Abstract

Wavelength widely tunable femtosecond sources can be implemented by optically filtering the leftmost/rightmost spectral lobes of a broadened spectrum due to self-phase modulation (SPM) dominated fiber-optic nonlinearities. We numerically and experimentally investigate the feasibility of implementing such a tunable source inside optical fibers with negative group-velocity dispersion (GVD). We show that the spectral broadening prior to soliton fission is dominated by SPM and generates well-isolated spectral lobes; filtering the leftmost/rightmost spectral lobes results in energetic femtosecond pulses with the wavelength tuning range more than 400 nm. Employing an ultrafast Er-fiber laser and a dispersion-shifted fiber with negative GVD, we implement an energetic tunable source that produces ~100-fs pulses tunable between 1.3 µm and 1.7 µm with up to ~16-nJ pulse energy. Further energy scaling is achieved by increasing the input pulse energy to ~1-μJ and reducing the fiber length to 1.3 cm. The resulting source can produce >100-nJ femtosecond pulses at 1.3 µm and 1.7 µm with MW level peak power, representing an order of magnitude improvement of our previous results. Such a powerful source covers the 2nd and the 3rd biological transmission window and can facilitate multiphoton deep-tissue imaging.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm

Hsiang-Yu Chung, Wei Liu, Qian Cao, Franz X. Kärtner, and Guoqing Chang
Opt. Express 25(14) 15760-15771 (2017)

Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach

Wei Liu, Chen Li, Zhigang Zhang, Franz X. Kärtner, and Guoqing Chang
Opt. Express 24(14) 15328-15340 (2016)

Energetic ultrafast fiber laser sources tunable in 1030–1215 nm for deep tissue multi-photon microscopy

Wei Liu, Shih-Hsuan Chia, Hsiang-Yu Chung, Rüdiger Greinert, Franz X. Kärtner, and Guoqing Chang
Opt. Express 25(6) 6822-6831 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
    [Crossref]
  2. D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
    [Crossref]
  3. H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
    [Crossref]
  4. F. Tauser, F. Adler, and A. Leitenstorfer, “Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Opt. Lett. 29(5), 516–518 (2004).
    [Crossref] [PubMed]
  5. J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7-µm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
    [Crossref]
  6. J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32(4), 340–342 (2007).
    [Crossref] [PubMed]
  7. K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
    [Crossref]
  8. M. E. V. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Higher-order-mode fiber optimized for energetic soliton propagation,” Opt. Lett. 37(16), 3459–3461 (2012).
    [Crossref] [PubMed]
  9. J. Lim, H.-W. Chen, S. Xu, Z. Yang, G. Chang, and F. X. Kärtner, “3 GHz, watt-level femtosecond Raman soliton source,” Opt. Lett. 39(7), 2060–2063 (2014).
    [Crossref] [PubMed]
  10. S. R. Domingue and R. A. Bartels, “Three-photon excitation source at 1250 nm generated in a dual zero dispersion wavelength nonlinear fiber,” Opt. Express 22(25), 30777–30785 (2014).
    [Crossref] [PubMed]
  11. K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).
  12. J. W. Nicholson, A. Desantolo, W. Kaenders, and A. Zach, “Self-frequency-shifted solitons in a polarization-maintaining, very-large-mode area, Er-doped fiber amplifier,” Opt. Express 24(20), 23396–23402 (2016).
    [Crossref] [PubMed]
  13. L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “Characterization of Intermodal Group Index Matched Soliton Interactions leading to MW Peak Powers at 1300 nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper STh3K.2.
    [Crossref]
  14. P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
    [Crossref]
  15. H.-W. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kärtner, and G. Chang, “3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength,” Opt. Lett. 38(22), 4927–4930 (2013).
    [Crossref] [PubMed]
  16. H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21(20), 23188–23196 (2013).
    [Crossref] [PubMed]
  17. M.-C. Chan, C.-H. Lien, J.-Y. Lu, and B.-H. Lyu, “High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy,” Opt. Express 22(8), 9498–9507 (2014).
    [Crossref] [PubMed]
  18. X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
    [Crossref] [PubMed]
  19. J. P. Epping, M. Kues, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K. J. Boller, “Integrated CARS source based on seeded four-wave mixing in silicon nitride,” Opt. Express 21(26), 32123–32129 (2013).
    [Crossref] [PubMed]
  20. T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
    [Crossref] [PubMed]
  21. M. Brinkmann, S. Dobner, and C. Fallnich, “Light source for narrow and broadband coherent Raman scattering microspectroscopy,” Opt. Lett. 40(23), 5447–5450 (2015).
    [Crossref] [PubMed]
  22. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [Crossref]
  23. P. Mamyshev, “All optical data regeneration based on self-phase modulation effect,” ECOC 98, 475–476 (1998).
  24. T. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photonics Technol. Lett. 16(1), 200–202 (2004).
    [Crossref]
  25. L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
    [Crossref] [PubMed]
  26. R. Lehneis, A. Steinmetz, J. Limpert, and A. Tünnermann, “All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs,” Opt. Lett. 39(20), 5806–5809 (2014).
    [Crossref] [PubMed]
  27. W. Fu, L. G. Wright, and F. W. Wise, “High-power femtosecond pulses without a modelocked laser,” Optica 4(7), 831–834 (2017).
    [Crossref] [PubMed]
  28. J. Buldt, M. Müller, R. Klas, T. Eidam, J. Limpert, and A. Tünnermann, “Temporal contrast enhancement of energetic laser pulses by filtered self-phase-modulation-broadened spectra,” Opt. Lett. 42(19), 3761–3764 (2017).
    [Crossref] [PubMed]
  29. K. Regelskis, J. Želudevičius, K. Viskontas, and G. Račiukaitis, “Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering,” Opt. Lett. 40(22), 5255–5258 (2015).
    [Crossref] [PubMed]
  30. Z. Liu, Z. M. Ziegler, L. G. Wright, and F. W. Wise, “Megawatt peak power from a Mamyshev oscillator,” Optica 4(6), 649–654 (2017).
    [Crossref]
  31. W. Liu, C. Li, Z. Zhang, F. X. Kärtner, and G. Chang, “Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach,” Opt. Express 24(14), 15328–15340 (2016).
    [Crossref] [PubMed]
  32. W. Liu, S.-H. Chia, H.-Y. Chung, R. Greinert, F. X. Kärtner, and G. Chang, “Energetic ultrafast fiber laser sources tunable in 1030-1215 nm for deep tissue multi-photon microscopy,” Opt. Express 25(6), 6822–6831 (2017).
    [Crossref] [PubMed]
  33. H.-Y. Chung, W. Liu, Q. Cao, F. X. Kärtner, and G. Chang, “Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm,” Opt. Express 25(14), 15760–15771 (2017).
    [Crossref] [PubMed]
  34. L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
    [Crossref] [PubMed]
  35. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  36. D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
    [Crossref] [PubMed]
  37. J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  38. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013).

