Abstract

We demonstrate a robust, compact, portable and efficient upconversion detector (UCD) for a differential absorption lidar (DIAL) system designed for range-resolved methane (CH4) atmospheric sensing. The UCD is built on an intracavity pump system that mixes a 1064 nm pump laser with the lidar backscatter signal at 1646 nm in a 25-mm long periodically poled lithium niobate crystal. The upconverted signal at 646 nm is detected by a photomultiplier tube (PMT). The UCD with a noise equivalent power around 127 fW/Hz1/2 outperforms a conventional InGaAs based avalanche photodetector when both are used for DIAL measurements. Using the UCD, CH4 DIAL measurements have been performed yielding differential absorption optical depths with relative errors of less than 11% at ranges between 3 km and 9 km.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Upconversion-based lidar measurements of atmospheric CO2

Lasse Høgstedt, Andreas Fix, Martin Wirth, Christian Pedersen, and Peter Tidemand-Lichtenberg
Opt. Express 24(5) 5152-5161 (2016)

Quantum detector tomography of a single-photon frequency upconversion detection system

Jianhui Ma, Xiuliang Chen, Huiqin Hu, Haifeng Pan, E Wu, and Heping Zeng
Opt. Express 24(18) 20973-20981 (2016)

Thermal noise in mid-infrared broadband upconversion detectors

Ajanta Barh, Peter Tidemand-Lichtenberg, and Christian Pedersen
Opt. Express 26(3) 3249-3259 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University, 2014).
  2. K. Mach, M. Mastrandrea, T. Bilir, and C. Field, “Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5,” Clim. Change 136(3-4), 427–444 (2016).
    [Crossref]
  3. M. Saunois, R. B. Jackson, P. Bousquet, B. Poulter, and J. G. Canadell, “The growing role of methane in anthropogenic climate change,” Environ. Res. Lett. 11(12), 12 (2016).
    [Crossref]
  4. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
    [Crossref]
  5. A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
    [Crossref] [PubMed]
  6. A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2011).
  7. H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51(34), 8296–8305 (2012).
    [Crossref] [PubMed]
  8. A. Dumas, J. Rothman, F. Gibert, D. Édouart, G. Lasfargues, C. Cénac, F. L. Mounier, J. Pellegrino, J. P. Zanatta, A. Bardoux, F. Tinto, and P. Flamant, “Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application,” Appl. Opt. 56(27), 7577–7585 (2017).
    [Crossref] [PubMed]
  9. U. N. Singh, T. F. Refaat, S. Ismail, K. J. Davis, S. R. Kawa, R. T. Menzies, and M. Petros, “Feasibility study of a space-based high pulse energy 2 μm CO2 IPDA lidar,” Appl. Opt. 56(23), 6531–6547 (2017).
    [Crossref] [PubMed]
  10. X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25(14), 16589–16602 (2017).
    [Crossref] [PubMed]
  11. G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
    [Crossref]
  12. L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2.,” Opt. Express 24(5), 5152–5161 (2016).
    [Crossref] [PubMed]
  13. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer, 1995).
  14. C. L. Tang, “Spontaneous emission in the frequency up-conversion process in nonlinear optics,” Phys. Rev. 182(2), 367–374 (1969).
    [Crossref]
  15. C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phasematching gratings with random duty cycle errors,” J. Opt. Soc. Am. B 30(4), 982–993 (2013).
    [Crossref]
  16. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19(22), 21445–21456 (2011).
    [Crossref] [PubMed]
  17. T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005).
  18. L. Meng, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects,” Opt. Express 25(13), 14783–14794 (2017).
    [Crossref] [PubMed]
  19. J. S. Pelc, G.-L. Shentu, Q. Zhang, M. M. Fejer, and J. W. Pan, “Up-conversion of optical signals with multi-longitudinal mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
    [Crossref]
  20. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  21. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, and T. Sakai, “Development of a 1.6 µm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile,” Appl. Opt. 48(4), 748–757 (2009).
    [Crossref] [PubMed]
  22. F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45(18), 4448–4458 (2006).
    [Crossref] [PubMed]
  23. S. Ishii, M. Koyama, P. Baron, H. Iwai, K. Mizutani, T. Itabe, A. Sato, and K. Asai, “Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return,” Atmos. Meas. Tech. 6(5), 1359–1369 (2013).
    [Crossref]

