Abstract

Unidirectional reflectionless phenomena are investigated theoretically in a non-Hermitian quantum system composed of several quantum dots and a plasmonic waveguide. By adjusting the phase shifts between quantum dots, single- and dual-band unidirectional reflectionlessnesses are realized at exceptional points based on two and three quantum dots coupled to a plasmonic waveguide, respectively. In addition, single- and dual-band unidirectional perfect absorptions with high quality factors are obtained at the vicinity of exceptional points.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling

Cong Zhang, Ruiping Bai, Xintong Gu, Xing Ri Jin, Ying Qiao Zhang, and YoungPak Lee
Opt. Express 25(20) 24281-24289 (2017)

Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points

Yin Huang, Georgios Veronis, and Changjun Min
Opt. Express 23(23) 29882-29895 (2015)

Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling

Xintong Gu, Ruiping Bai, Cong Zhang, Xing Ri Jin, Ying Qiao Zhang, Shou Zhang, and Young Pak Lee
Opt. Express 25(10) 11778-11787 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246 (1998).
    [Crossref]
  2. C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys. 70, 947–1018 (2007).
    [Crossref]
  3. Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, and K. An, “Quasieigenstate coalescence in an atom-cavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
    [Crossref] [PubMed]
  4. J. Xu, Y. X. Du, W. Huang, and D. W. Zhang, “Detecting topological exceptional points in a parity-time symmetric system with cold atoms,” Opt. Express 25, 15786–15795 (2017).
    [Crossref] [PubMed]
  5. J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
    [Crossref]
  6. Y. Shin, H. Kwak, S. Moon, S. B. Lee, J. Yang, and K. An, “Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells,” Sci. Rep. 6, 38826 (2016).
    [Crossref] [PubMed]
  7. A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
    [Crossref] [PubMed]
  8. S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
    [Crossref]
  9. Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
    [Crossref] [PubMed]
  10. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009).
    [Crossref] [PubMed]
  11. B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
    [Crossref]
  12. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
    [Crossref] [PubMed]
  13. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108 (2013).
    [Crossref]
  14. X. T. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25, 11778–11787 (2017).
    [Crossref] [PubMed]
  15. R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarizationin non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7, 10742 (2017).
    [Crossref]
  16. C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25, 24281–24289 (2017).
    [Crossref] [PubMed]
  17. J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30, 2001–2003 (2005).
    [Crossref] [PubMed]
  18. W. Chen, G. Y. Chen, and Y. N. Chen, “Coherent transport of nanowire surface plasmons coupled to quantum dots,” Opt. Express 18, 10360–10368 (2010).
    [Crossref] [PubMed]
  19. W. Chen, G. Y. Chen, and Y. N. Chen, “Controlling Fano resonance of nanowire surface plasmons,” Opt. Lett. 36, 3602-3604 (2011).
    [Crossref] [PubMed]
  20. G. Y. Chen and Y. N. Chen, “Correspondence between entanglement and Fano resonance of surface plasmons,” Opt. Lett. 37, 4023–4025 (2012).
    [Crossref] [PubMed]
  21. X. F. Zang, T. Zhou, B. Cai, and Y. M. Zhu, “Controlling single-photon transport properties in a waveguide coupled with two separated atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 145504 (2013).
    [Crossref]
  22. D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
    [Crossref]
  23. J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
    [Crossref]
  24. J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
    [Crossref]
  25. M. T. Cheng and Y. Y. Song, “Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire,” Opt. Lett. 37, 978-980 (2012).
    [Crossref] [PubMed]
  26. G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement,” Phys. Rev. B 84, 045310 (2011).
    [Crossref]
  27. G. Y. Chen, C. M. Li, and Y. N. Chen, “Generating maximum entanglement under asymmetric couplings to surface plasmons,” Opt. Lett. 37, 1337–1339 (2012).
    [Crossref] [PubMed]
  28. N. C. Kim, J. B. Li, Z. J. Yang, Z. H. Hao, and Q. Q. Wang, “Switching of a single prepagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
    [Crossref]
  29. N. C. Kim and M. C. Ko, “Switching of a single photon by two Λ-type three-level quantum dots embedded in cavities coupling to one-dimensional waveguide,” Plasmonics 10, 605–610 (2015).
    [Crossref]
  30. N. C. Kim, M. C. Ko, S. I. Choe, C. J. Jang, G. J. Kim, Z. H. Hao, J. B. Li, and Q. Q. Wang, “Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon,” arXiv:1708.06635.
  31. N. C. Kim, M. C. Ko, and C. I. Choe, “Scattering of a single plasmon by two-level and V-type three-level quantum dot systems coupled to 1D waveguide,” Plasmonics 10, 1447–1452 (2015).
    [Crossref]
  32. N. C. Kim, M. C. Ko, and Q. Q. Wang, “Single plasmon switching with n quantum dots system coupled to one-dimentional waveguide,” Plasmonics 10, 611–615 (2014).
    [Crossref]
  33. N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
    [Crossref] [PubMed]
  34. M. C. Ko, N. C. Kim, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, I. G. Kim, and Q. Q. Wang, “Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system,” Plasmonics 11, 1613–1619 (2016).
    [Crossref]
  35. P. C. Kuo, G. Y. Chen, and Y. N. Chen, “Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference,” Sci. Rep. 6, 37766 (2016).
    [Crossref] [PubMed]
  36. J. J. Chen, C. Wang, R. Zhang, and J. H. Xiao, “Multiple plasmon-induced transparencies in coupled-resonator systems,” Opt. Lett. 37, 5133–5135 (2012).
    [Crossref] [PubMed]
  37. X. R. Jin, Y. Q. Zhang, S. Zhang, Y. P. Lee, and J. Y. Rhee, “Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry-Pérot resonance,” J. Opt. 15, 125104 (2013).
    [Crossref]
  38. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
    [Crossref] [PubMed]
  39. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).
  40. Q. Li, H. Wei, and H. X. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano. Lett. 14, 3358–3363 (2014).
    [Crossref] [PubMed]