2017 (7)

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

W. Fu, L. G. Wright, and F. W. Wise, “High-power femtosecond pulses without a modelocked laser,” Optica 4(7), 831–834 (2017).
[Crossref] [PubMed]

J. Buldt, M. Müller, R. Klas, T. Eidam, J. Limpert, and A. Tünnermann, “Temporal contrast enhancement of energetic laser pulses by filtered self-phase-modulation-broadened spectra,” Opt. Lett. 42(19), 3761–3764 (2017).
[Crossref] [PubMed]

Z. Liu, Z. M. Ziegler, L. G. Wright, and F. W. Wise, “Megawatt peak power from a Mamyshev oscillator,” Optica 4(6), 649–654 (2017).
[Crossref]

W. Liu, S.-H. Chia, H.-Y. Chung, R. Greinert, F. X. Kärtner, and G. Chang, “Energetic ultrafast fiber laser sources tunable in 1030-1215 nm for deep tissue multi-photon microscopy,” Opt. Express 25(6), 6822–6831 (2017).
[Crossref] [PubMed]

H.-Y. Chung, W. Liu, Q. Cao, F. X. Kärtner, and G. Chang, “Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm,” Opt. Express 25(14), 15760–15771 (2017).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

2016 (4)

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

W. Liu, C. Li, Z. Zhang, F. X. Kärtner, and G. Chang, “Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach,” Opt. Express 24(14), 15328–15340 (2016).
[Crossref] [PubMed]

J. W. Nicholson, A. Desantolo, W. Kaenders, and A. Zach, “Self-frequency-shifted solitons in a polarization-maintaining, very-large-mode area, Er-doped fiber amplifier,” Opt. Express 24(20), 23396–23402 (2016).
[Crossref] [PubMed]

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (6)

2013 (5)

2012 (1)

2011 (1)

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

2007 (1)

2006 (2)

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7-µm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

2004 (3)

T. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photonics Technol. Lett. 16(1), 200–202 (2004).
[Crossref]

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

F. Tauser, F. Adler, and A. Leitenstorfer, “Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Opt. Lett. 29(5), 516–518 (2004).
[Crossref] [PubMed]

1998 (1)

P. Mamyshev, “All optical data regeneration based on self-phase modulation effect,” ECOC 98, 475–476 (1998).

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Abdeladim, L.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Adler, F.

