Abstract

Polarization imaging and Mueller polarimetry provide powerful tools for probing the microstructure of complex anisotropic media, which is a core task in material science, biomedical diagnosis and many research fields. However, Mueller matrix elements and many polarization parameters are sensitive to the spatial orientation of the sample and experimental configurations, hindering the effectiveness for distinguishing different sources of anisotropies. In this paper, we propose a set of rotation invariant parameters and corresponding orientation parameters, which are explicit functions of the Mueller matrix elements. They are valid under the condition that the illumination and detection directions are collinear with the rotation axis of the sample. More detailed examinations show that these parameters have potential applications for fast analyzing different anisotropy contributions in the media, such as birefringence, dichroism, and their coexistence. The conclusions are validated with Monte Carlo simulations and the experimental results of transparent tape samples.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters

Minghao Sun, Honghui He, Nan Zeng, E. Du, Yihong Guo, Cheng Peng, Yonghong He, and Hui Ma
Appl. Opt. 53(14) 2949-2955 (2014)

Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters

Minghao Sun, Honghui He, Nan Zeng, E Du, Yihong Guo, Shaoxiong Liu, Jian Wu, Yonghong He, and Hui Ma
Biomed. Opt. Express 5(12) 4223-4234 (2014)

Detecting axial heterogeneity of birefringence in layered turbid media using polarized light imaging

Sanaz Alali, Yuting Wang, and I. Alex Vitkin
Biomed. Opt. Express 3(12) 3250-3263 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).
    [Crossref] [PubMed]
  2. J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10, 950–952 (2017).
    [Crossref] [PubMed]
  3. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
    [Crossref] [PubMed]
  4. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
    [Crossref] [PubMed]
  5. T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
    [Crossref]
  6. A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and et al., “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
    [Crossref] [PubMed]
  7. E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19, 076013 (2014).
    [Crossref]
  8. H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
    [Crossref] [PubMed]
  9. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
    [Crossref]
  10. R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett. 36, 2330–2332 (2011).
    [Crossref] [PubMed]
  11. X. Jiang, N. Zeng, and Y. He, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659 (2007).
  12. N. Zeng, X. Jiang, Q. Gao, Y. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
    [Crossref]
  13. H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2, 129–137 (2013).
  14. H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
    [Crossref] [PubMed]
  15. M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53, 2949–2955 (2014).
    [Crossref] [PubMed]
  16. O. Arteaga, E. Garcia-Caurel, and R. Ossikovski, “Anisotropy coefficients of a Mueller matrix,” J. Opt. Soc. Am. A 28, 548–553 (2011).
    [Crossref]
  17. V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117, 152–157 (2014).
    [Crossref]
  18. Y. A. Ushenko, V. Prysyazhnyuk, M. Gavrylyak, M. Gorsky, V. Bachinskiy, and O. Y. Vanchuliak, “Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics,” Proc. of SPIE 9258, 925807 (2015).
    [Crossref]
  19. J. J. Gil, “Invariant quantities of a Mueller matrix under rotation and retarder transformations,” J. Opt. Soc. Am. A 33, 52–58 (2016).
    [Crossref]
  20. P. Li, C. Liu, X. Li, H. He, and H. Ma, “Gpu acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media,” Appl. Opt. 55, 7468–7476 (2016).
    [Crossref] [PubMed]
  21. E. Collett, Field Guide to Polarization (SPIE, 2005).
    [Crossref]
  22. H. He, J. Chang, C. He, and H. Ma, “Transformation of full 4 × 4 Mueller matrices: A quantitative technique for biomedical diagnosis,” Proc. of SPIE 9707, 97070K (2016).
  23. J. J. Gil and R. Ossikovski, Polarized Light and the Mueller Matrix Approach (CRC, 2016).
  24. A. B. Pravdin, D. A. Yakovlev, A. V. Spivak, and V. V. Tuchin, “Mapping of optical properties of anisotropic biological tissues,” Proc. of SPIE 5695, 303–311 (2005).
    [Crossref]
  25. T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17, 16590–16602 (2009).
    [Crossref] [PubMed]
  26. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part ii,” Opt. Express 13, 10392–10405 (2005).
    [Crossref] [PubMed]

2017 (1)

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10, 950–952 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (1)

Y. A. Ushenko, V. Prysyazhnyuk, M. Gavrylyak, M. Gorsky, V. Bachinskiy, and O. Y. Vanchuliak, “Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics,” Proc. of SPIE 9258, 925807 (2015).
[Crossref]

2014 (4)

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
[Crossref] [PubMed]

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117, 152–157 (2014).
[Crossref]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19, 076013 (2014).
[Crossref]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53, 2949–2955 (2014).
[Crossref] [PubMed]

2013 (4)

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and et al., “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[Crossref] [PubMed]

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[Crossref]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2, 129–137 (2013).