2017 (4)

2016 (4)

Y. Shin, H. Kwak, S. Moon, S. B. Lee, J. Yang, and K. An, “Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells,” Sci. Rep. 6, 38826 (2016).
[Crossref] [PubMed]

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

M. C. Ko, N. C. Kim, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, I. G. Kim, and Q. Q. Wang, “Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system,” Plasmonics 11, 1613–1619 (2016).
[Crossref]

P. C. Kuo, G. Y. Chen, and Y. N. Chen, “Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference,” Sci. Rep. 6, 37766 (2016).
[Crossref] [PubMed]

2015 (2)

N. C. Kim and M. C. Ko, “Switching of a single photon by two Λ-type three-level quantum dots embedded in cavities coupling to one-dimensional waveguide,” Plasmonics 10, 605–610 (2015).
[Crossref]

N. C. Kim, M. C. Ko, and C. I. Choe, “Scattering of a single plasmon by two-level and V-type three-level quantum dot systems coupled to 1D waveguide,” Plasmonics 10, 1447–1452 (2015).
[Crossref]

2014 (5)

N. C. Kim, M. C. Ko, and Q. Q. Wang, “Single plasmon switching with n quantum dots system coupled to one-dimentional waveguide,” Plasmonics 10, 611–615 (2014).
[Crossref]

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
[Crossref]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

Q. Li, H. Wei, and H. X. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano. Lett. 14, 3358–3363 (2014).
[Crossref] [PubMed]

2013 (3)

X. R. Jin, Y. Q. Zhang, S. Zhang, Y. P. Lee, and J. Y. Rhee, “Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry-Pérot resonance,” J. Opt. 15, 125104 (2013).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108 (2013).
[Crossref]

X. F. Zang, T. Zhou, B. Cai, and Y. M. Zhu, “Controlling single-photon transport properties in a waveguide coupled with two separated atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 145504 (2013).
[Crossref]

2012 (5)

2011 (3)

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement,” Phys. Rev. B 84, 045310 (2011).
[Crossref]

W. Chen, G. Y. Chen, and Y. N. Chen, “Controlling Fano resonance of nanowire surface plasmons,” Opt. Lett. 36, 3602-3604 (2011).
[Crossref] [PubMed]

2010 (5)

W. Chen, G. Y. Chen, and Y. N. Chen, “Coherent transport of nanowire surface plasmons coupled to quantum dots,” Opt. Express 18, 10360–10368 (2010).
[Crossref] [PubMed]

N. C. Kim, J. B. Li, Z. J. Yang, Z. H. Hao, and Q. Q. Wang, “Switching of a single prepagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[Crossref]

Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, and K. An, “Quasieigenstate coalescence in an atom-cavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[Crossref] [PubMed]

S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
[Crossref]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).