Alfano, R.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Bartels, R. A.

Beaurepaire, E.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Boller, K. J.

Boppart, S. A.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21(20), 23188–23196 (2013).
[Crossref] [PubMed]

Brida, D.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Brinkmann, M.

Buckley, J.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Buldt, J.

Cadroas, P.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Cao, Q.

Chan, M.-C.

Chang, G.

Charan, K.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).

M. E. V. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Higher-order-mode fiber optimized for energetic soliton propagation,” Opt. Lett. 37(16), 3459–3461 (2012).
[Crossref] [PubMed]

Chen, H.-W.

Cheng, J.

Cheng, Y.-T.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Chia, S.-H.

Chong, A.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Chung, H.-Y.

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Coen, S.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cruz-Hernández, J. C.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Desantolo, A.

Dobner, S.

Domingue, S. R.

Dudley, J. M.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Eggleton, B.

Eidam, T.

Epping, J. P.

Fallnich, C.

Feng, D. D.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Février, S.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Fu, L.

Fu, W.

Gaponov, D.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Gentry, G.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghalmi, S.

Gottschall, T.

Greinert, R.

Grüner-Nielsen, L.

Haider, Z.

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Headley, C.

T. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photonics Technol. Lett. 16(1), 200–202 (2004).
[Crossref]

Her, T.

T. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photonics Technol. Lett. 16(1), 200–202 (2004).
[Crossref]

Hideur, A.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Horton, N. G.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Jakobsen, D.

Kaenders, W.

Kärtner, F. X.

Klas, R.

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Kotov, L.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Krauss, G.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Kues, M.

Lægsgaard, J.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21(20), 23188–23196 (2013).
[Crossref] [PubMed]

Lee, C. J.

Lee, J. H.

Lehneis, R.

Leitenstorfer, A.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

F. Tauser, F. Adler, and A. Leitenstorfer, “Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Opt. Lett. 29(5), 516–518 (2004).
[Crossref] [PubMed]

Li, C.

Lien, C.-H.

Likhachev, M.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Lim, H.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Lim, J.

Limpert, J.

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Lipatov, D.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Liu, W.

Liu, X.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Livet, J.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Lu, J.-Y.

Lyu, B.-H.

Mamyshev, P.

P. Mamyshev, “All optical data regeneration based on self-phase modulation effect,” ECOC 98, 475–476 (1998).

Meyer, T.

Moss, D.

Müller, M.

Nicholson, J. W.

Nishimura, N.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Nishizawa, N.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7-µm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

Ouzounov, D. G.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Pedersen, M. E. V.

Popp, J.

Raciukaitis, G.

Ramachandran, S.

Raybon, G.

T. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photonics Technol. Lett. 16(1), 200–202 (2004).
[Crossref]

Regelskis, K.

Reimer, J.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Rochette, M.

Rodríguez-Contreras, A.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Schmitt, M.

Sell, A.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Shi, L.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Sordillo, L. A.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

Steinmetz, A.

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Sugiura, T.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7-µm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

Supatto, W.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Svane, A. S.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Ta’eed, V.

Takayanagi, J.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7-µm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

Tang, M.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Tauser, F.

Tolias, A. S.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Tong, S.

Tu, H.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21(20), 23188–23196 (2013).
[Crossref] [PubMed]

Tünnermann, A.

Turchinovich, D.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

van der Slot, P. J. M.

van Howe, J.

Viskontas, K.

Wang, K.

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

M. E. V. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Higher-order-mode fiber optimized for energetic soliton propagation,” Opt. Lett. 37(16), 3459–3461 (2012).
[Crossref] [PubMed]

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

Wang, M.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Wang, T.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Wise, F.

Wise, F. W.

Z. Liu, Z. M. Ziegler, L. G. Wright, and F. W. Wise, “Megawatt peak power from a Mamyshev oscillator,” Optica 4(6), 649–654 (2017).
[Crossref]

W. Fu, L. G. Wright, and F. W. Wise, “High-power femtosecond pulses without a modelocked laser,” Optica 4(7), 831–834 (2017).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

Wright, L. G.

