Abstract

We have demonstrated the continuous-wave operation of a highly efficient 2.8 μm Er-doped Lu2O3 ceramic laser at room temperature. An Er:Lu2O3 ceramic with a doping concentration of 11 at.% afforded a slope efficiency of 29% and an output power of 2.3 W with pumping at 10 W. To our knowledge, these are the highest slope efficiency and output power obtained to date for an Er:Lu2O3 ceramic laser at 2.8 μm. In addition, we prepared ceramics with various doping concentrations and determined their emission cross sections by fluorescence lifetime measurements and emission spectroscopy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient continuous wave and quasi-continuous wave operation of a 2.8 μm Er:Lu2O3 ceramic laser

Hiyori Uehara, Ryo Yasuhara, Shigeki Tokita, Junji Kawanaka, Masanao Murakami, and Seiji Shimizu
Opt. Express 25(16) 18677-18684 (2017)

Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm

Li Wang, Haitao Huang, Deyuan Shen, Jian Zhang, Hao Chen, Yong Wang, Xuan Liu, and Dingyuan Tang
Opt. Express 22(16) 19495-19503 (2014)

Efficient laser operation based on transparent Nd:Lu2O3 ceramic fabricated by Spark Plasma Sintering

Changwen Xu, Chengdong Yang, Han Zhang, Yanmin Duan, Haiyong Zhu, Dingyuan Tang, Huihui Huang, and Jian Zhang
Opt. Express 24(18) 20571-20579 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1(1), 47–66 (1986).
    [Crossref]
  2. P. Werle, F. Slemr, K. Maurer, R. Koormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
    [Crossref]
  3. M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
    [Crossref]
  4. M. Murakami, C. Schaefer, S. Hattori, and K. Yahata, “Laser processing technology with mid-infrared Er fiber laser,” in Proceedings of the 83rd Laser Materials Processing Conference (Japan Laser Processing Society, 2015), pp. 117.
  5. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  6. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
    [Crossref] [PubMed]
  7. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36(15), 2812–2814 (2011).
    [Crossref] [PubMed]
  8. C. Krankel, “Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range,” IEEE J. Sel. Top. Quant. 21(1), 1602013 (2015).
    [Crossref]
  9. T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett. 37(13), 2568–2570 (2012).
    [Crossref] [PubMed]
  10. J. Kawanaka, D. Albach, H. Furuse, N. Miyanaga, T. Kawashima, and H. Kan, “A monolithic composite ceramic with total-reflection active-mirrors for joule-class pulse energy amplification,” Opt. Mater. 35(4), 770–773 (2013).
    [Crossref]
  11. H. Nakao, T. Inagaki, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, B. Weichelt, K. Wentsch, M. A. Ahmed, and T. Graf, “Yb3+-doped ceramic thin-disk lasers of Lu-based oxides,” Opt. Mater. Express 4(10), 2116–2121 (2014).
    [Crossref]
  12. J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
    [Crossref]
  13. O. Antipov, A. Novikov, S. Larin, and I. Obronov, “Highly efficient 2 μm CW and Q-switched Tm3+:Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm,” Opt. Lett. 41(10), 2298–2301 (2016).
    [Crossref] [PubMed]
  14. T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7-μm Er3+:Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Express 19(S5Suppl 5), A1082–A1087 (2011).
    [Crossref] [PubMed]
  15. L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, and D. Tang, “Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 μm,” Laser Phys. Lett. 14(4), 045803 (2017).
    [Crossref]
  16. L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
    [Crossref] [PubMed]
  17. X. Ren, Y. Wang, X. Fan, J. Zhang, D. Tang, and D. Shen, “High-Peak-Power Acousto-Optically Q-Switched Er:Y2O3 Ceramic Laser at ~2.7 μm,” IEEE Photonics J. 9(4), 15004306 (2017).
    [Crossref]
  18. H. Uehara, R. Yasuhara, S. Tokita, J. Kawanaka, M. Murakami, and S. Shimizu, “Efficient continuous wave and quasi-continuous wave operation of a 2.8 μm Er:Lu2O3 ceramic laser,” Opt. Express 25(16), 18677–18684 (2017).
    [Crossref] [PubMed]
  19. T. Yanagida, Y. Fujimoto, H. Yagi, and T. Yanagitani, “Optical and scintillation properties of transparent ceramic Yb:Lu2O3 with different Yb concentrations,” Opt. Mater. 36(6), 1044–1048 (2014).
    [Crossref]
  20. R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31(4), 931–970 (2002).
    [Crossref]
  21. S. Ivanova and F. Pelle, “Strong 1.53 μm to NIR–VIS–UV upconversion in Er-doped fluoride glass for high-efficiency solar cells,” J. Opt. Soc. Am. B 26(10), 1930–1938 (2009).
    [Crossref]
  22. G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
    [Crossref]
  23. R. N. Maksimov, V. A. Shitov, V. V. Platonov, S. L. Demakov, and A. S. Yurovskikh, “Production of optical Yb3+:Lu2O3 ceramic by spark plasma sintering,” Glass Ceram. 72(3-4), 125–129 (2015).
    [Crossref]
  24. N. Wang, X. Zhang, and P. Wang, “Synthesis of Er3+:Lu2O3 nanopowders by carbonate co-precipitation process and fabrication of transparent ceramics,” J. Alloys Compd. 652, 281–286 (2015).
    [Crossref]
  25. J. Singh, Optical Properties of Condensed Matter and Applications (John Wiley & Sons, 2006), Chap. 8.
  26. Q. Li, G.-P. Zhang, H. Wang, and L.-W. Lei, “Effect of pores on transmission properties of transparent ceramics,” Optoelectron. Adv. Mater. Rapid Commun. 5(6), 673–676 (2011).
  27. R. Boulesteix, A. Maître, J.-F. Baumard, Y. Rabinovitch, and F. Reynaud, “Light scattering by pores in transparent Nd:YAG ceramics for lasers: correlations between microstructure and optical properties,” Opt. Express 18(14), 14992–15002 (2010).
    [Crossref] [PubMed]
  28. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [Crossref]
  29. X. Qiao, H. Huang, H. Yang, L. Zhang, L. Wang, D. Shen, J. Zhang, and D. Tang, “Fabrication, optical properties and LD-pumped 2.7 µm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics,” J. Alloys Compd. 640, 51–55 (2015).
    [Crossref]
  30. J. L. Philipsen, J. Broeng, A. Bjarklev, S. Helmfrid, D. Bremberg, B. Jaskorzynska, and B. Palsdottir, “Observation of Strongly Nonquadratic Homogeneous Upconversion in Er -Doped Silica Fibers and Reevaluation of the Degree of Clustering,” IEEE J. Quantum Electron. 35(11), 1741–1749 (1999).
    [Crossref]
  31. M. Pollnau and S. D. Jackson, “Energy Recycling Versus Lifetime Quenching in Erbium-Doped 3-m Fiber Lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
    [Crossref]
  32. M. Pollnau and S. D. Jackson, “Erbium 3μm Fiber Lasers,” IEEE J. Sel. Top. Quant. 7(1), 30–40 (2001).
    [Crossref]
  33. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  34. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  35. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  36. L. D. Merkle, N. Ter-Gabrielyan, N. J. Kacik, T. Sanamyan, H. Zhang, H. Yu, J. Wang, and M. Dubinskii, “Er:Lu2O3 – Laser-related spectroscopy,” Opt. Mater. Express 3(11), 1992–2002 (2013).
    [Crossref]
  37. P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
    [Crossref]