2009 (3)

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref] [PubMed]

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

2008 (1)

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref] [PubMed]

2007 (2)

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys. 70, 947–1018 (2007).
[Crossref]

2005 (1)

1998 (1)

C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246 (1998).
[Crossref]

Aimez, V.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref] [PubMed]

Almeida, V. R.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108 (2013).
[Crossref]

An, K.

Y. Shin, H. Kwak, S. Moon, S. B. Lee, J. Yang, and K. An, “Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells,” Sci. Rep. 6, 38826 (2016).
[Crossref] [PubMed]

Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, and K. An, “Quasieigenstate coalescence in an atom-cavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[Crossref] [PubMed]

Bai, R.

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).

Bender, C. M.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys. 70, 947–1018 (2007).
[Crossref]

C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246 (1998).
[Crossref]

Bersch, C.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).

Boettcher, S.

C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246 (1998).
[Crossref]

Cai, B.

X. F. Zang, T. Zhou, B. Cai, and Y. M. Zhu, “Controlling single-photon transport properties in a waveguide coupled with two separated atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 145504 (2013).
[Crossref]

Cao, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Chang, D. E.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Chen, G. Y.

Chen, H.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

Chen, J. J.

Chen, W.

Chen, Y. F.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108 (2013).
[Crossref]

Chen, Y. N.

Cheng, M. T.

Choe, C. I.

N. C. Kim, M. C. Ko, and C. I. Choe, “Scattering of a single plasmon by two-level and V-type three-level quantum dot systems coupled to 1D waveguide,” Plasmonics 10, 1447–1452 (2015).
[Crossref]

Choe, S. I.

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

M. C. Ko, N. C. Kim, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, I. G. Kim, and Q. Q. Wang, “Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system,” Plasmonics 11, 1613–1619 (2016).
[Crossref]

N. C. Kim, M. C. Ko, S. I. Choe, C. J. Jang, G. J. Kim, Z. H. Hao, J. B. Li, and Q. Q. Wang, “Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon,” arXiv:1708.06635.

Choi, Y.

Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, and K. An, “Quasieigenstate coalescence in an atom-cavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[Crossref] [PubMed]

Chou, C. H.

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement,” Phys. Rev. B 84, 045310 (2011).
[Crossref]

Christodoulides, D. N.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref] [PubMed]

Claudon, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).

Demler, E. A.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Du, Y. X.

Duchesne, D.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref] [PubMed]

Eichelkraut, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Fan, S.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30, 2001–2003 (2005).
[Crossref] [PubMed]

Fegadolli, W. S.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108 (2013).
[Crossref]

Feng, L.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108 (2013).
[Crossref]

Forchel, A.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref] [PubMed]

Gérard, G. M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).

Gianfreda, M.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

Gregersen, N.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).

Gu, X.

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarizationin non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7, 10742 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25, 24281–24289 (2017).
[Crossref] [PubMed]

Gu, X. T.

Guo, A.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref] [PubMed]

Hao, Z. H.

M. C. Ko, N. C. Kim, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, I. G. Kim, and Q. Q. Wang, “Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system,” Plasmonics 11, 1613–1619 (2016).
[Crossref]

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

N. C. Kim, J. B. Li, Z. J. Yang, Z. H. Hao, and Q. Q. Wang, “Switching of a single prepagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[Crossref]

N. C. Kim, M. C. Ko, S. I. Choe, C. J. Jang, G. J. Kim, Z. H. Hao, J. B. Li, and Q. Q. Wang, “Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon,” arXiv:1708.06635.

Huang, W.

Im, S. J.

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).

Jang, C. J.

N. C. Kim, M. C. Ko, S. I. Choe, C. J. Jang, G. J. Kim, Z. H. Hao, J. B. Li, and Q. Q. Wang, “Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon,” arXiv:1708.06635.

Jin, X. R.

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarizationin non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7, 10742 (2017).
[Crossref]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25, 24281–24289 (2017).
[Crossref] [PubMed]

X. T. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25, 11778–11787 (2017).
[Crossref] [PubMed]

X. R. Jin, Y. Q. Zhang, S. Zhang, Y. P. Lee, and J. Y. Rhee, “Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry-Pérot resonance,” J. Opt. 15, 125104 (2013).
[Crossref]

Jo, C. G.

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

Julsgaard, B.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref] [PubMed]

Kamp, M.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref] [PubMed]

Kang, S.

Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, and K. An, “Quasieigenstate coalescence in an atom-cavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[Crossref] [PubMed]

Kim, G. J.

N. C. Kim, M. C. Ko, S. I. Choe, C. J. Jang, G. J. Kim, Z. H. Hao, J. B. Li, and Q. Q. Wang, “Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon,” arXiv:1708.06635.

Kim, I. G.

M. C. Ko, N. C. Kim, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, I. G. Kim, and Q. Q. Wang, “Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system,” Plasmonics 11, 1613–1619 (2016).
[Crossref]

Kim, J. R.

Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, and K. An, “Quasieigenstate coalescence in an atom-cavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[Crossref] [PubMed]

Kim, N. C.

M. C. Ko, N. C. Kim, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, I. G. Kim, and Q. Q. Wang, “Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system,” Plasmonics 11, 1613–1619 (2016).
[Crossref]

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

N. C. Kim, M. C. Ko, and C. I. Choe, “Scattering of a single plasmon by two-level and V-type three-level quantum dot systems coupled to 1D waveguide,” Plasmonics 10, 1447–1452 (2015).
[Crossref]

N. C. Kim and M. C. Ko, “Switching of a single photon by two Λ-type three-level quantum dots embedded in cavities coupling to one-dimensional waveguide,” Plasmonics 10, 605–610 (2015).
[Crossref]

N. C. Kim, M. C. Ko, and Q. Q. Wang, “Single plasmon switching with n quantum dots system coupled to one-dimentional waveguide,” Plasmonics 10, 611–615 (2014).
[Crossref]

N. C. Kim, J. B. Li, Z. J. Yang, Z. H. Hao, and Q. Q. Wang, “Switching of a single prepagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[Crossref]

N. C. Kim, M. C. Ko, S. I. Choe, C. J. Jang, G. J. Kim, Z. H. Hao, J. B. Li, and Q. Q. Wang, “Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon,” arXiv:1708.06635.

Kim, W.

Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, and K. An, “Quasieigenstate coalescence in an atom-cavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[Crossref] [PubMed]

Ko, M. C.

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

M. C. Ko, N. C. Kim, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, I. G. Kim, and Q. Q. Wang, “Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system,” Plasmonics 11, 1613–1619 (2016).
[Crossref]

N. C. Kim, M. C. Ko, and C. I. Choe, “Scattering of a single plasmon by two-level and V-type three-level quantum dot systems coupled to 1D waveguide,” Plasmonics 10, 1447–1452 (2015).
[Crossref]

N. C. Kim and M. C. Ko, “Switching of a single photon by two Λ-type three-level quantum dots embedded in cavities coupling to one-dimensional waveguide,” Plasmonics 10, 605–610 (2015).
[Crossref]

N. C. Kim, M. C. Ko, and Q. Q. Wang, “Single plasmon switching with n quantum dots system coupled to one-dimentional waveguide,” Plasmonics 10, 611–615 (2014).
[Crossref]

N. C. Kim, M. C. Ko, S. I. Choe, C. J. Jang, G. J. Kim, Z. H. Hao, J. B. Li, and Q. Q. Wang, “Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon,” arXiv:1708.06635.

Ko, Y. H.

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

Kottos, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Kuo, P. C.

P. C. Kuo, G. Y. Chen, and Y. N. Chen, “Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference,” Sci. Rep. 6, 37766 (2016).
[Crossref] [PubMed]

Kwak, H.

Y. Shin, H. Kwak, S. Moon, S. B. Lee, J. Yang, and K. An, “Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells,” Sci. Rep. 6, 38826 (2016).
[Crossref] [PubMed]

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).

Lambert, N.

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement,” Phys. Rev. B 84, 045310 (2011).
[Crossref]

Lee, J. H.

Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, and K. An, “Quasieigenstate coalescence in an atom-cavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[Crossref] [PubMed]

Lee, S. B.

Y. Shin, H. Kwak, S. Moon, S. B. Lee, J. Yang, and K. An, “Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells,” Sci. Rep. 6, 38826 (2016).
[Crossref] [PubMed]

Lee, Y. P.

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarizationin non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7, 10742 (2017).
[Crossref]

X. T. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25, 11778–11787 (2017).
[Crossref] [PubMed]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25, 24281–24289 (2017).
[Crossref] [PubMed]

X. R. Jin, Y. Q. Zhang, S. Zhang, Y. P. Lee, and J. Y. Rhee, “Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry-Pérot resonance,” J. Opt. 15, 125104 (2013).
[Crossref]

Lei, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

Li, C. M.

