Abstract

This paper describes an integrated six-beam homodyne laser Doppler vibrometry (LDV) system based on a silicon-on-insulator (SOI) full platform technology, with on-chip photo-diodes and phase modulators. Electronics and optics are also implemented around the integrated photonic circuit (PIC) to enable a simultaneous six-beam measurement. Measurement of a propagating guided elastic wave in an aluminum plate (speed 909 m/s @ 61.5 kHz) is demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heterodyne laser Doppler vibrometers integrated on silicon-on-insulator based on serrodyne thermo-optic frequency shifters

Yanlu Li, Steven Verstuyft, Gunay Yurtsever, Shahram Keyvaninia, Gunther Roelkens, Dries Van Thourhout, and Roel Baets
Appl. Opt. 52(10) 2145-2152 (2013)

On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement

Yanlu Li, Patrick Segers, Joris Dirckx, and Roel Baets
Biomed. Opt. Express 4(7) 1229-1235 (2013)

Mitigation of speckle noise in laser Doppler vibrometry by using a scanning average method

Jinghao Zhu, Yanlu Li, and Roel Baets
Opt. Lett. 44(7) 1860-1863 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Campo, G. Dudzik, J. Apostolakis, A. Waz, P. Nauleau, K. Abramski, J. Dirckx, and E. Konofagou, “Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis,” Opt. Lasers Eng. 97, 41–51 (2017).
    [Crossref]
  2. P. Chiariotti, M. Martarelli, and P. Castellini, “Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterization,” Mechanical Systems and Signal Processing, Volume 86, Part B 1, 66–81 (2017).
  3. E. Sirevaag, S. Casaccia, E. Richter, J. O’Sullivan, L. Scalise, and J. Rohrbaugh, “Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry,” 53, 847–867 (2016).
    [Crossref]
  4. N. Roozen, L. Labelle, M. Rychtáriková, and C. Glorieux, “Determining radiated sound power of building structures by means of laser Doppler vibrometry,” J. Sound Vibrat. 346, 81–99 (2015).
    [Crossref]
  5. J. Posada-Roman, D. Jackson, M. Cole, and J. Garcia-Souto, “Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts,” Opt. Lasers Eng. (article in press).
  6. Y. Fu, M. Guo, and P. B. Phua, “Spatially encoded multibeam laser Doppler vibrometry using a single photodetector,” Opt. Lett. 35(9), 1356–1358 (2010).
    [Crossref] [PubMed]
  7. Y. Li, P. Segers, J. Dirckx, and R. Baets, “On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement,” Biomed. Opt. Express 4(7), 1229–1235 (2013).
    [Crossref] [PubMed]
  8. Y. Li and R. Baets, “Homodyne laser Doppler vibrometer on silicon-on-insulator with integrated 90 degree optical hybrids,” Opt. Express 21(11), 13342–13350 (2013).
    [Crossref] [PubMed]
  9. “Europractice IC Service/Silicon Photonics MPW,” http://europractice-ic.com/SiPhotonics_general.php
  10. D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
    [Crossref]
  11. Y. Li, S. Verstuyft, G. Yurtsever, S. Keyvaninia, G. Roelkens, D. Van Thourhout, and R. Baets, “Heterodyne laser Doppler vibrometers integrated on silicon-on-insulator with thermo-optic based frequency shifters,” Appl. Opt. 52, 2145–2152 (2013).
    [Crossref] [PubMed]
  12. A. Dräbenstedt, J. Sauer, and C. Rembe, “Remote-sensing vibrometry at 1550 nm wavelength,” AIP Conf. Proc. 1457, 113–121 (2012).
    [Crossref]
  13. Y. Li, L. Li, B. Tian, G. Roelkens, and R. Baets, “Reflectionless tilted grating couplers with improved coupling efficiency based on a silicon overlay,” IEEE Photonics Technol. Lett. 25(13), 1195–1198 (2013).
    [Crossref]
  14. V. Giurgiutiu, “Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring,” J. Intell. Mater. Syst. Struct. 16(4), 291–305 (2005).
    [Crossref]
  15. J. Rose, Ultrasonic Waves in Solid Media (Cambridge University, 1999).

2017 (2)

A. Campo, G. Dudzik, J. Apostolakis, A. Waz, P. Nauleau, K. Abramski, J. Dirckx, and E. Konofagou, “Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis,” Opt. Lasers Eng. 97, 41–51 (2017).
[Crossref]

P. Chiariotti, M. Martarelli, and P. Castellini, “Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterization,” Mechanical Systems and Signal Processing, Volume 86, Part B 1, 66–81 (2017).