2017 (3)

X. Ren, Y. Wang, X. Fan, J. Zhang, D. Tang, and D. Shen, “High-Peak-Power Acousto-Optically Q-Switched Er:Y2O3 Ceramic Laser at ~2.7 μm,” IEEE Photonics J. 9(4), 15004306 (2017).
[Crossref]

H. Uehara, R. Yasuhara, S. Tokita, J. Kawanaka, M. Murakami, and S. Shimizu, “Efficient continuous wave and quasi-continuous wave operation of a 2.8 μm Er:Lu2O3 ceramic laser,” Opt. Express 25(16), 18677–18684 (2017).
[Crossref] [PubMed]

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, and D. Tang, “Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 μm,” Laser Phys. Lett. 14(4), 045803 (2017).
[Crossref]

2016 (2)

O. Antipov, A. Novikov, S. Larin, and I. Obronov, “Highly efficient 2 μm CW and Q-switched Tm3+:Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm,” Opt. Lett. 41(10), 2298–2301 (2016).
[Crossref] [PubMed]

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

2015 (5)

C. Krankel, “Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range,” IEEE J. Sel. Top. Quant. 21(1), 1602013 (2015).
[Crossref]

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

R. N. Maksimov, V. A. Shitov, V. V. Platonov, S. L. Demakov, and A. S. Yurovskikh, “Production of optical Yb3+:Lu2O3 ceramic by spark plasma sintering,” Glass Ceram. 72(3-4), 125–129 (2015).
[Crossref]

