Abstract

We propose a virtual phase conjugation (VPC) based optical tomography (VPC-OT) for realizing single-shot optical tomographic imaging systems. Using a computer-based numerical beam propagation, the VPC combines pre-modulation and post-demodulation of the probe beam’s wavefront, which provides an optical sectioning capability for resolving the depth coordinates. In VPC-OT, the physical optical microscope system and VPC are coupled using digital holography. Therefore, in contrast to conventional optical tomographic imaging (OTI) systems, this method does not require additional elements such as low-coherence light sources or confocal pinholes. It is challenging to obtain single-shot three-dimensional (3D) tomographic images using a conventional OTI system; however, this can be achieved using VPC-OT, which employs both digital holography and computer based numerical beam propagation. In addition, taking into account that VPC-OT is based on a complex amplitude detection using digital holography, this method allows us to simultaneously obtain quantitative phase contrast images. Using an objective lens with a numerical aperture (NA) of 0.8, we demonstrate a single-shot 3D imaging of frog blood cells with a depth resolution of 0.94 μm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional single-shot tomography using a virtually imaged phased array and a spatial phase modulator

Tatsutoshi Shioda, Takashi Morisaki, Tuan Quoc Banh, and Kohei Suzuki
Appl. Opt. 51(21) 5224-5230 (2012)

Single-shot holography for depth resolved three dimensional imaging

Nektarios Koukourakis, Christoph Kasseck, Daniel Rytz, Nils C. Gerhardt, and Martin R. Hofmann
Opt. Express 17(23) 21015-21029 (2009)

Full-color three-dimensional microscopy by wide-field optical coherence tomography

Lingfeng Yu and M.K. Kim
Opt. Express 12(26) 6632-6641 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. A. F. Fercher, “Optical Coherence Tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
    [Crossref] [PubMed]
  3. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1–2), 9–25 (2000).
    [Crossref] [PubMed]
  4. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
    [Crossref]
  5. R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
    [Crossref]
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  7. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref] [PubMed]
  8. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
    [Crossref]
  9. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28(10), 816–818 (2003).
    [Crossref] [PubMed]
  10. M. Minsky, U.S. Patent 3013467 (1961).
  11. T. R. Corle, C.-H. Chou, and G. S. Kino, “Depth response of confocal optical microscopes,” Opt. Lett. 11(12), 770–772 (1986).
    [Crossref] [PubMed]
  12. S. W. Paddock, “Confocal laser scanning microscopy,” BioTechniques,  27(5), 992–1004 (1999).
    [PubMed]
  13. G. Q. Xiao and G. S. Kino, “A real-time confocal scanning optical microscope,” Proc. SPIE 809(22), 107–112 (1987).
    [Crossref]
  14. T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
    [Crossref] [PubMed]
  15. H. J. Tiziani and H. M. Uhde, “Three-dimensional analysis by a microlens-array confocal arrangement,” Appl. Opt. 33(4), 567–572 (1994).
    [Crossref] [PubMed]
  16. M. Eisner, N. Lindlein, and J. Schwider, “Confocal microscopy with a refractive microlens-pinhole array,” Opt. Lett. 23(10), 748–749 (1998).
    [Crossref]
  17. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969).
    [Crossref]
  18. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
    [Crossref] [PubMed]
  19. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R Dasari, and M. S Feld, “Tomographic phase microscopy,” Nature Methods 4(9), 717–719 (2007).
    [Crossref] [PubMed]
  20. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2(2), 121–127 (1985).
    [Crossref]
  21. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J.Res.Dev. 13(2), 150–155 (1969).
    [Crossref]
  22. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34(17), 3165–3171 (1995).
    [Crossref] [PubMed]
  23. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  24. D. J. Bone, H.-A. Bachor, and R. J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt. 25(10), 1653–1660 (1986).
    [Crossref] [PubMed]
  25. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45(6), 1102–1110 (2006).
    [Crossref] [PubMed]
  26. K. Matsushima and T. Shimobaba, “Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields,” Opt. Express 17(22), 19662–19673 (2009).
    [Crossref] [PubMed]
  27. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
    [Crossref] [PubMed]
  28. M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
    [Crossref] [PubMed]
  29. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
    [Crossref] [PubMed]

2015 (1)

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
[Crossref]

2014 (2)

2010 (1)

2009 (2)

2007 (2)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R Dasari, and M. S Feld, “Tomographic phase microscopy,” Nature Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

2006 (1)

2004 (1)

2003 (2)

2002 (1)

2000 (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1–2), 9–25 (2000).
[Crossref] [PubMed]

1999 (1)

S. W. Paddock, “Confocal laser scanning microscopy,” BioTechniques,  27(5), 992–1004 (1999).
[PubMed]

1998 (2)

1996 (1)

A. F. Fercher, “Optical Coherence Tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref] [PubMed]

1995 (1)

1994 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1987 (1)

G. Q. Xiao and G. S. Kino, “A real-time confocal scanning optical microscope,” Proc. SPIE 809(22), 107–112 (1987).
[Crossref]

1986 (2)

1985 (1)

1982 (1)

1969 (2)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J.Res.Dev. 13(2), 150–155 (1969).
[Crossref]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969).
[Crossref]

Akiba, M.