2011 (3)

2009 (2)

2007 (1)

X. Jiang, N. Zeng, and Y. He, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659 (2007).

2005 (2)

J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part ii,” Opt. Express 13, 10392–10405 (2005).
[Crossref] [PubMed]

A. B. Pravdin, D. A. Yakovlev, A. V. Spivak, and V. V. Tuchin, “Mapping of optical properties of anisotropic biological tissues,” Proc. of SPIE 5695, 303–311 (2005).
[Crossref]

2002 (1)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref] [PubMed]

1996 (1)

1991 (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[Crossref] [PubMed]

Anderson, R. R.

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[Crossref] [PubMed]

Andreichuk, D.

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117, 152–157 (2014).
[Crossref]

Antonelli, M.-R.

Arteaga, O.

Bachinskiy, V.

Y. A. Ushenko, V. Prysyazhnyuk, M. Gavrylyak, M. Gorsky, V. Bachinskiy, and O. Y. Vanchuliak, “Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics,” Proc. of SPIE 9258, 925807 (2015).
[Crossref]

Benali, A.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and et al., “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

Chang, J.

H. He, J. Chang, C. He, and H. Ma, “Transformation of full 4 × 4 Mueller matrices: A quantitative technique for biomedical diagnosis,” Proc. of SPIE 9707, 97070K (2016).

Chipman, R. A.

Cohen, H.

Collett, E.

E. Collett, Field Guide to Polarization (SPIE, 2005).
[Crossref]

De Martino, A.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[Crossref]

Du, E.

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53, 2949–2955 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19, 076013 (2014).
[Crossref]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2, 129–137 (2013).

Elson, D. S.

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10, 950–952 (2017).
[Crossref] [PubMed]

Fallet, C.

Gao, Q.

Garcia-Caurel, E.

Gavrylyak, M.

Y. A. Ushenko, V. Prysyazhnyuk, M. Gavrylyak, M. Gorsky, V. Bachinskiy, and O. Y. Vanchuliak, “Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics,” Proc. of SPIE 9258, 925807 (2015).
[Crossref]

Gayet, B.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[Crossref]

Ghosh, N.

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).
[Crossref] [PubMed]

Gil, J. J.

Gorsky, M.

Y. A. Ushenko, V. Prysyazhnyuk, M. Gavrylyak, M. Gorsky, V. Bachinskiy, and O. Y. Vanchuliak, “Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics,” Proc. of SPIE 9258, 925807 (2015).
[Crossref]

Guo, Y.

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19, 076013 (2014).
[Crossref]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53, 2949–2955 (2014).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2, 129–137 (2013).

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[Crossref] [PubMed]

He, C.

H. He, J. Chang, C. He, and H. Ma, “Transformation of full 4 × 4 Mueller matrices: A quantitative technique for biomedical diagnosis,” Proc. of SPIE 9707, 97070K (2016).

He, H.

H. He, J. Chang, C. He, and H. Ma, “Transformation of full 4 × 4 Mueller matrices: A quantitative technique for biomedical diagnosis,” Proc. of SPIE 9707, 97070K (2016).

P. Li, C. Liu, X. Li, H. He, and H. Ma, “Gpu acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media,” Appl. Opt. 55, 7468–7476 (2016).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19, 076013 (2014).
[Crossref]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53, 2949–2955 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2, 129–137 (2013).

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[Crossref] [PubMed]

He, Y.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53, 2949–2955 (2014).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[Crossref] [PubMed]

N. Zeng, X. Jiang, Q. Gao, Y. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
[Crossref]

X. Jiang, N. Zeng, and Y. He, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659 (2007).

Ibrahim, B. H.