N. Wang, X. Zhang, and P. Wang, “Synthesis of Er3+:Lu2O3 nanopowders by carbonate co-precipitation process and fabrication of transparent ceramics,” J. Alloys Compd. 652, 281–286 (2015).
[Crossref]

X. Qiao, H. Huang, H. Yang, L. Zhang, L. Wang, D. Shen, J. Zhang, and D. Tang, “Fabrication, optical properties and LD-pumped 2.7 µm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics,” J. Alloys Compd. 640, 51–55 (2015).
[Crossref]

2014 (3)

2013 (2)

J. Kawanaka, D. Albach, H. Furuse, N. Miyanaga, T. Kawashima, and H. Kan, “A monolithic composite ceramic with total-reflection active-mirrors for joule-class pulse energy amplification,” Opt. Mater. 35(4), 770–773 (2013).
[Crossref]

L. D. Merkle, N. Ter-Gabrielyan, N. J. Kacik, T. Sanamyan, H. Zhang, H. Yu, J. Wang, and M. Dubinskii, “Er:Lu2O3 – Laser-related spectroscopy,” Opt. Mater. Express 3(11), 1992–2002 (2013).
[Crossref]

2012 (2)

T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett. 37(13), 2568–2570 (2012).
[Crossref] [PubMed]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (2)

2003 (1)

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

2002 (3)

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31(4), 931–970 (2002).
[Crossref]

P. Werle, F. Slemr, K. Maurer, R. Koormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

M. Pollnau and S. D. Jackson, “Energy Recycling Versus Lifetime Quenching in Erbium-Doped 3-m Fiber Lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
[Crossref]

2001 (1)

M. Pollnau and S. D. Jackson, “Erbium 3μm Fiber Lasers,” IEEE J. Sel. Top. Quant. 7(1), 30–40 (2001).
[Crossref]

1999 (1)

J. L. Philipsen, J. Broeng, A. Bjarklev, S. Helmfrid, D. Bremberg, B. Jaskorzynska, and B. Palsdottir, “Observation of Strongly Nonquadratic Homogeneous Upconversion in Er -Doped Silica Fibers and Reevaluation of the Degree of Clustering,” IEEE J. Quantum Electron. 35(11), 1741–1749 (1999).
[Crossref]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

1986 (2)

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
[Crossref]

J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1(1), 47–66 (1986).
[Crossref]

1985 (1)

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Ahmed, M. A.

Albach, D.

J. Kawanaka, D. Albach, H. Furuse, N. Miyanaga, T. Kawashima, and H. Kan, “A monolithic composite ceramic with total-reflection active-mirrors for joule-class pulse energy amplification,” Opt. Mater. 35(4), 770–773 (2013).
[Crossref]

Alombert-Goget, G.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Antipov, O.

Arbabzadah, E. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Baumard, J.-F.

Beil, K.

Bisson, J. F.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

Bjarklev, A.

J. L. Philipsen, J. Broeng, A. Bjarklev, S. Helmfrid, D. Bremberg, B. Jaskorzynska, and B. Palsdottir, “Observation of Strongly Nonquadratic Homogeneous Upconversion in Er -Doped Silica Fibers and Reevaluation of the Degree of Clustering,” IEEE J. Quantum Electron. 35(11), 1741–1749 (1999).
[Crossref]

Boulesteix, R.

Boulnois, J.-L.

J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1(1), 47–66 (1986).
[Crossref]

Boulon, G.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Bremberg, D.

J. L. Philipsen, J. Broeng, A. Bjarklev, S. Helmfrid, D. Bremberg, B. Jaskorzynska, and B. Palsdottir, “Observation of Strongly Nonquadratic Homogeneous Upconversion in Er -Doped Silica Fibers and Reevaluation of the Degree of Clustering,” IEEE J. Quantum Electron. 35(11), 1741–1749 (1999).
[Crossref]

Broeng, J.

J. L. Philipsen, J. Broeng, A. Bjarklev, S. Helmfrid, D. Bremberg, B. Jaskorzynska, and B. Palsdottir, “Observation of Strongly Nonquadratic Homogeneous Upconversion in Er -Doped Silica Fibers and Reevaluation of the Degree of Clustering,” IEEE J. Quantum Electron. 35(11), 1741–1749 (1999).
[Crossref]

Chen, H.

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, and D. Tang, “Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 μm,” Laser Phys. Lett. 14(4), 045803 (2017).
[Crossref]

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
[Crossref] [PubMed]

Damzen, M. J.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Demakov, S. L.

