Abstract

This paper reports the development, modelling and application of a semi-random multicore fibre (MCF) design for adaptive multiphoton endoscopy. The MCF was constructed from 55 sub-units, each comprising 7 single mode cores, in a hexagonally close-packed lattice where each sub-unit had a random angular orientation. The resulting fibre had 385 single mode cores and was double-clad for proximal detection of multiphoton excited fluorescence. The random orientation of each sub-unit in the fibre reduces the symmetry of the positions of the cores in the MCF, reducing the intensity of higher diffracted orders away from the central focal spot formed at the distal tip of the fibre and increasing the maximum size of object that can be imaged. The performance of the MCF was demonstrated by imaging fluorescently labelled beads with both distal and proximal fluorescence detection and pollen grains with distal fluorescence detection. We estimate that the number of independent resolution elements in the final image – measured as the half-maximum area of the two-photon point spread function divided by the area imaged – to be ~3200.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection

Sean C. Warren, Youngchan Kim, James M. Stone, Claire Mitchell, Jonathan C. Knight, Mark A. A. Neil, Carl Paterson, Paul M. W. French, and Chris Dunsby
Opt. Express 24(19) 21474-21484 (2016)

Fibre-coupled multiphoton microscope with adaptive motion compensation

Ben Sherlock, Sean Warren, James Stone, Mark Neil, Carl Paterson, Jonathan Knight, Paul French, and Chris Dunsby
Biomed. Opt. Express 6(5) 1876-1884 (2015)

Multiphoton endoscopy

Juergen C. Jung and Mark J. Schnitzer
Opt. Lett. 28(11) 902-904 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36(9), 1707–1709 (2011).
    [Crossref] [PubMed]
  2. A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image Transmission Via a Multimode Fiber Assisted by Polarization Preserving Phase Conjugation in the Photorefractive Crystal,” Appl. Phys. B 52(6), 400–401 (1991).
    [Crossref]
  3. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [Crossref] [PubMed]
  4. E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
    [Crossref] [PubMed]
  5. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
    [Crossref] [PubMed]
  6. D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
    [Crossref] [PubMed]
  7. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21(18), 20713–20721 (2013).
    [Crossref] [PubMed]
  8. Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171–178 (2016).
    [Crossref]
  9. S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” Opt. Lett. 41(15), 3531–3534 (2016).
    [Crossref] [PubMed]
  10. S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. Neil, C. Paterson, P. M. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24(19), 21474–21484 (2016).
    [Crossref] [PubMed]
  11. J. W. Goodman, “Some Fundamental Properties of Speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976).
    [Crossref]

2016 (4)

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171–178 (2016).
[Crossref]

S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. Andresen, and H. Rigneault, “Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber,” Opt. Lett. 41(15), 3531–3534 (2016).
[Crossref] [PubMed]

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. Neil, C. Paterson, P. M. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24(19), 21474–21484 (2016).
[Crossref] [PubMed]

2015 (1)

2013 (1)

2012 (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

2011 (1)

2007 (1)

1991 (1)

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image Transmission Via a Multimode Fiber Assisted by Polarization Preserving Phase Conjugation in the Photorefractive Crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

1976 (1)

Andresen, E. R.

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Bouwmans, G.

Conkey, D. B.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Dunsby, C.

Dunsby, C. W.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171–178 (2016).
[Crossref]

Farahi, S.

French, P. M.

French, P. M. W.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171–178 (2016).
[Crossref]

A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36(9), 1707–1709 (2011).
[Crossref] [PubMed]

Gnatovskii, A.

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image Transmission Via a Multimode Fiber Assisted by Polarization Preserving Phase Conjugation in the Photorefractive Crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

Goodman, J. W.

Kim, Y.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171–178 (2016).
[Crossref]

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. Neil, C. Paterson, P. M. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24(19), 21474–21484 (2016).
[Crossref] [PubMed]

Knight, J. C.

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. Neil, C. Paterson, P. M. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24(19), 21474–21484 (2016).
[Crossref] [PubMed]

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171–178 (2016).
[Crossref]

Kogan, D.

Kukhtarev, N.

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image Transmission Via a Multimode Fiber Assisted by Polarization Preserving Phase Conjugation in the Photorefractive Crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

Lapaeva, S.

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image Transmission Via a Multimode Fiber Assisted by Polarization Preserving Phase Conjugation in the Photorefractive Crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

Mitchell, C.

Monneret, S.

Morales-Delgado, E. E.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
[Crossref] [PubMed]

Moser, C.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
[Crossref] [PubMed]

Neil, M. A.

Neil, M. A. A.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171–178 (2016).
[Crossref]

A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36(9), 1707–1709 (2011).
[Crossref] [PubMed]

Oron, D.

Papadopoulos, I. N.

Paterson, C.

Psaltis, D.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
[Crossref] [PubMed]

Reichenbach, K. L.

