Abstract

Optical tweezing is a non-invasive technique that can enable a variety of single cell experiments; however, it tends to be based on a high numerical aperture (NA) microscope objective to both deliver the tweezing laser light and image the sample. This introduces restrictions in system flexibility when both trapping and imaging. Here, we demonstrate a novel, high NA tweezing system based on micro-machined multicore optical fibers. Using the machined, multicore fiber tweezer, cells are optically manipulated under a variety of microscopes, without requiring a high NA objective lens. The maximum NA of the fiber-based tweezer demonstrated is 1.039. A stable trap with a maximum total power 30 mW has been characterized to exert a maximum optical force of 26.4 pN, on a trapped, 7 μm diameter yeast cell. Single cells are held 15-35 μm from the fiber end and can be manipulated in the x, y and z directions throughout the sample. In this way, single cells are controllably trapped under a Raman microscope to categorize the yeast cells as live or dead, demonstrating trapping by the machined multicore fiber-based tweezer decoupled from the imaging or excitation objective lens.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing

Yuxiang Liu and Miao Yu
Opt. Express 17(16) 13624-13638 (2009)

Graded-index optical fiber tweezers with long manipulation length

Yuan Gong, Wei Huang, Qun-Feng Liu, Yu Wu, Yunjiang Rao, Gang-Ding Peng, Jinyi Lang, and Ke Zhang
Opt. Express 22(21) 25267-25276 (2014)

Fabrication and application of a non-contact double-tapered optical fiber tweezers

Z.L. Liu, Y.X. Liu, Y. Tang, N. Zhang, F.P. Wu, and B. Zhang
Opt. Express 25(19) 22480-22489 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  3. R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22(6), 065016 (2012).
    [Crossref]
  4. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of Photodamage to Escherichia coli in Optical Traps,” Biophys. J. 77(5), 2856–2863 (1999).
    [Crossref] [PubMed]
  5. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993).
    [Crossref] [PubMed]
  6. P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman micro-spectroscopy of single cells,” Opt. Express 14(12), 5779–5791 (2006).
    [Crossref] [PubMed]
  7. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref] [PubMed]
  8. T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophoton. 8(3), 239–246 (2015).
    [PubMed]
  9. M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heideman, and J. Caro, “On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap,” Opt. Express 22(25), 30528–30537 (2014).
    [Crossref] [PubMed]
  10. K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33(1), 99–106 (2001).
    [Crossref]
  11. R. Taylor and C. Hnatovsky, “Particle trapping in 3-D using a single fiber probe with an annular light distribution,” Opt. Express 11(21), 2775–2782 (2003).
    [Crossref] [PubMed]
  12. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
    [Crossref] [PubMed]
  13. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fiber probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
    [Crossref]
  14. C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
    [Crossref] [PubMed]
  15. L. Yu, S. Mohanty, G. Liu, S. Genc, Z. Chen, and M. W. Berns, “Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery,” J. Biomed. Opt. 13(5), 050508 (2008).
    [Crossref] [PubMed]
  16. S. R. Ribeiro, R. Queirós, O. Soppera, A. Guerreiro, and P. A. S. Jorge, “Optical Fiber Tweezers Fabricated by Guided Wave Photo-Polymerization,” Photonics 2(2), 634–645 (2015).
    [Crossref]
  17. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
    [Crossref] [PubMed]
  18. I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fiber,” Nat. Photonics 11(12), 33 (2017).
  19. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [Crossref] [PubMed]
  20. X. Xue, W. Zhang, L. Yin, S. Wei, S. Gao, P. Geng, and J. Ruan, “All-fiber intermodal Mach–Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper,” Opt. Commun. 285(19), 3935–3938 (2012).
    [Crossref]
  21. L. Yuan, Z. Liu, J. Yang, and C. Guan, “Twin-core fiber optical tweezers,” Opt. Express 16(7), 4559–4566 (2008).
    [Crossref] [PubMed]
  22. A. L. Barron, A. K. Kar, and H. T. Bookey, “Dual-beam interference from a lensed multicore fiber and its application to optical trapping,” Opt. Express 20(21), 23156–23161 (2012).
    [Crossref] [PubMed]
  23. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [Crossref] [PubMed]
  24. G. Anastasiadi, L. Paterson, and W. N. MacPherson, “Machined multicore optical fibers for on -chip optical manipulation,” Proc. SPIE 10347, 1034702 (2017).
  25. S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).
    [Crossref]
  26. P. Minzioni, F. Bragheri, C. Liberale, E. Di Fabrizio, and I. Cristiani, “A Novel Approach to Fiber-Optic Tweezers: Numerical Analysis of the Trapping Efficiency,” IEEE J. Sel. Top. Quantum Electron. 14(1), 151–157 (2008).
    [Crossref]
  27. N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
    [Crossref]
  28. Y. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Opt. Express 17(16), 13624–13638 (2009).
    [Crossref] [PubMed]
  29. H. Cabrera, J. J. Suárez-Vargas, A. López, H. Núñez, G. Carvalho, G. Coceano, and D. Cojoc, “Experimental determination of trapping efficiency of optical tweezers,” Philos. Mag. Lett. 93(11), 655–663 (2013).
    [Crossref]
  30. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [Crossref] [PubMed]
  31. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  32. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45(9), 1943–1949 (1998).
    [Crossref]
  33. C. Xie, D. Chen, and Y. Q. Li, “Raman sorting and identification of single living micro-organisms with optical tweezers,” Opt. Lett. 30(14), 1800–1802 (2005).
    [Crossref] [PubMed]
  34. Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
    [Crossref]