R. N. Maksimov, V. A. Shitov, V. V. Platonov, S. L. Demakov, and A. S. Yurovskikh, “Production of optical Yb3+:Lu2O3 ceramic by spark plasma sintering,” Glass Ceram. 72(3-4), 125–129 (2015).
[Crossref]

Dubinskii, M.

Dunina, E. B.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Fan, X.

X. Ren, Y. Wang, X. Fan, J. Zhang, D. Tang, and D. Shen, “High-Peak-Power Acousto-Optically Q-Switched Er:Y2O3 Ceramic Laser at ~2.7 μm,” IEEE Photonics J. 9(4), 15004306 (2017).
[Crossref]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Fischer, R. X.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31(4), 931–970 (2002).
[Crossref]

Fujimoto, Y.

T. Yanagida, Y. Fujimoto, H. Yagi, and T. Yanagitani, “Optical and scintillation properties of transparent ceramic Yb:Lu2O3 with different Yb concentrations,” Opt. Mater. 36(6), 1044–1048 (2014).
[Crossref]

Furuse, H.

J. Kawanaka, D. Albach, H. Furuse, N. Miyanaga, T. Kawashima, and H. Kan, “A monolithic composite ceramic with total-reflection active-mirrors for joule-class pulse energy amplification,” Opt. Mater. 35(4), 770–773 (2013).
[Crossref]

Goto, T.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Graf, T.

Guyot, Y.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Guzik, M.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Hashida, M.

Hattori, S.

M. Murakami, C. Schaefer, S. Hattori, and K. Yahata, “Laser processing technology with mid-infrared Er fiber laser,” in Proceedings of the 83rd Laser Materials Processing Conference (Japan Laser Processing Society, 2015), pp. 117.

Helmfrid, S.

J. L. Philipsen, J. Broeng, A. Bjarklev, S. Helmfrid, D. Bremberg, B. Jaskorzynska, and B. Palsdottir, “Observation of Strongly Nonquadratic Homogeneous Upconversion in Er -Doped Silica Fibers and Reevaluation of the Degree of Clustering,” IEEE J. Quantum Electron. 35(11), 1741–1749 (1999).
[Crossref]

Huang, H.

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, and D. Tang, “Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 μm,” Laser Phys. Lett. 14(4), 045803 (2017).
[Crossref]

X. Qiao, H. Huang, H. Yang, L. Zhang, L. Wang, D. Shen, J. Zhang, and D. Tang, “Fabrication, optical properties and LD-pumped 2.7 µm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics,” J. Alloys Compd. 640, 51–55 (2015).
[Crossref]

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
[Crossref] [PubMed]

Huber, G.

Inagaki, T.

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Ito, A.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Ivanova, S.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

M. Pollnau and S. D. Jackson, “Energy Recycling Versus Lifetime Quenching in Erbium-Doped 3-m Fiber Lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
[Crossref]

M. Pollnau and S. D. Jackson, “Erbium 3μm Fiber Lasers,” IEEE J. Sel. Top. Quant. 7(1), 30–40 (2001).
[Crossref]

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Koormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Jaskorzynska, B.

J. L. Philipsen, J. Broeng, A. Bjarklev, S. Helmfrid, D. Bremberg, B. Jaskorzynska, and B. Palsdottir, “Observation of Strongly Nonquadratic Homogeneous Upconversion in Er -Doped Silica Fibers and Reevaluation of the Degree of Clustering,” IEEE J. Quantum Electron. 35(11), 1741–1749 (1999).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kacik, N. J.

Kaminskii, A. A.

H. Nakao, T. Inagaki, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, B. Weichelt, K. Wentsch, M. A. Ahmed, and T. Graf, “Yb3+-doped ceramic thin-disk lasers of Lu-based oxides,” Opt. Mater. Express 4(10), 2116–2121 (2014).
[Crossref]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

Kan, H.

J. Kawanaka, D. Albach, H. Furuse, N. Miyanaga, T. Kawashima, and H. Kan, “A monolithic composite ceramic with total-reflection active-mirrors for joule-class pulse energy amplification,” Opt. Mater. 35(4), 770–773 (2013).
[Crossref]

Kanskar, M.

Kawanaka, J.

H. Uehara, R. Yasuhara, S. Tokita, J. Kawanaka, M. Murakami, and S. Shimizu, “Efficient continuous wave and quasi-continuous wave operation of a 2.8 μm Er:Lu2O3 ceramic laser,” Opt. Express 25(16), 18677–18684 (2017).
[Crossref] [PubMed]

J. Kawanaka, D. Albach, H. Furuse, N. Miyanaga, T. Kawashima, and H. Kan, “A monolithic composite ceramic with total-reflection active-mirrors for joule-class pulse energy amplification,” Opt. Mater. 35(4), 770–773 (2013).
[Crossref]

Kawashima, T.