2017 (6)

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[Crossref] [PubMed]

A. Dumas, J. Rothman, F. Gibert, D. Édouart, G. Lasfargues, C. Cénac, F. L. Mounier, J. Pellegrino, J. P. Zanatta, A. Bardoux, F. Tinto, and P. Flamant, “Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application,” Appl. Opt. 56(27), 7577–7585 (2017).
[Crossref] [PubMed]

U. N. Singh, T. F. Refaat, S. Ismail, K. J. Davis, S. R. Kawa, R. T. Menzies, and M. Petros, “Feasibility study of a space-based high pulse energy 2 μm CO2 IPDA lidar,” Appl. Opt. 56(23), 6531–6547 (2017).
[Crossref] [PubMed]

X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25(14), 16589–16602 (2017).
[Crossref] [PubMed]

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

L. Meng, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects,” Opt. Express 25(13), 14783–14794 (2017).
[Crossref] [PubMed]

2016 (3)

L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2.,” Opt. Express 24(5), 5152–5161 (2016).
[Crossref] [PubMed]

K. Mach, M. Mastrandrea, T. Bilir, and C. Field, “Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5,” Clim. Change 136(3-4), 427–444 (2016).
[Crossref]

M. Saunois, R. B. Jackson, P. Bousquet, B. Poulter, and J. G. Canadell, “The growing role of methane in anthropogenic climate change,” Environ. Res. Lett. 11(12), 12 (2016).
[Crossref]

2013 (2)

C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phasematching gratings with random duty cycle errors,” J. Opt. Soc. Am. B 30(4), 982–993 (2013).
[Crossref]

S. Ishii, M. Koyama, P. Baron, H. Iwai, K. Mizutani, T. Itabe, A. Sato, and K. Asai, “Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return,” Atmos. Meas. Tech. 6(5), 1359–1369 (2013).
[Crossref]

2012 (3)

J. S. Pelc, G.-L. Shentu, Q. Zhang, M. M. Fejer, and J. W. Pan, “Up-conversion of optical signals with multi-longitudinal mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51(34), 8296–8305 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (1)

2008 (1)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

2006 (1)

1969 (1)

C. L. Tang, “Spontaneous emission in the frequency up-conversion process in nonlinear optics,” Phys. Rev. 182(2), 367–374 (1969).
[Crossref]

Abo, M.

Abshire, J. B.

X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25(14), 16589–16602 (2017).
[Crossref] [PubMed]

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51(34), 8296–8305 (2012).
[Crossref] [PubMed]

Agusti-Panareda, A.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Alpers, M.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Amediek, A.

Asai, K.

S. Ishii, M. Koyama, P. Baron, H. Iwai, K. Mizutani, T. Itabe, A. Sato, and K. Asai, “Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return,” Atmos. Meas. Tech. 6(5), 1359–1369 (2013).
[Crossref]

Bardoux, A.

Baron, P.

S. Ishii, M. Koyama, P. Baron, H. Iwai, K. Mizutani, T. Itabe, A. Sato, and K. Asai, “Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return,” Atmos. Meas. Tech. 6(5), 1359–1369 (2013).
[Crossref]

Beck, J. D.

Bilir, T.

K. Mach, M. Mastrandrea, T. Bilir, and C. Field, “Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5,” Clim. Change 136(3-4), 427–444 (2016).
[Crossref]

Bousquet, P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

M. Saunois, R. B. Jackson, P. Bousquet, B. Poulter, and J. G. Canadell, “The growing role of methane in anthropogenic climate change,” Environ. Res. Lett. 11(12), 12 (2016).
[Crossref]

Bovensmann, H.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Bruneau, D.

Büdenbender, C.

Burrows, J. P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Canadell, J. G.