2017 (2)

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fiber,” Nat. Photonics 11(12), 33 (2017).

G. Anastasiadi, L. Paterson, and W. N. MacPherson, “Machined multicore optical fibers for on -chip optical manipulation,” Proc. SPIE 10347, 1034702 (2017).

2015 (2)

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophoton. 8(3), 239–246 (2015).
[PubMed]

S. R. Ribeiro, R. Queirós, O. Soppera, A. Guerreiro, and P. A. S. Jorge, “Optical Fiber Tweezers Fabricated by Guided Wave Photo-Polymerization,” Photonics 2(2), 634–645 (2015).
[Crossref]

2014 (1)

2013 (3)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

H. Cabrera, J. J. Suárez-Vargas, A. López, H. Núñez, G. Carvalho, G. Coceano, and D. Cojoc, “Experimental determination of trapping efficiency of optical tweezers,” Philos. Mag. Lett. 93(11), 655–663 (2013).
[Crossref]

2012 (4)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

X. Xue, W. Zhang, L. Yin, S. Wei, S. Gao, P. Geng, and J. Ruan, “All-fiber intermodal Mach–Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper,” Opt. Commun. 285(19), 3935–3938 (2012).
[Crossref]

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22(6), 065016 (2012).
[Crossref]

A. L. Barron, A. K. Kar, and H. T. Bookey, “Dual-beam interference from a lensed multicore fiber and its application to optical trapping,” Opt. Express 20(21), 23156–23161 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (1)

2008 (3)

L. Yuan, Z. Liu, J. Yang, and C. Guan, “Twin-core fiber optical tweezers,” Opt. Express 16(7), 4559–4566 (2008).
[Crossref] [PubMed]

L. Yu, S. Mohanty, G. Liu, S. Genc, Z. Chen, and M. W. Berns, “Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery,” J. Biomed. Opt. 13(5), 050508 (2008).
[Crossref] [PubMed]

P. Minzioni, F. Bragheri, C. Liberale, E. Di Fabrizio, and I. Cristiani, “A Novel Approach to Fiber-Optic Tweezers: Numerical Analysis of the Trapping Efficiency,” IEEE J. Sel. Top. Quantum Electron. 14(1), 151–157 (2008).
[Crossref]

2007 (2)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fiber probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

2006 (3)

2005 (1)

2003 (2)

2002 (1)

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

2001 (2)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33(1), 99–106 (2001).
[Crossref]

1999 (1)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of Photodamage to Escherichia coli in Optical Traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

1998 (1)

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45(9), 1943–1949 (1998).
[Crossref]

1993 (1)

1992 (2)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1986 (1)

Albert, S.