Amako, J.

Bachor, H.-A.

Badizadegan, K.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R Dasari, and M. S Feld, “Tomographic phase microscopy,” Nature Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Beaurepaire, E.

Bertolotti, J.

Blanchot, L.

Boccara, A. C.

Bone, D. J.

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1–2), 9–25 (2000).
[Crossref] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1–2), 9–25 (2000).
[Crossref] [PubMed]

Chan, K. P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Choi, W.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R Dasari, and M. S Feld, “Tomographic phase microscopy,” Nature Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Chou, C.-H.

Cooney, M. J.

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
[Crossref]

Corle, T. R.

Cui, M.

Dasari, R. R

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R Dasari, and M. S Feld, “Tomographic phase microscopy,” Nature Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Dasari, R. R.

Duker, J. S.

Eisner, M.

Fang-Yen, C.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R Dasari, and M. S Feld, “Tomographic phase microscopy,” Nature Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Feld, M. S

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R Dasari, and M. S Feld, “Tomographic phase microscopy,” Nature Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Feld, M. S.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1–2), 9–25 (2000).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Goorden, S. A.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J.Res.Dev. 13(2), 150–155 (1969).
[Crossref]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ina, H.

Ishida, H.

Jang, M.

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J.Res.Dev. 13(2), 150–155 (1969).
[Crossref]

Judkewitz, B.

Kino, G. S.

G. Q. Xiao and G. S. Kino, “A real-time confocal scanning optical microscope,” Proc. SPIE 809(22), 107–112 (1987).
[Crossref]

T. R. Corle, C.-H. Chou, and G. S. Kino, “Depth response of confocal optical microscopes,” Opt. Lett. 11(12), 770–772 (1986).
[Crossref] [PubMed]

Klancnik, J. M.

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
[Crossref]

Ko, T. H.

Kobayashi, S.

Kosugi, Y.

Kowalczyk, A.

Lebec, M.

Leitgeb, R.

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J.Res.Dev. 13(2), 150–155 (1969).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lindlein, N.

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R Dasari, and M. S Feld, “Tomographic phase microscopy,” Nature Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Matsushima, K.

Minsky, M.

M. Minsky, U.S. Patent 3013467 (1961).

Miura, H.

Mosk, A. P.

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R Dasari, and M. S Feld, “Tomographic phase microscopy,” Nature Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Otsuki, S.

Paddock, S. W.

S. W. Paddock, “Confocal laser scanning microscopy,” BioTechniques,  27(5), 992–1004 (1999).
[PubMed]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1–2), 9–25 (2000).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ruan, H.

Saint-Jalmes, H.

Sandeman, R. J.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schwider, J.

Shen, F.

Shimizu, M.

Shimobaba, T.

Sonehara, T.

Spaide, R. F.

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
[Crossref]

Srinivasan, V. J.

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Streibl, N.

Sung, Y.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Takeda, M.

Tanaami, T.

Tanno, N.

Tiziani, H. J.

Tomosada, N.

Uhde, H. M.

Wang, A.

Wojtkowski, M.

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969).
[Crossref]

Xiao, G. Q.

G. Q. Xiao and G. S. Kino, “A real-time confocal scanning optical microscope,” Proc. SPIE 809(22), 107–112 (1987).
[Crossref]

Yang, C.

Zhou, H.