M. Saunois, R. B. Jackson, P. Bousquet, B. Poulter, and J. G. Canadell, “The growing role of methane in anthropogenic climate change,” Environ. Res. Lett. 11(12), 12 (2016).
[Crossref]

Cénac, C.

Chevallier, F.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Ciais, P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Crevoisier, C.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Dam, J. S.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Davis, K. J.

Dawsey, M.

Dumas, A.

Édouart, D.

Ehret, G.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[Crossref] [PubMed]

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Fejer, M. M.

Field, C.

K. Mach, M. Mastrandrea, T. Bilir, and C. Field, “Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5,” Clim. Change 136(3-4), 427–444 (2016).
[Crossref]

Fix, A.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[Crossref] [PubMed]

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2.,” Opt. Express 24(5), 5152–5161 (2016).
[Crossref] [PubMed]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Flamant, P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

A. Dumas, J. Rothman, F. Gibert, D. Édouart, G. Lasfargues, C. Cénac, F. L. Mounier, J. Pellegrino, J. P. Zanatta, A. Bardoux, F. Tinto, and P. Flamant, “Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application,” Appl. Opt. 56(27), 7577–7585 (2017).
[Crossref] [PubMed]

Flamant, P. H.

Frankenberg, C.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Gerbig, C.

Gibert, F.

A. Dumas, J. Rothman, F. Gibert, D. Édouart, G. Lasfargues, C. Cénac, F. L. Mounier, J. Pellegrino, J. P. Zanatta, A. Bardoux, F. Tinto, and P. Flamant, “Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application,” Appl. Opt. 56(27), 7577–7585 (2017).
[Crossref] [PubMed]

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45(18), 4448–4458 (2006).
[Crossref] [PubMed]

Heim, B.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Heimann, M.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Høgstedt, L.

Houweling, S.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Hubberten, H. W.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Ishii, S.

S. Ishii, M. Koyama, P. Baron, H. Iwai, K. Mizutani, T. Itabe, A. Sato, and K. Asai, “Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return,” Atmos. Meas. Tech. 6(5), 1359–1369 (2013).
[Crossref]

Ismail, S.

Itabe, T.

S. Ishii, M. Koyama, P. Baron, H. Iwai, K. Mizutani, T. Itabe, A. Sato, and K. Asai, “Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return,” Atmos. Meas. Tech. 6(5), 1359–1369 (2013).
[Crossref]

Iwai, H.

S. Ishii, M. Koyama, P. Baron, H. Iwai, K. Mizutani, T. Itabe, A. Sato, and K. Asai, “Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return,” Atmos. Meas. Tech. 6(5), 1359–1369 (2013).
[Crossref]

Jackson, R. B.

M. Saunois, R. B. Jackson, P. Bousquet, B. Poulter, and J. G. Canadell, “The growing role of methane in anthropogenic climate change,” Environ. Res. Lett. 11(12), 12 (2016).
[Crossref]

Jöckel, P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Kawa, R.

Kawa, S. R.

Kiemle, C.

Koyama, M.

S. Ishii, M. Koyama, P. Baron, H. Iwai, K. Mizutani, T. Itabe, A. Sato, and K. Asai, “Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return,” Atmos. Meas. Tech. 6(5), 1359–1369 (2013).
[Crossref]

Langrock, C.

Lasfargues, G.

Law, K.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Li, S.

Loth, C.

Löw, A.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Ma, L.

Mach, K.

K. Mach, M. Mastrandrea, T. Bilir, and C. Field, “Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5,” Clim. Change 136(3-4), 427–444 (2016).
[Crossref]

Mao, J.

Marshall, J.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Mastrandrea, M.

K. Mach, M. Mastrandrea, T. Bilir, and C. Field, “Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5,” Clim. Change 136(3-4), 427–444 (2016).
[Crossref]

Meng, L.

Menzies, R. T.

Millet, B.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Mitra, P.

Mizutani, K.

S. Ishii, M. Koyama, P. Baron, H. Iwai, K. Mizutani, T. Itabe, A. Sato, and K. Asai, “Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return,” Atmos. Meas. Tech. 6(5), 1359–1369 (2013).
[Crossref]

Mounier, F. L.

Nagai, T.