J. Kawanaka, D. Albach, H. Furuse, N. Miyanaga, T. Kawashima, and H. Kan, “A monolithic composite ceramic with total-reflection active-mirrors for joule-class pulse energy amplification,” Opt. Mater. 35(4), 770–773 (2013).
[Crossref]

Kedlaya, D.

Kikuchi, M.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Koormann, R.

P. Werle, F. Slemr, K. Maurer, R. Koormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Kornienko, A. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Krankel, C.

C. Krankel, “Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range,” IEEE J. Sel. Top. Quant. 21(1), 1602013 (2015).
[Crossref]

Kränkel, C.

Larin, S.

Lei, L.-W.

Q. Li, G.-P. Zhang, H. Wang, and L.-W. Lei, “Effect of pores on transmission properties of transparent ceramics,” Optoelectron. Adv. Mater. Rapid Commun. 5(6), 673–676 (2011).

Li, Q.

Q. Li, G.-P. Zhang, H. Wang, and L.-W. Lei, “Effect of pores on transmission properties of transparent ceramics,” Optoelectron. Adv. Mater. Rapid Commun. 5(6), 673–676 (2011).

Li, T.

Liu, X.

Loiko, P. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Lu, J.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

Maître, A.

Maksimov, R. N.

R. N. Maksimov, V. A. Shitov, V. V. Platonov, S. L. Demakov, and A. S. Yurovskikh, “Production of optical Yb3+:Lu2O3 ceramic by spark plasma sintering,” Glass Ceram. 72(3-4), 125–129 (2015).
[Crossref]

Mateos, X.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Koormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Medenbach, O.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31(4), 931–970 (2002).
[Crossref]

Merkle, L. D.

Miyanaga, N.

J. Kawanaka, D. Albach, H. Furuse, N. Miyanaga, T. Kawashima, and H. Kan, “A monolithic composite ceramic with total-reflection active-mirrors for joule-class pulse energy amplification,” Opt. Mater. 35(4), 770–773 (2013).
[Crossref]

Moulton, P. F.

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Koormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Murakami, M.

Musha, M.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

Nakao, H.

Novikov, A.

Obronov, I.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Palsdottir, B.

J. L. Philipsen, J. Broeng, A. Bjarklev, S. Helmfrid, D. Bremberg, B. Jaskorzynska, and B. Palsdottir, “Observation of Strongly Nonquadratic Homogeneous Upconversion in Er -Doped Silica Fibers and Reevaluation of the Degree of Clustering,” IEEE J. Quantum Electron. 35(11), 1741–1749 (1999).
[Crossref]

Pelle, F.

Philipsen, J. L.

J. L. Philipsen, J. Broeng, A. Bjarklev, S. Helmfrid, D. Bremberg, B. Jaskorzynska, and B. Palsdottir, “Observation of Strongly Nonquadratic Homogeneous Upconversion in Er -Doped Silica Fibers and Reevaluation of the Degree of Clustering,” IEEE J. Quantum Electron. 35(11), 1741–1749 (1999).
[Crossref]

Platonov, V. V.

R. N. Maksimov, V. A. Shitov, V. V. Platonov, S. L. Demakov, and A. S. Yurovskikh, “Production of optical Yb3+:Lu2O3 ceramic by spark plasma sintering,” Glass Ceram. 72(3-4), 125–129 (2015).
[Crossref]

Pollnau, M.

M. Pollnau and S. D. Jackson, “Energy Recycling Versus Lifetime Quenching in Erbium-Doped 3-m Fiber Lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
[Crossref]

M. Pollnau and S. D. Jackson, “Erbium 3μm Fiber Lasers,” IEEE J. Sel. Top. Quant. 7(1), 30–40 (2001).
[Crossref]

Qiao, X.

X. Qiao, H. Huang, H. Yang, L. Zhang, L. Wang, D. Shen, J. Zhang, and D. Tang, “Fabrication, optical properties and LD-pumped 2.7 µm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics,” J. Alloys Compd. 640, 51–55 (2015).
[Crossref]

Rabinovitch, Y.

Ren, X.

X. Ren, Y. Wang, X. Fan, J. Zhang, D. Tang, and D. Shen, “High-Peak-Power Acousto-Optically Q-Switched Er:Y2O3 Ceramic Laser at ~2.7 μm,” IEEE Photonics J. 9(4), 15004306 (2017).
[Crossref]

Reynaud, F.