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophoton. 8(3), 239–246 (2015).
[PubMed]

Allen, L.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45(9), 1943–1949 (1998).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Anastasiadi, G.

G. Anastasiadi, L. Paterson, and W. N. MacPherson, “Machined multicore optical fibers for on -chip optical manipulation,” Proc. SPIE 10347, 1034702 (2017).

Arimondo, E.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

Atsuta, K.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33(1), 99–106 (2001).
[Crossref]

Barron, A. L.

Barton, J. S.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Bennion, I.

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of Photodamage to Escherichia coli in Optical Traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

Berns, M. W.

L. Yu, S. Mohanty, G. Liu, S. Genc, Z. Chen, and M. W. Berns, “Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery,” J. Biomed. Opt. 13(5), 050508 (2008).
[Crossref] [PubMed]

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of Photodamage to Escherichia coli in Optical Traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

Boerkamp, M.

Bookey, H. T.

Bragheri, F.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

P. Minzioni, F. Bragheri, C. Liberale, E. Di Fabrizio, and I. Cristiani, “A Novel Approach to Fiber-Optic Tweezers: Numerical Analysis of the Trapping Efficiency,” IEEE J. Sel. Top. Quantum Electron. 14(1), 151–157 (2008).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fiber probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Cabrera, H.

H. Cabrera, J. J. Suárez-Vargas, A. López, H. Núñez, G. Carvalho, G. Coceano, and D. Cojoc, “Experimental determination of trapping efficiency of optical tweezers,” Philos. Mag. Lett. 93(11), 655–663 (2013).
[Crossref]

Caro, J.

Carvalho, G.

H. Cabrera, J. J. Suárez-Vargas, A. López, H. Núñez, G. Carvalho, G. Coceano, and D. Cojoc, “Experimental determination of trapping efficiency of optical tweezers,” Philos. Mag. Lett. 93(11), 655–663 (2013).
[Crossref]

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of Photodamage to Escherichia coli in Optical Traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

Chen, D.

Chen, Z.

L. Yu, S. Mohanty, G. Liu, S. Genc, Z. Chen, and M. W. Berns, “Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery,” J. Biomed. Opt. 13(5), 050508 (2008).
[Crossref] [PubMed]

Chu, S.

Cižmár, T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fiber,” Nat. Photonics 11(12), 33 (2017).

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
[Crossref] [PubMed]

Coceano, G.

H. Cabrera, J. J. Suárez-Vargas, A. López, H. Núñez, G. Carvalho, G. Coceano, and D. Cojoc, “Experimental determination of trapping efficiency of optical tweezers,” Philos. Mag. Lett. 93(11), 655–663 (2013).
[Crossref]

Cojoc, D.

H. Cabrera, J. J. Suárez-Vargas, A. López, H. Núñez, G. Carvalho, G. Coceano, and D. Cojoc, “Experimental determination of trapping efficiency of optical tweezers,” Philos. Mag. Lett. 93(11), 655–663 (2013).
[Crossref]

Cojoc, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

Constable, A.

Cristiani, I.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

P. Minzioni, F. Bragheri, C. Liberale, E. Di Fabrizio, and I. Cristiani, “A Novel Approach to Fiber-Optic Tweezers: Numerical Analysis of the Trapping Efficiency,” IEEE J. Sel. Top. Quantum Electron. 14(1), 151–157 (2008).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fiber probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Cuschieri, A.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fiber,” Nat. Photonics 11(12), 33 (2017).

De Angelis, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fiber probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Dholakia, K.

Di Fabrizio, E.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

P. Minzioni, F. Bragheri, C. Liberale, E. Di Fabrizio, and I. Cristiani, “A Novel Approach to Fiber-Optic Tweezers: Numerical Analysis of the Trapping Efficiency,” IEEE J. Sel. Top. Quantum Electron. 14(1), 151–157 (2008).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fiber probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Dziedzic, J. M.