Nagasawa, C.

Nakazato, M.

Numata, K.

Pan, J. W.

J. S. Pelc, G.-L. Shentu, Q. Zhang, M. M. Fejer, and J. W. Pan, “Up-conversion of optical signals with multi-longitudinal mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
[Crossref]

Payan, S.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Pedersen, C.

Pelc, J. S.

Pellegrino, J.

Petros, M.

Phillips, C. R.

Pierangelo, C.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Poulter, B.

M. Saunois, R. B. Jackson, P. Bousquet, B. Poulter, and J. G. Canadell, “The growing role of methane in anthropogenic climate change,” Environ. Res. Lett. 11(12), 12 (2016).
[Crossref]

Prigent, C.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Quatrevalet, M.

Rairoux, P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Ramanathan, A.

Refaat, T. F.

Reiff, K.

Riris, H.

Rodrigo, P. J.

Rothman, J.

Sachs, T.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Sakai, T.

Sakaizawa, D.

Sato, A.

S. Ishii, M. Koyama, P. Baron, H. Iwai, K. Mizutani, T. Itabe, A. Sato, and K. Asai, “Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return,” Atmos. Meas. Tech. 6(5), 1359–1369 (2013).
[Crossref]

Saunois, M.

M. Saunois, R. B. Jackson, P. Bousquet, B. Poulter, and J. G. Canadell, “The growing role of methane in anthropogenic climate change,” Environ. Res. Lett. 11(12), 12 (2016).
[Crossref]

Scholze, M.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Shentu, G.-L.

J. S. Pelc, G.-L. Shentu, Q. Zhang, M. M. Fejer, and J. W. Pan, “Up-conversion of optical signals with multi-longitudinal mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
[Crossref]

Shibata, Y.

Singh, U. N.

Slattery, O.

Sun, X.

Tang, C. L.

C. L. Tang, “Spontaneous emission in the frequency up-conversion process in nonlinear optics,” Phys. Rev. 182(2), 367–374 (1969).
[Crossref]

Tang, X.

Tidemand-Lichtenberg, P.

Tinto, F.

Wirth, M.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[Crossref] [PubMed]

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2.,” Opt. Express 24(5), 5152–5161 (2016).
[Crossref] [PubMed]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Wu, S.

Yang, G.

Zanatta, J. P.

Zhang, Q.

Appl. Opt. (6)

H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51(34), 8296–8305 (2012).
[Crossref] [PubMed]

A. Dumas, J. Rothman, F. Gibert, D. Édouart, G. Lasfargues, C. Cénac, F. L. Mounier, J. Pellegrino, J. P. Zanatta, A. Bardoux, F. Tinto, and P. Flamant, “Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application,” Appl. Opt. 56(27), 7577–7585 (2017).
[Crossref] [PubMed]

U. N. Singh, T. F. Refaat, S. Ismail, K. J. Davis, S. R. Kawa, R. T. Menzies, and M. Petros, “Feasibility study of a space-based high pulse energy 2 μm CO2 IPDA lidar,” Appl. Opt. 56(23), 6531–6547 (2017).
[Crossref] [PubMed]

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[Crossref] [PubMed]

D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, and T. Sakai, “Development of a 1.6 µm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile,” Appl. Opt. 48(4), 748–757 (2009).
[Crossref] [PubMed]

F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45(18), 4448–4458 (2006).
[Crossref] [PubMed]

Appl. Phys. B (1)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Atmos. Meas. Tech. (1)

S. Ishii, M. Koyama, P. Baron, H. Iwai, K. Mizutani, T. Itabe, A. Sato, and K. Asai, “Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return,” Atmos. Meas. Tech. 6(5), 1359–1369 (2013).
[Crossref]

Clim. Change (1)

K. Mach, M. Mastrandrea, T. Bilir, and C. Field, “Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5,” Clim. Change 136(3-4), 427–444 (2016).
[Crossref]

Environ. Res. Lett. (1)

M. Saunois, R. B. Jackson, P. Bousquet, B. Poulter, and J. G. Canadell, “The growing role of methane in anthropogenic climate change,” Environ. Res. Lett. 11(12), 12 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Opt. Express (4)