Li, H. Q.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

Li, J.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

Li, J. B.

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

M. C. Ko, N. C. Kim, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, I. G. Kim, and Q. Q. Wang, “Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system,” Plasmonics 11, 1613–1619 (2016).
[Crossref]

N. C. Kim, J. B. Li, Z. J. Yang, Z. H. Hao, and Q. Q. Wang, “Switching of a single prepagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[Crossref]

N. C. Kim, M. C. Ko, S. I. Choe, C. J. Jang, G. J. Kim, Z. H. Hao, J. B. Li, and Q. Q. Wang, “Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon,” arXiv:1708.06635.

Li, Q.

Q. Li, H. Wei, and H. X. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano. Lett. 14, 3358–3363 (2014).
[Crossref] [PubMed]

Lim, S.

Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, and K. An, “Quasieigenstate coalescence in an atom-cavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[Crossref] [PubMed]

Lin, Z.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Lodahl, P.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref] [PubMed]

Long, G. L.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

Longhi, S.

S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
[Crossref]

Lu, M. H.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108 (2013).
[Crossref]

Lukin, M. D.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Lund-Hansen, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref] [PubMed]

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).

Miri, M. A.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Monifi, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

Moon, S.

Y. Shin, H. Kwak, S. Moon, S. B. Lee, J. Yang, and K. An, “Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells,” Sci. Rep. 6, 38826 (2016).
[Crossref] [PubMed]

Morandotti, R.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref] [PubMed]

Nori, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement,” Phys. Rev. B 84, 045310 (2011).
[Crossref]

Oliveira, J. E. B.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108 (2013).
[Crossref]

Onishchukov, G.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Ozdemir, S. K.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

Peng, B.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

Peschel, U.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Ramezani, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Ravat, M. V.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref] [PubMed]

Regensburger, A.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Rhee, J. Y.

X. R. Jin, Y. Q. Zhang, S. Zhang, Y. P. Lee, and J. Y. Rhee, “Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry-Pérot resonance,” J. Opt. 15, 125104 (2013).
[Crossref]

Salamo, G. J.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref] [PubMed]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).

Scherer, A.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108 (2013).
[Crossref]

Shen, J. T.

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30, 2001–2003 (2005).
[Crossref] [PubMed]

Shin, Y.

Y. Shin, H. Kwak, S. Moon, S. B. Lee, J. Yang, and K. An, “Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells,” Sci. Rep. 6, 38826 (2016).
[Crossref] [PubMed]

Siviloglou, G. A.

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref] [PubMed]

Song, Y. Y.

Sorensen, A. S.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Stobbe, S.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

Sunner, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref] [PubMed]

Tan, W.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

Thyrrestrup, H.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref] [PubMed]

Wang, C.

Wang, Q. Q.

M. C. Ko, N. C. Kim, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, I. G. Kim, and Q. Q. Wang, “Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system,” Plasmonics 11, 1613–1619 (2016).
[Crossref]

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

N. C. Kim, M. C. Ko, and Q. Q. Wang, “Single plasmon switching with n quantum dots system coupled to one-dimentional waveguide,” Plasmonics 10, 611–615 (2014).
[Crossref]

N. C. Kim, J. B. Li, Z. J. Yang, Z. H. Hao, and Q. Q. Wang, “Switching of a single prepagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[Crossref]

N. C. Kim, M. C. Ko, S. I. Choe, C. J. Jang, G. J. Kim, Z. H. Hao, J. B. Li, and Q. Q. Wang, “Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon,” arXiv:1708.06635.

Wei, H.

Q. Li, H. Wei, and H. X. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano. Lett. 14, 3358–3363 (2014).
[Crossref] [PubMed]

Wiersig, J.

J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
[Crossref]

Xiao, J. H.

Xu, H. X.

Q. Li, H. Wei, and H. X. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano. Lett. 14, 3358–3363 (2014).
[Crossref] [PubMed]

Xu, J.

Xu, Y. L.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108 (2013).
[Crossref]

Yang, J.

Y. Shin, H. Kwak, S. Moon, S. B. Lee, J. Yang, and K. An, “Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells,” Sci. Rep. 6, 38826 (2016).
[Crossref] [PubMed]

Yang, L.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

Yang, Z. J.