2016 (1)

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

2015 (1)

N. Roozen, L. Labelle, M. Rychtáriková, and C. Glorieux, “Determining radiated sound power of building structures by means of laser Doppler vibrometry,” J. Sound Vibrat. 346, 81–99 (2015).
[Crossref]

2013 (4)

2012 (1)

A. Dräbenstedt, J. Sauer, and C. Rembe, “Remote-sensing vibrometry at 1550 nm wavelength,” AIP Conf. Proc. 1457, 113–121 (2012).
[Crossref]

2010 (1)

2005 (1)

V. Giurgiutiu, “Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring,” J. Intell. Mater. Syst. Struct. 16(4), 291–305 (2005).
[Crossref]

Abramski, K.

A. Campo, G. Dudzik, J. Apostolakis, A. Waz, P. Nauleau, K. Abramski, J. Dirckx, and E. Konofagou, “Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis,” Opt. Lasers Eng. 97, 41–51 (2017).
[Crossref]

Apostolakis, J.

A. Campo, G. Dudzik, J. Apostolakis, A. Waz, P. Nauleau, K. Abramski, J. Dirckx, and E. Konofagou, “Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis,” Opt. Lasers Eng. 97, 41–51 (2017).
[Crossref]

Baets, R.

Boeuf, F.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Bowers, J.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Campo, A.

A. Campo, G. Dudzik, J. Apostolakis, A. Waz, P. Nauleau, K. Abramski, J. Dirckx, and E. Konofagou, “Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis,” Opt. Lasers Eng. 97, 41–51 (2017).
[Crossref]

Casaccia, S.

E. Sirevaag, S. Casaccia, E. Richter, J. O’Sullivan, L. Scalise, and J. Rohrbaugh, “Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry,” 53, 847–867 (2016).
[Crossref]

Cassan, E.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Castellini, P.

P. Chiariotti, M. Martarelli, and P. Castellini, “Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterization,” Mechanical Systems and Signal Processing, Volume 86, Part B 1, 66–81 (2017).

Chiariotti, P.

P. Chiariotti, M. Martarelli, and P. Castellini, “Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterization,” Mechanical Systems and Signal Processing, Volume 86, Part B 1, 66–81 (2017).

Cole, M.

J. Posada-Roman, D. Jackson, M. Cole, and J. Garcia-Souto, “Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts,” Opt. Lasers Eng. (article in press).

Dirckx, J.

A. Campo, G. Dudzik, J. Apostolakis, A. Waz, P. Nauleau, K. Abramski, J. Dirckx, and E. Konofagou, “Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis,” Opt. Lasers Eng. 97, 41–51 (2017).
[Crossref]

Y. Li, P. Segers, J. Dirckx, and R. Baets, “On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement,” Biomed. Opt. Express 4(7), 1229–1235 (2013).
[Crossref] [PubMed]

Dräbenstedt, A.

A. Dräbenstedt, J. Sauer, and C. Rembe, “Remote-sensing vibrometry at 1550 nm wavelength,” AIP Conf. Proc. 1457, 113–121 (2012).
[Crossref]

Dudzik, G.

A. Campo, G. Dudzik, J. Apostolakis, A. Waz, P. Nauleau, K. Abramski, J. Dirckx, and E. Konofagou, “Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis,” Opt. Lasers Eng. 97, 41–51 (2017).
[Crossref]

Fédéli, J.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Fu, Y.

Garcia-Souto, J.

J. Posada-Roman, D. Jackson, M. Cole, and J. Garcia-Souto, “Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts,” Opt. Lasers Eng. (article in press).

Giurgiutiu, V.

V. Giurgiutiu, “Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring,” J. Intell. Mater. Syst. Struct. 16(4), 291–305 (2005).
[Crossref]

Glorieux, C.

N. Roozen, L. Labelle, M. Rychtáriková, and C. Glorieux, “Determining radiated sound power of building structures by means of laser Doppler vibrometry,” J. Sound Vibrat. 346, 81–99 (2015).
[Crossref]

Guo, M.

Hartmann, J.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Jackson, D.

J. Posada-Roman, D. Jackson, M. Cole, and J. Garcia-Souto, “Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts,” Opt. Lasers Eng. (article in press).

Keyvaninia, S.

Komljenovic, T.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Konofagou, E.

A. Campo, G. Dudzik, J. Apostolakis, A. Waz, P. Nauleau, K. Abramski, J. Dirckx, and E. Konofagou, “Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis,” Opt. Lasers Eng. 97, 41–51 (2017).
[Crossref]

Labelle, L.