Appl. Opt. (5)

Appl. Phys. B (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

BioTechniques (1)

S. W. Paddock, “Confocal laser scanning microscopy,” BioTechniques,  27(5), 992–1004 (1999).
[PubMed]

IBM J.Res.Dev. (1)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The Kinoform: A New Wavefront Reconstruction Device,” IBM J.Res.Dev. 13(2), 150–155 (1969).
[Crossref]

J. Biomed. Opt. (1)

A. F. Fercher, “Optical Coherence Tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

JAMA Ophthalmol. (1)

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography,” JAMA Ophthalmol. 133(1), 45–50 (2015).
[Crossref]

Nature Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R Dasari, and M. S Feld, “Tomographic phase microscopy,” Nature Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia 2(1–2), 9–25 (2000).
[Crossref] [PubMed]

Opt. Commun. (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969).
[Crossref]

Opt. Express (7)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009).
[Crossref] [PubMed]

K. Matsushima and T. Shimobaba, “Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields,” Opt. Express 17(22), 19662–19673 (2009).
[Crossref] [PubMed]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref] [PubMed]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref] [PubMed]

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

G. Q. Xiao and G. S. Kino, “A real-time confocal scanning optical microscope,” Proc. SPIE 809(22), 107–112 (1987).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (1)

M. Minsky, U.S. Patent 3013467 (1961).

Supplementary Material (2)

NameDescription
» Visualization 1       This visualization is the three-dimensional tomographic intensity image reconstructed by virtual phase conjugation based optical tomography.
» Visualization 2       This visualization is the three-dimensional tomographic phase image reconstructed by virtual phase conjugation based optical tomography.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Overview of the tomographic imaging system based on virtual phase conjugation. The plane wave passed through the BS is rcam(x, y), while rslm(x, y) is the plane wave reflected by the BS. The diffusive phase-conjugated probe beam, encoded during the encryption step in (a) (using a computer), is created in the actual optical system (b) using an SLM. The probe beam is focused on the specimen using an objective lens. Then, the beam reflected by the specimen interferes with rcam(x, y), and the interference fringe pattern is recorded by the camera. The 3D tomographic image of the specimen is reconstructed (using a computer) during the decryption step, as illustrated in (c).
Fig. 2
Fig. 2 Experimental setup. CL: collimating lens, L1–L3: relay lenses, OBJ: objective lens, M1, M2: mirrors, BS1–BS3: beam splitters, PBS: polarizing BS, HWP1, HWP2: half-wave plates, PSLM: phase-only SLM.
Fig. 3
Fig. 3 Intensity and phase distributions used for the experiment; (a) window function A(x, y), (b) non-periodic phase distribution hd(x, y), and (c) calculated phase hologram Hdis(x, y).
Fig. 4
Fig. 4 Phase rotation factor obtained by fringe analysis, using a defocus position of (a) −50.0 μm, (b) 0.0 μm, and (c) 50.0 μm. Phase rotation factor calculated by numerical beam propagation, using a defocus position of (d) −50.0 μm, (e) 0.0 μm, and (f) 50.0 μm.
Fig. 5
Fig. 5 Reconstructed intensity image of the cover glass on the yz-plane (a)with VPC and using the measured actual phase rotation factors, (b) without using the measured actual phase rotation factors, (c) without VPC.
Fig. 6
Fig. 6 Illustration of the sample location in the experiment.
Fig. 7
Fig. 7 Obtained tomographic images of the prepared frog blood cells specimen sliced on the xy- (at z = −1.5μm, −1.0μm, −0.5μm, 0.0μm) and yz-plane. (a) Intensity images without using VPC, (b) intensity images with VPC (see also the associated Visualization 1), and (c) phase images with VPC (see also the associated Visualization 2).
Fig. 8
Fig. 8 Results of the measurements performed on the mirror: (a) reconstructed intensity image at the yz-plane, (b) intensity profile along the orange dotted line (z-direction) outlined in (a). Results of the measurements performed on the resolution test target: (c) reconstructed intensity image at the xy-plane, (d) intensity profile along the orange dotted line (x-direction) outlined in (c).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A ( x , y ) = { 1 ( A x / 2 < x < A x / 2 A y / 2 < y < A y / 2 ) 0 ( otherwise ) .
E ( x , y ) = A ( x , y ) exp [ i h d ( x , y ) ] .
H dis ( x , y ) = arg IFFT [ E * ( x , y ) ] .
H rep ( x , y ) = | 1 [ E * r ( x , y ) ] + r cam ( x , y ) | 2 ,
r cam ( x , y ) = I r ( x , y ) exp [ i k ( sin θ x x + sin θ y y ) ] ,
E * r ( x , y ) = IFFT [ H rep ( x , y ) | r cam ( x , y ) | 2 exp [ i k ( sin θ x x + sin θ y y ) ] ] W ,
E * r ( x , y ) = j = M 2 M + 1 E * ( x , y , 2 j Δ z ) S j ( x , y ) .
E * r ( x , y ) exp [ i h d ( x , y ) ] = A ( x , y ) S l ( x , y ) + j = M , j l 2 M + 1 E * ( x , y , 2 ( j l ) Δ z ) S j ( x , y ) exp [ i h d ( x , y ) ] .

Metrics