Jacques, S. L.

Jiang, X.

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref] [PubMed]

Li, D.

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2, 129–137 (2013).

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17, 16590–16602 (2009).
[Crossref] [PubMed]

Li, P.

Li, W.

Li, X.

Liao, R.

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2, 129–137 (2013).

Liu, C.

Liu, S.

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19, 076013 (2014).
[Crossref]

Lu, S.-Y.

Ma, H.

P. Li, C. Liu, X. Li, H. He, and H. Ma, “Gpu acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media,” Appl. Opt. 55, 7468–7476 (2016).
[Crossref] [PubMed]

H. He, J. Chang, C. He, and H. Ma, “Transformation of full 4 × 4 Mueller matrices: A quantitative technique for biomedical diagnosis,” Proc. of SPIE 9707, 97070K (2016).

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19, 076013 (2014).
[Crossref]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53, 2949–2955 (2014).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2, 129–137 (2013).

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[Crossref] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17, 16590–16602 (2009).
[Crossref] [PubMed]

N. Zeng, X. Jiang, Q. Gao, Y. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
[Crossref]

Manhas, S.

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and et al., “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[Crossref]

Marchuk, Y. F.

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117, 152–157 (2014).
[Crossref]

Nazac, A.

Novikova, T.

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and et al., “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[Crossref]

Ossikovski, R.

Pashkovskaya, N.

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117, 152–157 (2014).
[Crossref]

Peng, C.

Pierangelo, A.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and et al., “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

Prahl, S. A.

Pravdin, A. B.

A. B. Pravdin, D. A. Yakovlev, A. V. Spivak, and V. V. Tuchin, “Mapping of optical properties of anisotropic biological tissues,” Proc. of SPIE 5695, 303–311 (2005).
[Crossref]

Prysyazhnyuk, V.

Y. A. Ushenko, V. Prysyazhnyuk, M. Gavrylyak, M. Gorsky, V. Bachinskiy, and O. Y. Vanchuliak, “Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics,” Proc. of SPIE 9258, 925807 (2015).
[Crossref]

Qi, J.

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10, 950–952 (2017).
[Crossref] [PubMed]

Ramella-Roman, J. C.

Sidor, M.

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117, 152–157 (2014).
[Crossref]

Spivak, A. V.

A. B. Pravdin, D. A. Yakovlev, A. V. Spivak, and V. V. Tuchin, “Mapping of optical properties of anisotropic biological tissues,” Proc. of SPIE 5695, 303–311 (2005).
[Crossref]

Sun, M.

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53, 2949–2955 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19, 076013 (2014).
[Crossref]

Tuchin, V. V.

A. B. Pravdin, D. A. Yakovlev, A. V. Spivak, and V. V. Tuchin, “Mapping of optical properties of anisotropic biological tissues,” Proc. of SPIE 5695, 303–311 (2005).
[Crossref]

Ushenko, V.

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117, 152–157 (2014).
[Crossref]

Ushenko, Y. A.

Y. A. Ushenko, V. Prysyazhnyuk, M. Gavrylyak, M. Gorsky, V. Bachinskiy, and O. Y. Vanchuliak, “Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics,” Proc. of SPIE 9258, 925807 (2015).
[Crossref]

Validire, P.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and et al., “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

Vanchuliak, O. Y.

Y. A. Ushenko, V. Prysyazhnyuk, M. Gavrylyak, M. Gorsky, V. Bachinskiy, and O. Y. Vanchuliak, “Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics,” Proc. of SPIE 9258, 925807 (2015).
[Crossref]

Vitkin, I. A.

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).
[Crossref] [PubMed]

Wu, J.

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19, 076013 (2014).
[Crossref]

Yakovlev, D. A.

A. B. Pravdin, D. A. Yakovlev, A. V. Spivak, and V. V. Tuchin, “Mapping of optical properties of anisotropic biological tissues,” Proc. of SPIE 5695, 303–311 (2005).
[Crossref]

Yun, T.

Zeng, N.

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19, 076013 (2014).
[Crossref]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, C. Peng, Y. He, and H. Ma, “Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters,” Appl. Opt. 53, 2949–2955 (2014).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
[Crossref] [PubMed]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2, 129–137 (2013).