Rubin, M.

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

Sakabe, S.

Sanamyan, T.

Schaefer, C.

M. Murakami, C. Schaefer, S. Hattori, and K. Yahata, “Laser processing technology with mid-infrared Er fiber laser,” in Proceedings of the 83rd Laser Materials Processing Conference (Japan Laser Processing Society, 2015), pp. 117.

Shannon, R. C.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31(4), 931–970 (2002).
[Crossref]

Shannon, R. D.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31(4), 931–970 (2002).
[Crossref]

Shen, D.

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, and D. Tang, “Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 μm,” Laser Phys. Lett. 14(4), 045803 (2017).
[Crossref]

X. Ren, Y. Wang, X. Fan, J. Zhang, D. Tang, and D. Shen, “High-Peak-Power Acousto-Optically Q-Switched Er:Y2O3 Ceramic Laser at ~2.7 μm,” IEEE Photonics J. 9(4), 15004306 (2017).
[Crossref]

X. Qiao, H. Huang, H. Yang, L. Zhang, L. Wang, D. Shen, J. Zhang, and D. Tang, “Fabrication, optical properties and LD-pumped 2.7 µm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics,” J. Alloys Compd. 640, 51–55 (2015).
[Crossref]

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
[Crossref] [PubMed]

Shimizu, S.

Shirakawa, A.

H. Nakao, T. Inagaki, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, B. Weichelt, K. Wentsch, M. A. Ahmed, and T. Graf, “Yb3+-doped ceramic thin-disk lasers of Lu-based oxides,” Opt. Mater. Express 4(10), 2116–2121 (2014).
[Crossref]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

Shitov, V. A.

R. N. Maksimov, V. A. Shitov, V. V. Platonov, S. L. Demakov, and A. S. Yurovskikh, “Production of optical Yb3+:Lu2O3 ceramic by spark plasma sintering,” Glass Ceram. 72(3-4), 125–129 (2015).
[Crossref]

Skoptsov, N. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Koormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Takaichi, K.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

Tang, D.

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, and D. Tang, “Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 μm,” Laser Phys. Lett. 14(4), 045803 (2017).
[Crossref]

X. Ren, Y. Wang, X. Fan, J. Zhang, D. Tang, and D. Shen, “High-Peak-Power Acousto-Optically Q-Switched Er:Y2O3 Ceramic Laser at ~2.7 μm,” IEEE Photonics J. 9(4), 15004306 (2017).
[Crossref]

X. Qiao, H. Huang, H. Yang, L. Zhang, L. Wang, D. Shen, J. Zhang, and D. Tang, “Fabrication, optical properties and LD-pumped 2.7 µm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics,” J. Alloys Compd. 640, 51–55 (2015).
[Crossref]

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
[Crossref] [PubMed]

Ter-Gabrielyan, N.

Tokita, S.

Ueda, K.

H. Nakao, T. Inagaki, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, B. Weichelt, K. Wentsch, M. A. Ahmed, and T. Graf, “Yb3+-doped ceramic thin-disk lasers of Lu-based oxides,” Opt. Mater. Express 4(10), 2116–2121 (2014).
[Crossref]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

Uehara, H.

Uematsu, T.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

Wang, H.

Q. Li, G.-P. Zhang, H. Wang, and L.-W. Lei, “Effect of pores on transmission properties of transparent ceramics,” Optoelectron. Adv. Mater. Rapid Commun. 5(6), 673–676 (2011).

Wang, J.

Wang, L.

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, and D. Tang, “Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 μm,” Laser Phys. Lett. 14(4), 045803 (2017).
[Crossref]

X. Qiao, H. Huang, H. Yang, L. Zhang, L. Wang, D. Shen, J. Zhang, and D. Tang, “Fabrication, optical properties and LD-pumped 2.7 µm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics,” J. Alloys Compd. 640, 51–55 (2015).
[Crossref]

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
[Crossref] [PubMed]

Wang, N.

N. Wang, X. Zhang, and P. Wang, “Synthesis of Er3+:Lu2O3 nanopowders by carbonate co-precipitation process and fabrication of transparent ceramics,” J. Alloys Compd. 652, 281–286 (2015).
[Crossref]

Wang, P.

N. Wang, X. Zhang, and P. Wang, “Synthesis of Er3+:Lu2O3 nanopowders by carbonate co-precipitation process and fabrication of transparent ceramics,” J. Alloys Compd. 652, 281–286 (2015).
[Crossref]

Wang, Y.

