

Pronin, O.

Qian, L.

Riedle, E.

M. Bradler, C. Homann, and E. Riedle, “Broadband difference frequency mixing between visible and near-infrared pulses for few-cycle pulse generation with stable carrier-envelope phase,” Appl. Phys. B 113(1), 19–25 (2013).
[Crossref]

Rotarius, G.

Rothhardt, J.

Russbueldt, P.

Russell, P. S. J.

Ryabov, A.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

A. Ryabov and P. Baum, “Electron microscopy of electromagnetic waveforms,” Science 353(6297), 374–377 (2016).
[Crossref] [PubMed]

W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3,” Opt. Lett. 39(23), 6604–6607 (2014).
[Crossref] [PubMed]

Sansone, G.

Schenkel, B.

Schmidt, D.

Schneider, W.

Schreiber, T.

Seidel, M.

Seise, E.

Sheik-Bahae, M.

Simon, P.

Stagira, S.

Stegeman, G.

Stockman, M. I.

V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
[Crossref] [PubMed]

Sutter, D.

Svelto, O.

Tenyakov, S. Y.

N. V. Didenko, A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev, V. S. Pazyuk, S. Y. Tenyakov, and V. V. Bryukhanov, “Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser,” Quantum Electron. 46(8), 675–678 (2016).
[Crossref]

Travers, J. C.

Tünnermann, A.

Van Stryland, E. W.

Vanherzeele, H.

Várallyay, Z.

Voss, A.

J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Vozzi, C.

Weitenberg, J.

Wirth, C.

Wise, F.

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Yakovlev, V. S.

V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
[Crossref] [PubMed]

Zaouter, Y.

Appl. Opt. (1)

Appl. Phys. B (2)

M. Bradler, C. Homann, and E. Riedle, “Broadband difference frequency mixing between visible and near-infrared pulses for few-cycle pulse generation with stable carrier-envelope phase,” Appl. Phys. B 113(1), 19–25 (2013).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Laser Photonics Rev. (1)

J. Rothhardt, S. Hädrich, J. C. Delagnes, E. Cormier, and J. Limpert, “High Average Power Near-Infrared Few-Cycle Lasers,” Laser Photonics Rev. 11(4), 1700043 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (13)

T. Nagy, V. Pervak, and P. Simon, “Optimal pulse compression in long hollow fibers,” Opt. Lett. 36(22), 4422–4424 (2011).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, and A. Tünnermann, “53 W average power few-cycle fiber laser system generating soft x rays up to the water window,” Opt. Lett. 39(17), 5224–5227 (2014).
[Crossref] [PubMed]

S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, and J. Limpert, “Energetic sub-2-cycle laser with 216 W average power,” Opt. Lett. 41(18), 4332–4335 (2016).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[Crossref] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

J. Rothhardt, S. Hädrich, H. Carstens, N. Herrick, S. Demmler, J. Limpert, and A. Tünnermann, “1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power,” Opt. Lett. 36(23), 4605–4607 (2011).
[Crossref] [PubMed]

S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
[Crossref] [PubMed]

W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3,” Opt. Lett. 39(23), 6604–6607 (2014).
[Crossref] [PubMed]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28(20), 1987–1989 (2003).
[Crossref] [PubMed]

R. Desalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
[Crossref] [PubMed]

X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2):χ(2) nonlinearity,” Opt. Lett. 24(23), 1777–1779 (1999).
[Crossref] [PubMed]

Quantum Electron. (1)

N. V. Didenko, A. V. Konyashchenko, P. V. Kostryukov, L. L. Losev, V. S. Pazyuk, S. Y. Tenyakov, and V. V. Bryukhanov, “Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser,” Quantum Electron. 46(8), 675–678 (2016).
[Crossref]

Sci. Rep. (1)

V. S. Yakovlev, M. I. Stockman, F. Krausz, and P. Baum, “Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter,” Sci. Rep. 5(1), 14581 (2015).
[Crossref] [PubMed]

Science (2)

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

A. Ryabov and P. Baum, “Electron microscopy of electromagnetic waveforms,” Science 353(6297), 374–377 (2016).
[Crossref] [PubMed]

Other (1)

B.-H. Chen, T. Nagy, and P. Baum, “Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation,” Opt. Lett.submitted.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Hollow fiber compressor. ID denotes inner diameter.
Fig. 2
Fig. 2 Experimental results of the SF-HCF stage. (a) Typical spectra recorded after propagation through a 2.66-m long SF-HCF filled with 3, 4 and 5 bar of xenon (black, blue, red, respectively). (b) Transform-limited pulse duration in dependence of the pressure. (c) Pressure-dependent transmission through the SF-HCF. A sharp decline of the transmission can be observed around 4.5 bar and above.
Fig. 3
Fig. 3 Numerical simulations. (a) Transform-limited pulse duration after propagating 0.2-mJ pulses of different durations centered at 1030-nm wavelength through a 2.66-m long HCF at various xenon pressures. (b) Same data in dependence of the B-Integral.
Fig. 4
Fig. 4 Performance of the BBO-based spectral broadening stage. (a) Fourier limit dependent on the crystal thickness. (b) Conversion efficiency as a function of pump intensity.
Fig. 5
Fig. 5 Measured pulse shape after the first compression stage. (a) Measured and (b) retrieved FROG traces. (0.82% FROG error on a 512x512 grid) (c) Evaluated spectrum and spectral phase. (d) Retrieved pulse shape with temporal phase. The pulse duration is 409 fs.
Fig. 6
Fig. 6 Pulse characteristics after cascaded pulse shortening in BBO and SF-HCF. (a) Typical output spectra for 2, 3 and 4 bar of xenon. (b) Fourier-limited pulse durations in dependence of the pressure, breaking into the sub-30 fs. (c) Pressure-dependent transmission through the SF-HCF. Solid lines between the data points indicate the regime of stable operation.
Fig. 7
Fig. 7 Experimental setup utilizing cascaded spectral broadening in BBO and a SF-HCF for two-stage compression of 1-ps pulses down to 30-fs duration. BS denotes beam splitter, Δτ time delay.
Fig. 8
Fig. 8 SHG-FROG measurement of the output pulses after compression by the two-stage arrangement. (a) Measured and (b) retrieved FROG traces. (0.43% FROG error on a 1024x1024 grid) (c) Evaluated spectrum and spectral phase. (d) Retrieved pulse shape with temporal phase. The pulse duration is 29.8 fs.

Tables (2)

Tables Icon

Table 1 Performance comparison for single HCF stage

Tables Icon

Table 2 Performance comparison for cascaded compressor setups

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B = 2 π λ 0 0 L p κ 2 I ( z ) d z ,

Metrics