N. C. Kim, J. B. Li, Z. J. Yang, Z. H. Hao, and Q. Q. Wang, “Switching of a single prepagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[Crossref]

Zang, X. F.

X. F. Zang, T. Zhou, B. Cai, and Y. M. Zhu, “Controlling single-photon transport properties in a waveguide coupled with two separated atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 145504 (2013).
[Crossref]

Zhang, C.

Zhang, D. W.

Zhang, R.

Zhang, S.

X. T. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25, 11778–11787 (2017).
[Crossref] [PubMed]

X. R. Jin, Y. Q. Zhang, S. Zhang, Y. P. Lee, and J. Y. Rhee, “Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry-Pérot resonance,” J. Opt. 15, 125104 (2013).
[Crossref]

Zhang, Y. Q.

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarizationin non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7, 10742 (2017).
[Crossref]

X. T. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25, 11778–11787 (2017).
[Crossref] [PubMed]

C. Zhang, R. Bai, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling,” Opt. Express 25, 24281–24289 (2017).
[Crossref] [PubMed]

X. R. Jin, Y. Q. Zhang, S. Zhang, Y. P. Lee, and J. Y. Rhee, “Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry-Pérot resonance,” J. Opt. 15, 125104 (2013).
[Crossref]

Zhou, L.

M. C. Ko, N. C. Kim, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, I. G. Kim, and Q. Q. Wang, “Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system,” Plasmonics 11, 1613–1619 (2016).
[Crossref]

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

Zhou, T.

X. F. Zang, T. Zhou, B. Cai, and Y. M. Zhu, “Controlling single-photon transport properties in a waveguide coupled with two separated atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 145504 (2013).
[Crossref]

Zhu, Y. M.

X. F. Zang, T. Zhou, B. Cai, and Y. M. Zhu, “Controlling single-photon transport properties in a waveguide coupled with two separated atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 145504 (2013).
[Crossref]

Appl. Phys. Lett. (1)

N. C. Kim, J. B. Li, Z. J. Yang, Z. H. Hao, and Q. Q. Wang, “Switching of a single prepagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010).
[Crossref]

J. Opt. (1)

X. R. Jin, Y. Q. Zhang, S. Zhang, Y. P. Lee, and J. Y. Rhee, “Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry-Pérot resonance,” J. Opt. 15, 125104 (2013).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

X. F. Zang, T. Zhou, B. Cai, and Y. M. Zhu, “Controlling single-photon transport properties in a waveguide coupled with two separated atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 145504 (2013).
[Crossref]

Nano. Lett. (1)

Q. Li, H. Wei, and H. X. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano. Lett. 14, 3358–3363 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

N. C. Kim, M. C. Ko, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, S. J. Im, Y. H. Ko, C. G. Jo, and Q. Q. Wang, “Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide,” Nanotechnology 27, 465703 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108 (2013).
[Crossref]

Nat. Photon. (1)

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and G. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photon. 4, 174–177 (2010).

Nat. Phys. (2)

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
[Crossref]

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Nature (1)

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. A (3)

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
[Crossref]

Phys. Rev. B (1)

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement,” Phys. Rev. B 84, 045310 (2011).
[Crossref]

Phys. Rev. Lett. (7)

Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, and K. An, “Quasieigenstate coalescence in an atom-cavity quantum composite,” Phys. Rev. Lett. 104, 153601 (2010).
[Crossref] [PubMed]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sunner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008).
[Crossref] [PubMed]

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112, 143903 (2014).
[Crossref] [PubMed]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. V. Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009).
[Crossref] [PubMed]

J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).
[Crossref]

C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246 (1998).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref] [PubMed]

Plasmonics (4)

M. C. Ko, N. C. Kim, S. I. Choe, Z. H. Hao, L. Zhou, J. B. Li, I. G. Kim, and Q. Q. Wang, “Coherent controllable transport of a surface plasmon coupled to a plasmonic waveguide with a metal nanoparticle-semiconductor quantum dot hybrid system,” Plasmonics 11, 1613–1619 (2016).
[Crossref]

N. C. Kim and M. C. Ko, “Switching of a single photon by two Λ-type three-level quantum dots embedded in cavities coupling to one-dimensional waveguide,” Plasmonics 10, 605–610 (2015).
[Crossref]

N. C. Kim, M. C. Ko, and C. I. Choe, “Scattering of a single plasmon by two-level and V-type three-level quantum dot systems coupled to 1D waveguide,” Plasmonics 10, 1447–1452 (2015).
[Crossref]