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[Crossref] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17, 16590–16602 (2009).
[Crossref] [PubMed]

N. Zeng, X. Jiang, Q. Gao, Y. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
[Crossref]

X. Jiang, N. Zeng, and Y. He, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659 (2007).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[Crossref]

Arch. Dermatol. (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref] [PubMed]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, and H. Ma, “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19, 076013 (2014).
[Crossref]

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, Y. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19, 106007 (2014).
[Crossref] [PubMed]

J. Biophotonics (1)

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10, 950–952 (2017).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

Opt. Express (3)

Opt. Lett. (1)

Opt. Spectrosc. (1)

V. Ushenko, M. Sidor, Y. F. Marchuk, N. Pashkovskaya, and D. Andreichuk, “Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues,” Opt. Spectrosc. 117, 152–157 (2014).
[Crossref]

Photon. Lasers Med. (1)

H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Lasers Med. 2, 129–137 (2013).

Proc. of SPIE (3)

A. B. Pravdin, D. A. Yakovlev, A. V. Spivak, and V. V. Tuchin, “Mapping of optical properties of anisotropic biological tissues,” Proc. of SPIE 5695, 303–311 (2005).
[Crossref]

H. He, J. Chang, C. He, and H. Ma, “Transformation of full 4 × 4 Mueller matrices: A quantitative technique for biomedical diagnosis,” Proc. of SPIE 9707, 97070K (2016).

Y. A. Ushenko, V. Prysyazhnyuk, M. Gavrylyak, M. Gorsky, V. Bachinskiy, and O. Y. Vanchuliak, “Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics,” Proc. of SPIE 9258, 925807 (2015).
[Crossref]

Prog. Biochem. Biophys. (1)

X. Jiang, N. Zeng, and Y. He, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659 (2007).

Other (2)

E. Collett, Field Guide to Polarization (SPIE, 2005).
[Crossref]

J. J. Gil and R. Ossikovski, Polarized Light and the Mueller Matrix Approach (CRC, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Azimuth rotation transformation of the Stokes vector for angle α, right-hand as the positive direction. (b) Mirror transformation of the Stokes vector with mirror plane (blue) pass axis z and lies at direction α.
Fig. 2
Fig. 2 Experimental measurement of transparent sticky tape (a) Mueller matrix in transmission, m11 is plotted in [0, 1] grayscale, other elements are normalized by m11. (b) β ( 1 2 , 1 2 ). (c) The difference in orientation prediction (αrαq) (degree) is shown as hue and rL is shown as brightness. (d)(e)(f) Orientation predictions by αq, αr, α1, length and color of the small bars represent qL, rL, t1. (f) To solve the degeneracy problem in α1 [14] we compare it with αr and add π 2 to α1 if | α 1 α r | > π 4.
Fig. 3
Fig. 3 MC simulation of anisotropic Mueller matrix in transmission. (a) Two groups of cylinder scatterers crossing overlapped, one group is fixed at x orientation, radius rc = 0.3 μm, n = 1.56, scattering coefficient μc = 15 cm−1. The other group changes its radius rc2 = 0.1, 0.3, 0.6 μm (dot, cross, square) and scattering coefficient μc2 = 5 or 20 cm−1 (blue thin, orange thick). When rc2 = rc and μc2 = μc the m14, m41 are always 0 (green line). (b) One group of cylinder scatterers crossing overlap with medium birefringence, fast axis fixed at x orientation, medium refractive index n = 1.33, Δn = 0.00005. Horizontal axis α is the intersection angle between two anisotropies. The simulation use λ = 633 nm illumination, thick 1 cm sample, diameter 1 cm detector.
Fig. 4
Fig. 4 Two coordinate systems for backward detection, (a) coincide with the local system of back scattering light beams, (b) one more mirror reflection before detection. These two schemes give the Mueller matrix of an ideal plane mirror reflection as (a) diag(1, 1, −1, −1), (b) diag(1, 1, 1, 1). (Illumination beam is tilted for drawing input and output separately, to fulfill the invariant condition they should be collinear and normal to the sample.)