N. Roozen, L. Labelle, M. Rychtáriková, and C. Glorieux, “Determining radiated sound power of building structures by means of laser Doppler vibrometry,” J. Sound Vibrat. 346, 81–99 (2015).
[Crossref]

Li, L.

Y. Li, L. Li, B. Tian, G. Roelkens, and R. Baets, “Reflectionless tilted grating couplers with improved coupling efficiency based on a silicon overlay,” IEEE Photonics Technol. Lett. 25(13), 1195–1198 (2013).
[Crossref]

Li, Y.

Marris-Morini, D.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Martarelli, M.

P. Chiariotti, M. Martarelli, and P. Castellini, “Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterization,” Mechanical Systems and Signal Processing, Volume 86, Part B 1, 66–81 (2017).

Mashanovich, G.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Nauleau, P.

A. Campo, G. Dudzik, J. Apostolakis, A. Waz, P. Nauleau, K. Abramski, J. Dirckx, and E. Konofagou, “Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis,” Opt. Lasers Eng. 97, 41–51 (2017).
[Crossref]

Nedeljkovic, M.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

O’Brien, P.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

O’Sullivan, J.

E. Sirevaag, S. Casaccia, E. Richter, J. O’Sullivan, L. Scalise, and J. Rohrbaugh, “Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry,” 53, 847–867 (2016).
[Crossref]

Phua, P. B.

Posada-Roman, J.

J. Posada-Roman, D. Jackson, M. Cole, and J. Garcia-Souto, “Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts,” Opt. Lasers Eng. (article in press).

Reed, G.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Rembe, C.

A. Dräbenstedt, J. Sauer, and C. Rembe, “Remote-sensing vibrometry at 1550 nm wavelength,” AIP Conf. Proc. 1457, 113–121 (2012).
[Crossref]

Richter, E.

E. Sirevaag, S. Casaccia, E. Richter, J. O’Sullivan, L. Scalise, and J. Rohrbaugh, “Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry,” 53, 847–867 (2016).
[Crossref]

Roelkens, G.

Y. Li, L. Li, B. Tian, G. Roelkens, and R. Baets, “Reflectionless tilted grating couplers with improved coupling efficiency based on a silicon overlay,” IEEE Photonics Technol. Lett. 25(13), 1195–1198 (2013).
[Crossref]

Y. Li, S. Verstuyft, G. Yurtsever, S. Keyvaninia, G. Roelkens, D. Van Thourhout, and R. Baets, “Heterodyne laser Doppler vibrometers integrated on silicon-on-insulator with thermo-optic based frequency shifters,” Appl. Opt. 52, 2145–2152 (2013).
[Crossref] [PubMed]

Rohrbaugh, J.

E. Sirevaag, S. Casaccia, E. Richter, J. O’Sullivan, L. Scalise, and J. Rohrbaugh, “Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry,” 53, 847–867 (2016).
[Crossref]

Roozen, N.

N. Roozen, L. Labelle, M. Rychtáriková, and C. Glorieux, “Determining radiated sound power of building structures by means of laser Doppler vibrometry,” J. Sound Vibrat. 346, 81–99 (2015).
[Crossref]

Rychtáriková, M.

N. Roozen, L. Labelle, M. Rychtáriková, and C. Glorieux, “Determining radiated sound power of building structures by means of laser Doppler vibrometry,” J. Sound Vibrat. 346, 81–99 (2015).
[Crossref]

Sauer, J.

A. Dräbenstedt, J. Sauer, and C. Rembe, “Remote-sensing vibrometry at 1550 nm wavelength,” AIP Conf. Proc. 1457, 113–121 (2012).
[Crossref]

Scalise, L.

E. Sirevaag, S. Casaccia, E. Richter, J. O’Sullivan, L. Scalise, and J. Rohrbaugh, “Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry,” 53, 847–867 (2016).
[Crossref]

Schmid, J.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Segers, P.

Sirevaag, E.

E. Sirevaag, S. Casaccia, E. Richter, J. O’Sullivan, L. Scalise, and J. Rohrbaugh, “Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry,” 53, 847–867 (2016).
[Crossref]

Thomson, D.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Tian, B.

Y. Li, L. Li, B. Tian, G. Roelkens, and R. Baets, “Reflectionless tilted grating couplers with improved coupling efficiency based on a silicon overlay,” IEEE Photonics Technol. Lett. 25(13), 1195–1198 (2013).
[Crossref]

Van Thourhout, D.

Verstuyft, S.

Virot, L.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Waz, A.

A. Campo, G. Dudzik, J. Apostolakis, A. Waz, P. Nauleau, K. Abramski, J. Dirckx, and E. Konofagou, “Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis,” Opt. Lasers Eng. 97, 41–51 (2017).
[Crossref]

Xu, D.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Yurtsever, G.