Xu, C.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

M. E. V. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Higher-order-mode fiber optimized for energetic soliton propagation,” Opt. Lett. 37(16), 3459–3461 (2012).
[Crossref] [PubMed]

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32(4), 340–342 (2007).
[Crossref] [PubMed]

Xu, S.

Yan, M. F.

Yang, Z.

Yoshida, M.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7-µm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

Zach, A.

Želudevicius, J.

Zhang, R.

Zhang, Z.

Zhou, S.

Ziegler, Z. M.

Appl. Phys. Lett. (1)

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

ECOC (1)

P. Mamyshev, “All optical data regeneration based on self-phase modulation effect,” ECOC 98, 475–476 (1998).

Electron. Lett. (1)

H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 µm,” Electron. Lett. 40(24), 1523–1525 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Wang, N. G. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800311 (2014).

IEEE Photonics Technol. Lett. (2)

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7-µm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

T. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photonics Technol. Lett. 16(1), 200–202 (2004).
[Crossref]

J. Biophotonics (1)

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9(1-2), 38–43 (2016).
[Crossref] [PubMed]

J. Opt. (1)

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Nat. Methods (1)

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Opt. Express (10)

J. P. Epping, M. Kues, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K. J. Boller, “Integrated CARS source based on seeded four-wave mixing in silicon nitride,” Opt. Express 21(26), 32123–32129 (2013).
[Crossref] [PubMed]

T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23(18), 23968–23977 (2015).
[Crossref] [PubMed]

J. W. Nicholson, A. Desantolo, W. Kaenders, and A. Zach, “Self-frequency-shifted solitons in a polarization-maintaining, very-large-mode area, Er-doped fiber amplifier,” Opt. Express 24(20), 23396–23402 (2016).
[Crossref] [PubMed]

W. Liu, C. Li, Z. Zhang, F. X. Kärtner, and G. Chang, “Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach,” Opt. Express 24(14), 15328–15340 (2016).
[Crossref] [PubMed]

W. Liu, S.-H. Chia, H.-Y. Chung, R. Greinert, F. X. Kärtner, and G. Chang, “Energetic ultrafast fiber laser sources tunable in 1030-1215 nm for deep tissue multi-photon microscopy,” Opt. Express 25(6), 6822–6831 (2017).
[Crossref] [PubMed]

H.-Y. Chung, W. Liu, Q. Cao, F. X. Kärtner, and G. Chang, “Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm,” Opt. Express 25(14), 15760–15771 (2017).
[Crossref] [PubMed]

S. R. Domingue and R. A. Bartels, “Three-photon excitation source at 1250 nm generated in a dual zero dispersion wavelength nonlinear fiber,” Opt. Express 22(25), 30777–30785 (2014).
[Crossref] [PubMed]

L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
[Crossref] [PubMed]

H. Tu, J. Lægsgaard, R. Zhang, S. Tong, Y. Liu, and S. A. Boppart, “Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses,” Opt. Express 21(20), 23188–23196 (2013).
[Crossref] [PubMed]

M.-C. Chan, C.-H. Lien, J.-Y. Lu, and B.-H. Lyu, “High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy,” Opt. Express 22(8), 9498–9507 (2014).
[Crossref] [PubMed]

Opt. Lett. (9)

J. Buldt, M. Müller, R. Klas, T. Eidam, J. Limpert, and A. Tünnermann, “Temporal contrast enhancement of energetic laser pulses by filtered self-phase-modulation-broadened spectra,” Opt. Lett. 42(19), 3761–3764 (2017).
[Crossref] [PubMed]

K. Regelskis, J. Želudevičius, K. Viskontas, and G. Račiukaitis, “Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering,” Opt. Lett. 40(22), 5255–5258 (2015).
[Crossref] [PubMed]

R. Lehneis, A. Steinmetz, J. Limpert, and A. Tünnermann, “All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs,” Opt. Lett. 39(20), 5806–5809 (2014).
[Crossref] [PubMed]

H.-W. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kärtner, and G. Chang, “3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength,” Opt. Lett. 38(22), 4927–4930 (2013).
[Crossref] [PubMed]

M. Brinkmann, S. Dobner, and C. Fallnich, “Light source for narrow and broadband coherent Raman scattering microspectroscopy,” Opt. Lett. 40(23), 5447–5450 (2015).
[Crossref] [PubMed]