Esen, C.

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22(6), 065016 (2012).
[Crossref]

Ferrara, L.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Flockhart, G. M. H.

Flyvbjerg, H.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).
[Crossref]

Gao, S.

X. Xue, W. Zhang, L. Yin, S. Wei, S. Gao, P. Geng, and J. Ruan, “All-fiber intermodal Mach–Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper,” Opt. Commun. 285(19), 3935–3938 (2012).
[Crossref]

Garcés-Chávez, V.

Genc, S.

L. Yu, S. Mohanty, G. Liu, S. Genc, Z. Chen, and M. W. Berns, “Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery,” J. Biomed. Opt. 13(5), 050508 (2008).
[Crossref] [PubMed]

Geng, P.

X. Xue, W. Zhang, L. Yin, S. Wei, S. Gao, P. Geng, and J. Ruan, “All-fiber intermodal Mach–Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper,” Opt. Commun. 285(19), 3935–3938 (2012).
[Crossref]

Ghadiri, R.

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22(6), 065016 (2012).
[Crossref]

Guan, C.

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Guerreiro, A.

S. R. Ribeiro, R. Queirós, O. Soppera, A. Guerreiro, and P. A. S. Jorge, “Optical Fiber Tweezers Fabricated by Guided Wave Photo-Polymerization,” Photonics 2(2), 634–645 (2015).
[Crossref]

Guo, C.

Haug, M.

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophoton. 8(3), 239–246 (2015).
[PubMed]

Heideman, R.

Heldens, J.

Herrington, C. S.

Hnatovsky, C.

Hoekman, M.

Howard, J.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).
[Crossref]

Ikeda, M.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33(1), 99–106 (2001).
[Crossref]

Jess, P. R. T.

Jiang, X.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fiber,” Nat. Photonics 11(12), 33 (2017).

Jones, J. D. C.

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Jorge, P. A. S.

S. R. Ribeiro, R. Queirós, O. Soppera, A. Guerreiro, and P. A. S. Jorge, “Optical Fiber Tweezers Fabricated by Guided Wave Photo-Polymerization,” Photonics 2(2), 634–645 (2015).
[Crossref]

Jülicher, F.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).
[Crossref]

Kar, A. K.

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Kim, J.

Kolb, T.

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophoton. 8(3), 239–246 (2015).
[PubMed]

La Rocca, R.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

Leinse, A.

Leite, I. T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fiber,” Nat. Photonics 11(12), 33 (2017).

Li, Y. Q.

Liberale, C.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

P. Minzioni, F. Bragheri, C. Liberale, E. Di Fabrizio, and I. Cristiani, “A Novel Approach to Fiber-Optic Tweezers: Numerical Analysis of the Trapping Efficiency,” IEEE J. Sel. Top. Quantum Electron. 14(1), 151–157 (2008).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fiber probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of Photodamage to Escherichia coli in Optical Traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

Liu, G.

L. Yu, S. Mohanty, G. Liu, S. Genc, Z. Chen, and M. W. Berns, “Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery,” J. Biomed. Opt. 13(5), 050508 (2008).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

López, A.

H. Cabrera, J. J. Suárez-Vargas, A. López, H. Núñez, G. Carvalho, G. Coceano, and D. Cojoc, “Experimental determination of trapping efficiency of optical tweezers,” Philos. Mag. Lett. 93(11), 655–663 (2013).
[Crossref]

MacPherson, W. N.

G. Anastasiadi, L. Paterson, and W. N. MacPherson, “Machined multicore optical fibers for on -chip optical manipulation,” Proc. SPIE 10347, 1034702 (2017).

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Malagnino, N.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Mazilu, M.

McGloin, D.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45(9), 1943–1949 (1998).
[Crossref]

Mervis, J.

Minzioni, P.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

P. Minzioni, F. Bragheri, C. Liberale, E. Di Fabrizio, and I. Cristiani, “A Novel Approach to Fiber-Optic Tweezers: Numerical Analysis of the Trapping Efficiency,” IEEE J. Sel. Top. Quantum Electron. 14(1), 151–157 (2008).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fiber probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Mohanty, S.