Zikie, A.

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

AIP Conf. Proc. (1)

A. Dräbenstedt, J. Sauer, and C. Rembe, “Remote-sensing vibrometry at 1550 nm wavelength,” AIP Conf. Proc. 1457, 113–121 (2012).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

IEEE Photonics Technol. Lett. (1)

Y. Li, L. Li, B. Tian, G. Roelkens, and R. Baets, “Reflectionless tilted grating couplers with improved coupling efficiency based on a silicon overlay,” IEEE Photonics Technol. Lett. 25(13), 1195–1198 (2013).
[Crossref]

J. Intell. Mater. Syst. Struct. (1)

V. Giurgiutiu, “Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring,” J. Intell. Mater. Syst. Struct. 16(4), 291–305 (2005).
[Crossref]

J. Opt. (1)

D. Thomson, A. Zikie, J. Bowers, T. Komljenovic, G. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. Fédéli, J. Hartmann, J. Schmid, D. Xu, F. Boeuf, P. O’Brien, G. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

J. Sound Vibrat. (1)

N. Roozen, L. Labelle, M. Rychtáriková, and C. Glorieux, “Determining radiated sound power of building structures by means of laser Doppler vibrometry,” J. Sound Vibrat. 346, 81–99 (2015).
[Crossref]

Mechanical Systems and Signal Processing, Volume 86, Part B (1)

P. Chiariotti, M. Martarelli, and P. Castellini, “Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterization,” Mechanical Systems and Signal Processing, Volume 86, Part B 1, 66–81 (2017).

Opt. Express (1)

Opt. Lasers Eng. (1)

A. Campo, G. Dudzik, J. Apostolakis, A. Waz, P. Nauleau, K. Abramski, J. Dirckx, and E. Konofagou, “Comparison between multi-channel LDV and PWI for measurement of pulse wave velocity in distensible tubes: Towards a new diagnostic technique for detection of arteriosclerosis,” Opt. Lasers Eng. 97, 41–51 (2017).
[Crossref]

Opt. Lett. (1)

Other (4)

“Europractice IC Service/Silicon Photonics MPW,” http://europractice-ic.com/SiPhotonics_general.php

E. Sirevaag, S. Casaccia, E. Richter, J. O’Sullivan, L. Scalise, and J. Rohrbaugh, “Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry,” 53, 847–867 (2016).
[Crossref]

J. Posada-Roman, D. Jackson, M. Cole, and J. Garcia-Souto, “Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts,” Opt. Lasers Eng. (article in press).

J. Rose, Ultrasonic Waves in Solid Media (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic show of the external confocal optical system, the six-beam LDV on an SOI-based photonics integrate circuit (PIC) and a transmit-receive antenna pair. The drawing of the confocal system is exaggerated to make the design easier to understand.
Fig. 2
Fig. 2 Microscopic image of a 90-degree optical hybrid with four connected PDs and their corresponding bonding pads. The width of each pad is 100 μm, and their spacing is 50 μm.
Fig. 3
Fig. 3 (a) Image of the six-beam LDV. The input fiber, the supporting PCBs and the confocal systems (the front lens was cut to reduce the size of the system) are shown. (b) Schematic show of the shifted confocal system. It is clearly seen that the ball lens is shifted to ensure that the beams passing through the ball lens are perpendicular to the PIC surface
Fig. 4
Fig. 4 The displacement spectrum of the LDV output when it is measuring an aluminum plate vibrating at 61.5 kHz. The resolution bandwidth is 0.445 Hz.
Fig. 5
Fig. 5 The aluminum plate used in the measurement. The input voltage to the piezo actuator is shown on the top-left corner. The image of the piezo actuator and the positions of the reflectors in shown in the top right corner. The red crosses are the aiming beams.
Fig. 6
Fig. 6 (a) The out-of-plane surface velocities at the four reflectors as function of time. The velocities of #2, #4 and #6 are shifted to ensure the curves are clearly distinguished. (b) Theoretical dispersion curve of the A0 Lamb wave for aluminum, with the experimental measurement results superimposed. The error bar are calculated according to the time resolution of the DAQ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f Doppler ( t )=2 v( t )/ λ 0
sig( t )=κ | aexp[ i( 2π f 0 t+φ ) ]+bexp[ i2π 0 t f Doppler ( t ) dt ] | 2 =dc+rcos[ 2π f 0 t θ Doppler ( t )+φ ]
si g m,k ( t )= dc m + r m cos[k 90 θ Doppler,m ( t )+ φ m ]

Metrics