Rigneault, H.

Romito, M.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

Sivankutty, S.

Stasio, N.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

Stone, J. M.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171–178 (2016).
[Crossref]

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. Neil, C. Paterson, P. M. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24(19), 21474–21484 (2016).
[Crossref] [PubMed]

Thompson, A. J.

Tsvirkun, V.

Volyar, A.

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image Transmission Via a Multimode Fiber Assisted by Polarization Preserving Phase Conjugation in the Photorefractive Crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

Warren, S. C.

S. C. Warren, Y. Kim, J. M. Stone, C. Mitchell, J. C. Knight, M. A. Neil, C. Paterson, P. M. French, and C. Dunsby, “Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection,” Opt. Express 24(19), 21474–21484 (2016).
[Crossref] [PubMed]

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171–178 (2016).
[Crossref]

Xu, C.

Appl. Phys. B (1)

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image Transmission Via a Multimode Fiber Assisted by Polarization Preserving Phase Conjugation in the Photorefractive Crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive Multiphoton Endomicroscope Incorporating a Polarization-Maintaining Multicore Optical Fibre,” IEEE J. Sel. Top. Quantum Electron. 22(3), 171–178 (2016).
[Crossref]

J. Biomed. Opt. (1)

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 45002 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Multicore fibre design. Left hand side, schematic of arrangement for the first step in the manufacture process. White circles show rods consisting of pure silica. Grey circles show rods consisting of graded index germanium doped silica preforms. Right hand side, schematic of the final multicore fibre consisting of 55 canes stacked together to provide a total of 385 cores – in the actual fibre the rotation of each cane is randomised. The outer cladding is not shown.
Fig. 2
Fig. 2 Schematic diagram of the experimental setup. HWP, half-wave plates; PBS, polarising beam splitter; L1-12, lenses (f = 50, 125, 50, 100, 200, 300, 150, 100, 100, 150, 30 and 150 mm, respectively); SLM, spatial light modulator; SMF, single mode fibre, ID, iris diaphragm; DS, delay stage; OL1-4, microscopic objectives (10 × , 10 × , 40 × , and 20 × , respectively); DB, dichroic beamsplitters; BPF, band-pass filters; LPF, low-pass filters; PMT1-2, photomultiplier tubes; BS, beam splitter; P, polarizer; and C, camera. Red and blue arrows correspond to the direction of fs laser and two-photon excited fluorescence light respectively.
Fig. 3
Fig. 3 Simulation of the semi-random multicore fibre. (a) Phase profile of the simulated SLM. The false colour bar shows phase through the range 0..2π. (b) Intensity distribution at the focal plane 0.6 mm from the distal tip of the multicore fibre. (c) Vertical line profile taken through the centre of (b). (d) Intensity distribution at the distal tip of the fibre. (e) Two photon excitation efficiency in the focal plane. (f) Vertical line profile taken through the centre of (e). (a&d) scale bar 50 μm. (b&e) scale bar 25 μm
Fig. 4
Fig. 4 (a) Reflected light image of the cleaved end of the MCF with additional illumination through the MCF to increase contrast of the cores, scale bar 100 μm. (b) Scanning electron microscope image of the MCF cores.
Fig. 5
Fig. 5 Angular histograms of the output phases for 352 useable cores measured at the distal end of the MCF for 352 useable cores a) before and b) after phase correction. The number of cores whose phase values fall within each histogram bin are displayed on the radial scale and the phase angle in degrees is shown on the outer circumferential scale.
Fig. 6
Fig. 6 Intensity distribution in the object plane 0.6 mm away from the distal end of the MCF recorded with the camera a) before and b&c) after correction for an applied focal length of 0.6 mm. a-c) are all to the same scale, bar 50 μm. In a) & c) the intensity is displayed with a gain of 10 × relative to b). d) Line profile taken along the yellow line indicated in c).
Fig. 7
Fig. 7 Two-photon excited fluorescence images of 3.55 µm fluorescence beads using a) proximal and b) distal detection and d) pollen grains using distal detection. The focal plane was 0.6 mm from the distal end of the fibre. The corresponding transmitted light images of the beads and pollen grains are shown in c) and e) respectively. The field of view for (a-c) is 117 μm across. The field of view in d) and e) is 96 μm across.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

SBR point = ε A illum (1ε) A PSF ,
SBR thin object = ε (1ε)ϕ .
SBR point = S B = 8 81 n cores 2 n cores 2 10 .
ε= A PSF S A PSF S+ A FOV B = S S+ n res B n cores 2 n cores 2 +10 n res ,
n res = A FOV A PSF .
SBR thin object = A PSF S ϕ A FOV B n cores 2 10ϕ n res .
FOV=2ftan θ HM ln2 fλ π w 0 ,
δ0.74 fλ D ,
n res = A FOV A PSF = ( FOV δ ) 2 0.13 D 2 w 0 2 ,

Metrics