X. Ren, Y. Wang, X. Fan, J. Zhang, D. Tang, and D. Shen, “High-Peak-Power Acousto-Optically Q-Switched Er:Y2O3 Ceramic Laser at ~2.7 μm,” IEEE Photonics J. 9(4), 15004306 (2017).
[Crossref]

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
[Crossref] [PubMed]

Weichelt, B.

Wentsch, K.

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Koormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Xiao, Y.

Yagi, H.

T. Yanagida, Y. Fujimoto, H. Yagi, and T. Yanagitani, “Optical and scintillation properties of transparent ceramic Yb:Lu2O3 with different Yb concentrations,” Opt. Mater. 36(6), 1044–1048 (2014).
[Crossref]

H. Nakao, T. Inagaki, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, B. Weichelt, K. Wentsch, M. A. Ahmed, and T. Graf, “Yb3+-doped ceramic thin-disk lasers of Lu-based oxides,” Opt. Mater. Express 4(10), 2116–2121 (2014).
[Crossref]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

Yahata, K.

M. Murakami, C. Schaefer, S. Hattori, and K. Yahata, “Laser processing technology with mid-infrared Er fiber laser,” in Proceedings of the 83rd Laser Materials Processing Conference (Japan Laser Processing Society, 2015), pp. 117.

Yanagida, T.

T. Yanagida, Y. Fujimoto, H. Yagi, and T. Yanagitani, “Optical and scintillation properties of transparent ceramic Yb:Lu2O3 with different Yb concentrations,” Opt. Mater. 36(6), 1044–1048 (2014).
[Crossref]

Yanagitani, T.

T. Yanagida, Y. Fujimoto, H. Yagi, and T. Yanagitani, “Optical and scintillation properties of transparent ceramic Yb:Lu2O3 with different Yb concentrations,” Opt. Mater. 36(6), 1044–1048 (2014).
[Crossref]

H. Nakao, T. Inagaki, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, B. Weichelt, K. Wentsch, M. A. Ahmed, and T. Graf, “Yb3+-doped ceramic thin-disk lasers of Lu-based oxides,” Opt. Mater. Express 4(10), 2116–2121 (2014).
[Crossref]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

Yang, H.

X. Qiao, H. Huang, H. Yang, L. Zhang, L. Wang, D. Shen, J. Zhang, and D. Tang, “Fabrication, optical properties and LD-pumped 2.7 µm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics,” J. Alloys Compd. 640, 51–55 (2015).
[Crossref]

Yasuhara, R.

Yasukevich, A. S.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Yoshikawa, A.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Yu, H.

Yumashev, K. V.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Yurovskikh, A. S.

R. N. Maksimov, V. A. Shitov, V. V. Platonov, S. L. Demakov, and A. S. Yurovskikh, “Production of optical Yb3+:Lu2O3 ceramic by spark plasma sintering,” Glass Ceram. 72(3-4), 125–129 (2015).
[Crossref]

Zhang, G.-P.

Q. Li, G.-P. Zhang, H. Wang, and L.-W. Lei, “Effect of pores on transmission properties of transparent ceramics,” Optoelectron. Adv. Mater. Rapid Commun. 5(6), 673–676 (2011).

Zhang, H.

Zhang, J.

X. Ren, Y. Wang, X. Fan, J. Zhang, D. Tang, and D. Shen, “High-Peak-Power Acousto-Optically Q-Switched Er:Y2O3 Ceramic Laser at ~2.7 μm,” IEEE Photonics J. 9(4), 15004306 (2017).
[Crossref]

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, and D. Tang, “Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 μm,” Laser Phys. Lett. 14(4), 045803 (2017).
[Crossref]

X. Qiao, H. Huang, H. Yang, L. Zhang, L. Wang, D. Shen, J. Zhang, and D. Tang, “Fabrication, optical properties and LD-pumped 2.7 µm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics,” J. Alloys Compd. 640, 51–55 (2015).
[Crossref]

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm,” Opt. Express 22(16), 19495–19503 (2014).
[Crossref] [PubMed]

Zhang, L.

X. Qiao, H. Huang, H. Yang, L. Zhang, L. Wang, D. Shen, J. Zhang, and D. Tang, “Fabrication, optical properties and LD-pumped 2.7 µm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics,” J. Alloys Compd. 640, 51–55 (2015).
[Crossref]

Zhang, X.