F. Tauser, F. Adler, and A. Leitenstorfer, “Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Opt. Lett. 29(5), 516–518 (2004).
[Crossref] [PubMed]

J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber,” Opt. Lett. 32(4), 340–342 (2007).
[Crossref] [PubMed]

M. E. V. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Higher-order-mode fiber optimized for energetic soliton propagation,” Opt. Lett. 37(16), 3459–3461 (2012).
[Crossref] [PubMed]

J. Lim, H.-W. Chen, S. Xu, Z. Yang, G. Chang, and F. X. Kärtner, “3 GHz, watt-level femtosecond Raman soliton source,” Opt. Lett. 39(7), 2060–2063 (2014).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. A (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013).

L. Rishoj, B. Tai, P. Kristensen, and S. Ramachandran, “Characterization of Intermodal Group Index Matched Soliton Interactions leading to MW Peak Powers at 1300 nm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper STh3K.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Simulation results of the optical spectral (a-c) and temporal (d-f) evolution of a 300-fs, 95-nJ pulse centered at 1.55 µm propagating in optical fibers with 10-µm MFD and different GVD at 1.55 µm: 10 fs2/mm for (a,d), 0 fs2/mm for (b,e), and −10 fs2/mm for (c,f). The white dashed curve denotes the soliton fission length of 5.2 cm.
Fig. 2
Fig. 2 Propagation of a 300-fs, 95-nJ pulse centered at 1.55 µm in an optical fiber with 10-µm MFD, −10 fs2/mm GVD, and 100 fs3/mm TOD at 1.55 µm. (a) spectra and (b) temporal pulses after propagation of 0-cm (black curves), 4.6-cm (blue curves), and 5-cm (red dashed curves).
Fig. 3
Fig. 3 Spectral evolution for different combinations of fiber length and input pulse energy: (a) 95-nJ pulse, fiber length up to 5.2 cm and (b) 380-nJ pulse, fiber length up to 2.6 cm. For both cases, the input pulse is a hyperbolic-secant pulse with 300-fs duration centered at 1.55 µm. The fiber has 10-µm MFD, −10 fs2/mm GVD, and 100 fs3/mm TOD at 1.55 µm.
Fig. 4
Fig. 4 (a) Spectral and (b) pulses for different combinations of fiber length and input pulse energy. blue curve: 95-nJ pulse, 4.6-cm fiber length, black dotted curve: 190-nJ pulse, 2.3-cm fiber length, and red dashed curve: 380-nJ pulse, 2.3-cm fiber length. The fiber has 10-µm MFD, −10 fs2/mm GVD, and 100 fs3/mm TOD at 1.55 µm.
Fig. 5
Fig. 5 Optical pulses (blue curves) and the calculated transform-limited (TL) pulses (red curves) from the filtered leftmost spectral lobe (a) and rightmost spectral lobe (b). These two spectral lobes are part of the SPM-dominated spectrum generated by propagating the 380-nJ pulse through 2.3-cm fiber. Insets: filtered optical spectra.
Fig. 6
Fig. 6 Output spectra from 14-cm DSF with the coupled pulse energy of (a) 10 nJ, (b) 15 nJ, (c) 20 nJ, and (d) 25 nJ.
Fig. 7
Fig. 7 Output spectra from DSF of different length and coupled pulse energy. (a) 14 cm, 28 nJ. (b) 7 cm, 56 nJ. (c) 7 cm, 112 nJ.
Fig. 8
Fig. 8 (Left column) Filtered optical spectra from 7-cm DSF; their peak wavelength, average power, and pulse energy are labeled in the figure. (Right column) Measured autocorrelation traces (red solid curves) and autocorrelation traces calculated from the transform-limited pulses allowed by the filtered spectra (black dashed curves).
Fig. 9
Fig. 9 MW peak power SESS source at (a) 1.3 µm and (b) 1.7 µm. The whole spectra are generated by SPM-dominated spectral broadening in 1.3-cm DSF. The input narrowband 1.55 µm pulses are produced by a home-built OPA. Insets: the measured autocorrelation traces (red curves) for the filtered spectral lobes (shaded part of the whole spectrum). Black dashed curves show the calculated autocorrelation traces of the transform-limited pulses given by the filtered spectra.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L fiss ~ L D N = T 0 2 /| β 2 | γE T 0 /| β 2 | = T 0 3 | β 2 |γE ,

Metrics