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

R ( α ) = [ 1 0 0 0 0 cos ( 2 α ) sin ( 2 α ) 0 0 sin ( 2 α ) cos ( 2 α ) 0 0 0 0 1 ]
M = R ( α ) MR ( α )
R ( α ) MR ( α ) = [ m 11 m 12 c 2 m 13 s 2 m 12 s 2 + m 13 c 2 m 14 m 21 c 2 m 31 s 2 b + ( b ˜ c 4 β ˜ s 4 ) β + ( b ˜ s 4 + β ˜ c 4 ) m 24 c 2 m 34 s 2 m 21 s 2 + m 31 c 2 β + ( b ˜ s 4 + β ˜ c 4 ) b ( b ˜ c 4 β ˜ s 4 ) m 24 s 2 + m 34 c 2 m 41 m 42 c 2 m 43 s 2 m 42 s 2 + m 43 c 2 m 44 ]
b = 1 2 ( m 22 + m 33 )
b ˜ = 1 2 ( m 22 m 33 )
β = 1 2 ( m 23 m 32 )
β ˜ = 1 2 ( m 23 + m 32 )
m 11
k C = m 44 [ 1 , 1 ]
D C = m 14 [ 1 , 1 ]
P C = m 41 [ 1 , 1 ]
P L = m 21 2 + m 31 2 [ 0 , 1 ]
D L = m 12 2 + m 13 2 [ 0 , 1 ]
q L = m 42 2 + m 43 2 [ 0 , 1 ]
r L = m 24 2 + m 34 2 [ 0 , 1 ]
tr B = m 22 + m 33 = 2 b
| B | = ( m 22 m 33 m 23 m 32 )
B F = m 22 2 + m 33 2 + m 23 2 + m 32 2
t 1 = b ˜ 2 + β ˜ 2 = 1 2 ( m 22 m 33 ) 2 + ( m 23 + m 32 ) 2
R ( α ) M α sym R ( α ) M α sym = 0
α = 1 4 atan 2 ( m 23 + m 32 , m 22 m 33 )
α = 1 2 atan 2 ( m 13 , m 12 )
α 3 = 1 2 atan 2 ( m 42 , m 34 )
H ( α ) = [ 1 0 0 0 0 cos ( 4 α ) sin ( 4 α ) 0 0 sin ( 4 α ) cos ( 4 α ) 0 0 0 0 1 ]
H ( 0 ) MH ( 0 ) = [ m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 ]
M mirsym = [ m 11 m 12 0 0 m 21 m 22 0 0 0 0 m 33 m 34 0 0 m 43 m 44 ]
M mirsym = R ( α ) M mirsym R ( α ) = [ m 11 m 12 c 2 m 12 s 2 0 m 21 c 2 b + b ˜ c 4 b ˜ s 4 m 34 s 2 m 21 s 2 b ˜ s 4 b b ˜ c 4 m 34 c 2 0 m 43 s 2 m 43 c 2 m 44 ]
α 1 = 1 4 atan 2 ( m 23 + m 32 , m 22 m 33 ) if t 1 0
α P = 1 2 atan 2 ( m 31 , m 21 ) if P L 0
α D = 1 2 atan 2 ( m 13 , m 12 ) if D L 0
α q = 1 2 atan 2 ( m 42 , m 43 ) if q L 0
α r = 1 2 atan 2 ( m 24 , m 34 ) if r L 0
R ( α ) M D ( p x , p y ) R ( α ) = [ m 11 D c 2 D s 2 0 D c 2 m 11 c 2 2 + p x p y s 2 2 1 4 ( p x p y ) 2 s 4 0 D s 2 1 4 ( p x p y ) 2 s 4 m 11 s 2 2 + p x p y c 2 2 0 0 0 0 p x p y ]
R ( α ) M R ( δ ) R ( α ) = [ 1 0 0 0 0 c 2 2 + s 2 2 cos δ s 2 c 2 ( 1 cos δ ) s 2 sin δ 0 s 2 c 2 ( 1 cos δ ) c 2 2 cos δ + s 2 2 c 2 sin δ 0 s 2 sin δ c 2 sin δ cos δ ]
P L = D L
q L = r L
α P α D = 0 ( or ± π 2 )
α q α r = 0 ( or ± π 2 )
β = 0
m 14 and m 41 = 0

Metrics