N. C. Kim, M. C. Ko, and Q. Q. Wang, “Single plasmon switching with n quantum dots system coupled to one-dimentional waveguide,” Plasmonics 10, 611–615 (2014).
[Crossref]

Rep. Prog. Phys. (1)

C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys. 70, 947–1018 (2007).
[Crossref]

Sci. Rep. (3)

Y. Shin, H. Kwak, S. Moon, S. B. Lee, J. Yang, and K. An, “Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells,” Sci. Rep. 6, 38826 (2016).
[Crossref] [PubMed]

R. Bai, C. Zhang, X. Gu, X. R. Jin, Y. Q. Zhang, and Y. P. Lee, “Switching the unidirectional refectionlessness by polarizationin non-ideal PT metamaterial based on the phase coupling,” Sci. Rep. 7, 10742 (2017).
[Crossref]

P. C. Kuo, G. Y. Chen, and Y. N. Chen, “Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference,” Sci. Rep. 6, 37766 (2016).
[Crossref] [PubMed]

Other (1)

N. C. Kim, M. C. Ko, S. I. Choe, C. J. Jang, G. J. Kim, Z. H. Hao, J. B. Li, and Q. Q. Wang, “Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon,” arXiv:1708.06635.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of n QDs coupled to a plasmonic waveguide.
Fig. 2
Fig. 2 Reflection spectra for forward and backward directions versus wavelength with phase shifts θ1 = 0.96365π (a), π (b), and 1.03635π (c), respectively. (d) Transmission spectra versus wavelength with θ1 = π, 0.96365π, and 1.03635π, respectively. Here η = 1.8 × 1013rad/s and Γ = 0.1η.
Fig. 3
Fig. 3 Real and imaginary parts of the eigenvalues s± as the function of wavelength with different phase shifts θ1 = 0:96365π (a,b), π (c,d), and 1:03635π (e,f), respectively.
Fig. 4
Fig. 4 Real (a,c) and imaginary (b,d) parts of the eigenvalues s± as the function of wavelength with different phase shift θ1 and decay rate Γ.
Fig. 5
Fig. 5 Dependence of reflection on phase shift θ1 and wavelength for forward (a) and backward (b) directions.
Fig. 6
Fig. 6 Reflection spectra for forward and backward directions with different phase shifts θ1 = 0.96375π, θ2 = 1.94815π (a), θ1 = π, θ2 = 2π (b), and θ1 = 1.03147π, θ2 = 2.05247π (c). (d) Transmission spectra with phase shifts θ1 = 0.96375π, θ2 = 1.94815π, θ1 = π, θ2 = 2π, and θ1 = 1.03147π, θ2 = 2.05247π, respectively. Here Γ = 0.1η, η = 1.8 × 1013rad/s.
Fig. 7
Fig. 7 The real (a,c,e) and imaginary (b,d,f) parts of the eigenvalues s± as the function of wavelength for different phase shifts θ1 = 0.96375π, θ2 = 1.94815π (a,b), θ1 = π, θ2 = 2π (c,d), and θ1 = 1.03147π, θ2 = 2.05247π (e,f).
Fig. 8