L. Yu, S. Mohanty, G. Liu, S. Genc, Z. Chen, and M. W. Berns, “Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery,” J. Biomed. Opt. 13(5), 050508 (2008).
[Crossref] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Movasaghi, Z.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Nakata, T.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33(1), 99–106 (2001).
[Crossref]

Neuman, K. C.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of Photodamage to Escherichia coli in Optical Traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

Núñez, H.

H. Cabrera, J. J. Suárez-Vargas, A. López, H. Núñez, G. Carvalho, G. Coceano, and D. Cojoc, “Experimental determination of trapping efficiency of optical tweezers,” Philos. Mag. Lett. 93(11), 655–663 (2013).
[Crossref]

Ostendorf, A.

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22(6), 065016 (2012).
[Crossref]

Padgett, M. J.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45(9), 1943–1949 (1998).
[Crossref]

Paterson, L.

Pavone, F. S.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).
[Crossref]

Perozziello, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

Pesce, G.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

Prentiss, M.

Queirós, R.

S. R. Ribeiro, R. Queirós, O. Soppera, A. Guerreiro, and P. A. S. Jorge, “Optical Fiber Tweezers Fabricated by Guided Wave Photo-Polymerization,” Photonics 2(2), 634–645 (2015).
[Crossref]

Rajamanickam, V.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

Rehman, I. U.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Rehman, S.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Ribeiro, S. R.

S. R. Ribeiro, R. Queirós, O. Soppera, A. Guerreiro, and P. A. S. Jorge, “Optical Fiber Tweezers Fabricated by Guided Wave Photo-Polymerization,” Photonics 2(2), 634–645 (2015).
[Crossref]

Riches, A.

Ruan, J.

X. Xue, W. Zhang, L. Yin, S. Wei, S. Gao, P. Geng, and J. Ruan, “All-fiber intermodal Mach–Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper,” Opt. Commun. 285(19), 3935–3938 (2012).
[Crossref]

Russell, P. S. J.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fiber,” Nat. Photonics 11(12), 33 (2017).

Sasso, A.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

Schäffer, E.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).
[Crossref]

Sibbett, W.

Šiler, M.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fiber,” Nat. Photonics 11(12), 33 (2017).

Simpson, N. B.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45(9), 1943–1949 (1998).
[Crossref]

Smith, D.

Soppera, O.

S. R. Ribeiro, R. Queirós, O. Soppera, A. Guerreiro, and P. A. S. Jorge, “Optical Fiber Tweezers Fabricated by Guided Wave Photo-Polymerization,” Photonics 2(2), 634–645 (2015).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Suárez-Vargas, J. J.

H. Cabrera, J. J. Suárez-Vargas, A. López, H. Núñez, G. Carvalho, G. Coceano, and D. Cojoc, “Experimental determination of trapping efficiency of optical tweezers,” Philos. Mag. Lett. 93(11), 655–663 (2013).
[Crossref]

Taguchi, K.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33(1), 99–106 (2001).
[Crossref]

Taylor, R.

Tolic-Nørrelykke, S. F.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).
[Crossref]

Turtaev, S.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fiber,” Nat. Photonics 11(12), 33 (2017).

van Leest, T.

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Wei, S.

X. Xue, W. Zhang, L. Yin, S. Wei, S. Gao, P. Geng, and J. Ruan, “All-fiber intermodal Mach–Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper,” Opt. Commun. 285(19), 3935–3938 (2012).
[Crossref]

Weigel, T.

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22(6), 065016 (2012).
[Crossref]

Whyte, G.

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophoton. 8(3), 239–246 (2015).
[PubMed]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Xie, C.

Xue, X.

X. Xue, W. Zhang, L. Yin, S. Wei, S. Gao, P. Geng, and J. Ruan, “All-fiber intermodal Mach–Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper,” Opt. Commun. 285(19), 3935–3938 (2012).
[Crossref]

Yang, J.