Phys. Rev. (1)

C. L. Tang, “Spontaneous emission in the frequency up-conversion process in nonlinear optics,” Phys. Rev. 182(2), 367–374 (1969).
[Crossref]

Phys. Rev. A (1)

J. S. Pelc, G.-L. Shentu, Q. Zhang, M. M. Fejer, and J. W. Pan, “Up-conversion of optical signals with multi-longitudinal mode pump lasers,” Phys. Rev. A 86(3), 033827 (2012).
[Crossref]

Remote Sens. (1)

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German Space lidar Mission Dedicated to Atmospheric Methane,” Remote Sens. 9(10), 1052 (2017).
[Crossref]

Other (4)

T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University, 2014).

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC Press, 2005).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer, 1995).

A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Illustration of the USPDC process in the PPLN crystal of an upconversion detector. Red dashed arrows represent the spontaneous parametric downconversion of the pump that produces unwanted photons at λIR and λidler. Blue dashed arrows denote the upconversion that contributes to the background noise.
Fig. 2
Fig. 2 (a) Top view photo of the UCD. (b) The schematic diagram of the UCD where the guide mirror and the receiver lens are included. M1 is a concave mirror with radius of curvature R = 350 mm, M2 to M4 are plane mirrors, the fiber-coupled laser diode has a core diameter of 200 µm and a NA of 0.22, the PPLN crystal has a length of 25 mm and a poling period of 12.45 µm, the LP filter has a cut-on wavelength of 1250 nm, the BP filter has a central wavelength of 647.1 nm and a bandwidth of 2.5 nm. The cyan, green and red beams represent the 1646 nm signal, 1064 nm pump and 646 nm upconverted signal, respectively.
Fig. 3
Fig. 3 Measured (black square) and theoretical (red curve) internal quantum efficiency of the upconversion module as a function of temperature of the PPLN crystal. The theoretical curve is horizontally shifted by 2.5 °C so its central lobe coincides with that of the measured points. We attribute the temperature offset to the slight inaccuracy in the refractive indices calculated using the Sellmeier equation.
Fig. 4
Fig. 4 Conceptual sketch of the setup used for the lidar measurements. For comparison with CHARM-F detectors, the UCD can be connected to the data acquisition card otherwise used to digitize the APD signal. For the IPDA measurement the beam was directed to a distant forest. For the DIAL measurements the entire system was tilted such that the beam propagated beyond the tree tops. For mechanical reasons, the lateral distance between outgoing beam and detector is larger for the UCD in comparison to the CHARM-F receivers. The divergence angle of the transmitter and the receivers’ FOVs are also given (not drawn to scale).
Fig. 5
Fig. 5 Backscatter signal from the forest located 2.3 km away measured by the UCD and the reference InGaAs PIN detector and the background signal (inset) from a range of 17.5 km and beyond. The plots are the averages over 6000 pulse pairs (i.e. averaging time of 2 minutes).
Fig. 6
Fig. 6 (a) Range dependence of the on- and off-line range-corrected signals given by the APD and the UCD, (b) signal-to-noise ratio of the on-line backscatter measurement, and (c) the DAOD given by the two detectors. All results are obtained by averaging 45000 pulse pairs (averaging over 15 minutes).

Tables (2)

Tables Icon

Table 1 Parameters of our previous and new UCD.

Tables Icon

Table 2 Noise in different parts of the upconversion detector system.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η up = P up λ up P IR λ IR = 32 d eff 2 I p ε 0 c n p n IR n up λ up λ IR L 2 sin c 2 ( ΔkL 2 ), 
S N =  i signal 2eFB( i signal + i b + i d )+ i N 2 M 2 ,
i signal = P IR η up η PMT η opt e ω IR ,
i b = e( P b η up η opt +A I USPDC ) η PMT ω IR   ,
η up ( T )=1 P r ( T )/ P R ,
NEP= N η up η opt S R f M B .
DAOD(z)= 1 2 ln[ P off (z) P pulse on P on (z) P pulse off ] ,

Metrics