Fig. 8 When phase shifts θ1 = 1.0429π, θ2 = 1.921π, reflection spectra (a) and transmission spectra (b), as well as the real parts (c) and imaginary parts (d) of the eigenvalues s± as the functions of wavelength. Here Γ = 0.0855η, η = 1.8 × 1013 rad/s.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H = d x { i v g C R ( x ) x C R ( x ) + i v g C L ( x ) x C L ( x ) + g j = 1 n δ j ( x d j ) [ C R ( x ) σ j + C R ( x ) σ + j + C L ( x ) σ j + C L ( x ) σ + j ] } + j = 1 n ( ω j i Γ 2 ) σ e j , e j ,
| E k = d x [ Φ k , R ( x ) C R ( x ) + Φ k , L ( x ) C L ( x ) ] | g 1 , g 2 , , g j | 0 + j = 1 n ξ k j σ + j | g 1 , g 2 , , g j | 0 ,
Φ k , R ( x ) e i k x [ β ( x ) + j = 2 n a j 1 β ( x d j 2 ) β ( d j 1 x ) + t β ( x d j 1 ) ] , Φ k , L ( x ) e i k x [ r β ( x ) + j = 2 n b j 1 β ( x d j 2 ) β ( d j 1 x ) ] ,
t = ( Γ 2 i Δ 1 ) ( Γ 2 i Δ 2 ) 16 ( 1 + e 2 i θ 1 ) η 2 + 8 η [ Γ i ( Δ 1 + Δ 2 ) ] + ( Γ 2 i Δ 1 ) ( Γ 2 i Δ 2 ) , r f = 16 ( 1 + e 2 i θ 1 ) η 2 4 η [ ( 1 + e 2 i θ 1 ) Γ 2 i ( e 2 i θ 1 Δ 1 + Δ 2 ) ] 16 ( 1 + e 2 i θ 1 ) η 2 8 η [ Γ i ( Δ 1 + Δ 2 ) ] ( Γ 2 i Δ 1 ) ( Γ 2 i Δ 2 ) , r b = 16 ( 1 + e 2 i θ 1 ) η 2 4 η [ ( 1 + e 2 i θ 1 ) Γ 2 i ( Δ 1 + e 2 i θ 1 Δ 2 ) ] 16 ( 1 + e 2 i θ 1 ) η 2 8 η [ Γ i ( Δ 1 + Δ 2 ) ] ( Γ 2 i Δ 1 ) ( Γ 2 i Δ 2 ) ,
S = ( t r b r f t ) .
s ± = t ± r f r b .
t = [ e 2 i θ 1 ( Γ 2 i Δ 1 ) ( Γ 2 i Δ 2 ) ( Γ 2 i Δ 3 ) ] / X ,
r f = { 64 ( 1 + e 2 i θ 1 ) ( e 2 i θ 1 e 2 i θ 2 ) η 3 + 32 e 2 i θ 1 η 2 [ ( 1 + e 2 i θ 2 ) Γ + i ( Δ 2 e 2 i θ 2 ( Δ 1 + Δ 2 ) + e 2 i θ 1 ( Δ 1 Δ 3 ) + Δ 3 ) ] 4 η e 2 i θ 1 [ ( 1 + e 2 i θ 1 + e 2 i θ 2 ) Γ 2 4 ( e 2 i θ 2 Δ 1 Δ 2 + e 2 i θ 1 Δ 1 Δ 3 + Δ 2 Δ 3 ) 2 i Γ ( Δ 2 + e 2 i θ 2 ( Δ 1 + Δ 2 ) + Δ 3 + e 2 i θ 1 ( Δ 1 + Δ 3 ) ) ] } / X ,
r b = { 64 ( 1 + e 2 i θ 1 ) ( e 2 i θ 1 e 2 i θ 2 ) η 3 + 32 e 2 i θ 1 η 2 [ ( 1 + e 2 i θ 2 ) Γ i ( ( 1 + e 2 i θ 1 ) Δ 1 + ( 1 + e 2 i θ 2 ) Δ 2 + ( e 2 i θ 1 + e 2 i θ 2 ) Δ 3 ) ] 4 η e 2 i θ 1 [ ( 1 + e 2 i θ 1 + e 2 i θ 2 ) Γ 2 2 i Γ ( Δ 1 + e 2 i θ 1 Δ 1 + Δ 2 + e 2 i θ 2 Δ 2 + e 2 i θ 1 Δ 3 + e 2 i θ 2 Δ 3 ) 4 ( e 2 i θ 2 Δ 2 Δ 3 + Δ 1 ( Δ 2 + e 2 i θ 1 Δ 3 ) ) ] } / X ,
X = 64 ( 1 + e 2 i θ 1 ) ( e 2 i θ 1 e 2 i θ 2 ) η 3 16 η 2 { e 2 i θ 2 ( Γ 2 i Δ 1 ) + e 2 i ( θ 1 + θ 2 ) ( Γ 2 i Δ 2 ) + e 4 i θ 1 ( Γ 2 i Δ 3 ) + e 2 i θ 1 [ 3 Γ + 2 i ( Δ 1 + Δ 2 + Δ 3 ) ] } + 4 η e 2 i θ 1 { 3 Γ 2 4 i Γ ( Δ 1 + Δ 2 + Δ 3 ) 4 ( Δ 2 Δ 3 + Δ 1 Δ 2 + Δ 1 Δ 3 ) } + e 2 i θ 1 ( Γ 2 i Δ 1 ) ( Γ 2 i Δ 2 ) ( Γ 2 i Δ 3 ) ,

Metrics