Yin, L.

X. Xue, W. Zhang, L. Yin, S. Wei, S. Gao, P. Geng, and J. Ruan, “All-fiber intermodal Mach–Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper,” Opt. Commun. 285(19), 3935–3938 (2012).
[Crossref]

Yu, L.

L. Yu, S. Mohanty, G. Liu, S. Genc, Z. Chen, and M. W. Berns, “Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery,” J. Biomed. Opt. 13(5), 050508 (2008).
[Crossref] [PubMed]

Yu, M.

Yuan, L.

Zarinetchi, F.

Zhang, L.

Zhang, W.

X. Xue, W. Zhang, L. Yin, S. Wei, S. Gao, P. Geng, and J. Ruan, “All-fiber intermodal Mach–Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper,” Opt. Commun. 285(19), 3935–3938 (2012).
[Crossref]

Appl. Spectrosc. Rev. (1)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman Spectroscopy of Biological Tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Biophys. J. (3)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of Photodamage to Escherichia coli in Optical Traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Minzioni, F. Bragheri, C. Liberale, E. Di Fabrizio, and I. Cristiani, “A Novel Approach to Fiber-Optic Tweezers: Numerical Analysis of the Trapping Efficiency,” IEEE J. Sel. Top. Quantum Electron. 14(1), 151–157 (2008).
[Crossref]

J. Biomed. Opt. (1)

L. Yu, S. Mohanty, G. Liu, S. Genc, Z. Chen, and M. W. Berns, “Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery,” J. Biomed. Opt. 13(5), 050508 (2008).
[Crossref] [PubMed]

J. Biophoton. (1)

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophoton. 8(3), 239–246 (2015).
[PubMed]

J. Micromech. Microeng. (1)

R. Ghadiri, T. Weigel, C. Esen, and A. Ostendorf, “Microassembly of complex and three-dimensional microstructures using holographic optical tweezers,” J. Micromech. Microeng. 22(6), 065016 (2012).
[Crossref]

J. Mod. Opt. (1)

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45(9), 1943–1949 (1998).
[Crossref]

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fiber probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fiber,” Nat. Photonics 11(12), 33 (2017).

Opt. Commun. (2)

X. Xue, W. Zhang, L. Yin, S. Wei, S. Gao, P. Geng, and J. Ruan, “All-fiber intermodal Mach–Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper,” Opt. Commun. 285(19), 3935–3938 (2012).
[Crossref]

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214(1-6), 15–24 (2002).
[Crossref]

Opt. Express (8)

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman micro-spectroscopy of single cells,” Opt. Express 14(12), 5779–5791 (2006).
[Crossref] [PubMed]

Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
[Crossref] [PubMed]

L. Yuan, Z. Liu, J. Yang, and C. Guan, “Twin-core fiber optical tweezers,” Opt. Express 16(7), 4559–4566 (2008).
[Crossref] [PubMed]

Y. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Opt. Express 17(16), 13624–13638 (2009).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
[Crossref] [PubMed]

A. L. Barron, A. K. Kar, and H. T. Bookey, “Dual-beam interference from a lensed multicore fiber and its application to optical trapping,” Opt. Express 20(21), 23156–23161 (2012).
[Crossref] [PubMed]

M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heideman, and J. Caro, “On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap,” Opt. Express 22(25), 30528–30537 (2014).
[Crossref] [PubMed]

R. Taylor and C. Hnatovsky, “Particle trapping in 3-D using a single fiber probe with an annular light distribution,” Opt. Express 11(21), 2775–2782 (2003).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33(1), 99–106 (2001).
[Crossref]

Philos. Mag. Lett. (1)

H. Cabrera, J. J. Suárez-Vargas, A. López, H. Núñez, G. Carvalho, G. Coceano, and D. Cojoc, “Experimental determination of trapping efficiency of optical tweezers,” Philos. Mag. Lett. 93(11), 655–663 (2013).
[Crossref]

Photonics (1)

S. R. Ribeiro, R. Queirós, O. Soppera, A. Guerreiro, and P. A. S. Jorge, “Optical Fiber Tweezers Fabricated by Guided Wave Photo-Polymerization,” Photonics 2(2), 634–645 (2015).
[Crossref]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Proc. SPIE (1)

G. Anastasiadi, L. Paterson, and W. N. MacPherson, “Machined multicore optical fibers for on -chip optical manipulation,” Proc. SPIE 10347, 1034702 (2017).

Rev. Sci. Instrum. (1)

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).
[Crossref]

Sci. Rep. (1)

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258 (2013).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1       In this video we are presenting the laser beam propagation when it exits the machined core of the multi-core fiber. Here, we have turned on only the one laser diode that is connected with the one machined core, to show that the yeast cells can be pus
» Visualization 2       In this video we demonstrate optical trapping of a single yeast cell in three dimensions, x,y and z. Once we trap the cell,we start moving the fiber inside the microscope slide micro-channel. The other cells around of the trapped cell, follow the flo

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 a) Micrograph of the four-core fiber end-face. Diagonally opposite cores, 65 μm apart, are machined to form the steering mirrors, b) Cross-section of the fiber tweezer design. Light propagates along the core and undergoes TIR at the mirror/media interface followed by refraction at the fiber/media interface. The light from the two diagonally opposite cores converge at a distance dtrap from the fiber-end, c) 3D depiction of the propagation of the two converging beams exiting the machined diagonal cores. A trapped cell is depicted in the overlapping area.
Fig. 2
Fig. 2 Numerical evaluation of trapping distance dtrap (blue line) and numerical aperture NA (orange line) for a variety of mirror angles θ that are subsequently fabricated and experimentally tested. Experimentally observed trapping distances for yeast cells shown as blue circles. For 68° and 70° these are observed to have longer dtrap than the theoretically predicted, due to lower NA that results in an increased on-axis scattering force. The experimental trapping distances have been measured using the images captured from the CCD camera of the microscope. The resolution of this optical system leads to an error equal to 1 μm. Additionally, in the theoretical model we have not accounted for divergence which leads to a larger overlap region.
Fig. 3
Fig. 3 a), b) Scanning electron microscope (SEM) micrographs of fiber surface after mirror fabrication on two diagonally opposite cores, when the fiber end-face is tilted in 31° and 0° with respect to the SEM, respectively. b) A dark square in the centre of the fiber can be seen and it is due to the gold layer removal using the FIB, in order to eliminate the heating effect through the trapping experiment.
Fig. 4
Fig. 4 Beam propagation for the two machined, diagonally opposite cores as seen from the cross-section of the multicore fiber. a)Matlab simulation of the beam propagation from the two cores. The overlapping ‘trapping’ area can be clearly seen when the two weakly diverging beams cross. b) Optical image of yeast cell. Core 1 and core 2 are annotated on the image and the laser light scattered by the yeast cells indicates the beam propagation angle.
Fig. 5
Fig. 5 Experimental set-up for using the machined MCF-based optical tweezer.
Fig. 6
Fig. 6 Trapped yeast cell using 4.9 mW and 17.2 mW optical power from core 1 and 2 respectively. a)-c) Movement in z axis d)-f) movement in x axis and g)-i) movement in y axis. The trapped particle is shown inside the yellow circle.
Fig. 7
Fig. 7 Blue triangles: Experimental values of the fiber force (Ffiber) which were calculated by equating the trapping force of the OT (Ftrap) that broke the fiber trap. Orange circles: The efficiency factor Q for different total powers of the tweezing probe.
Fig. 8
Fig. 8 Comparison between the spectra of dead (black spectrum) and live (red line) yeast cells. The main differences appear in peaks that define proteins and DNA structures. Blue dashed lines indicate the signals that appear in the live cell spectra but vanish or are reduced in intensity in the dead cell spectra. These are representative spectra from a single live cell and a single dead cell.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N A = n m sin ( φ ) = 1.039
F d r a g = 6 π η r υ c
Q = F f i b e r c n P

Metrics