N. Wang, X. Zhang, and P. Wang, “Synthesis of Er3+:Lu2O3 nanopowders by carbonate co-precipitation process and fabrication of transparent ceramics,” J. Alloys Compd. 652, 281–286 (2015).
[Crossref]

Appl. Phys. Lett. (2)

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83(6), 1101–1103 (2003).
[Crossref]

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Glass Ceram. (1)

R. N. Maksimov, V. A. Shitov, V. V. Platonov, S. L. Demakov, and A. S. Yurovskikh, “Production of optical Yb3+:Lu2O3 ceramic by spark plasma sintering,” Glass Ceram. 72(3-4), 125–129 (2015).
[Crossref]

IEEE J. Quantum Electron. (2)

J. L. Philipsen, J. Broeng, A. Bjarklev, S. Helmfrid, D. Bremberg, B. Jaskorzynska, and B. Palsdottir, “Observation of Strongly Nonquadratic Homogeneous Upconversion in Er -Doped Silica Fibers and Reevaluation of the Degree of Clustering,” IEEE J. Quantum Electron. 35(11), 1741–1749 (1999).
[Crossref]

M. Pollnau and S. D. Jackson, “Energy Recycling Versus Lifetime Quenching in Erbium-Doped 3-m Fiber Lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
[Crossref]

IEEE J. Sel. Top. Quant. (2)

M. Pollnau and S. D. Jackson, “Erbium 3μm Fiber Lasers,” IEEE J. Sel. Top. Quant. 7(1), 30–40 (2001).
[Crossref]

C. Krankel, “Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range,” IEEE J. Sel. Top. Quant. 21(1), 1602013 (2015).
[Crossref]

IEEE Photonics J. (1)

X. Ren, Y. Wang, X. Fan, J. Zhang, D. Tang, and D. Shen, “High-Peak-Power Acousto-Optically Q-Switched Er:Y2O3 Ceramic Laser at ~2.7 μm,” IEEE Photonics J. 9(4), 15004306 (2017).
[Crossref]

J. Alloys Compd. (2)

X. Qiao, H. Huang, H. Yang, L. Zhang, L. Wang, D. Shen, J. Zhang, and D. Tang, “Fabrication, optical properties and LD-pumped 2.7 µm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics,” J. Alloys Compd. 640, 51–55 (2015).
[Crossref]

N. Wang, X. Zhang, and P. Wang, “Synthesis of Er3+:Lu2O3 nanopowders by carbonate co-precipitation process and fabrication of transparent ceramics,” J. Alloys Compd. 652, 281–286 (2015).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

J. Lumin. (1)

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38at%) Er:YSGGlaser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Ref. Data (1)

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31(4), 931–970 (2002).
[Crossref]

Laser Phys. Lett. (1)

L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, and D. Tang, “Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 μm,” Laser Phys. Lett. 14(4), 045803 (2017).
[Crossref]

Lasers Med. Sci. (1)

J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1(1), 47–66 (1986).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Koormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Opt. Lett. (4)

Opt. Mater. (3)

T. Yanagida, Y. Fujimoto, H. Yagi, and T. Yanagitani, “Optical and scintillation properties of transparent ceramic Yb:Lu2O3 with different Yb concentrations,” Opt. Mater. 36(6), 1044–1048 (2014).
[Crossref]

J. Kawanaka, D. Albach, H. Furuse, N. Miyanaga, T. Kawashima, and H. Kan, “A monolithic composite ceramic with total-reflection active-mirrors for joule-class pulse energy amplification,” Opt. Mater. 35(4), 770–773 (2013).
[Crossref]

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Opt. Mater. Express (2)

Optoelectron. Adv. Mater. Rapid Commun. (1)

Q. Li, G.-P. Zhang, H. Wang, and L.-W. Lei, “Effect of pores on transmission properties of transparent ceramics,” Optoelectron. Adv. Mater. Rapid Commun. 5(6), 673–676 (2011).

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Sol. Energy Mater. (1)

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

Other (2)

M. Murakami, C. Schaefer, S. Hattori, and K. Yahata, “Laser processing technology with mid-infrared Er fiber laser,” in Proceedings of the 83rd Laser Materials Processing Conference (Japan Laser Processing Society, 2015), pp. 117.

J. Singh, Optical Properties of Condensed Matter and Applications (John Wiley & Sons, 2006), Chap. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Absorption spectra of the Er:Lu2O3 ceramics at room temperature. Inset: Absorption coefficients at the wavelengths corresponding to the two peaks indicated in the spectra plotted against the Er3+ doping concentration.
Fig. 2
Fig. 2 Extinction curves of the absorption baselines of the Er:Lu2O3 ceramics with various doping concentrations.
Fig. 3
Fig. 3 Schematic diagram of the Er:Lu2O3 ceramic lasers.
Fig. 4
Fig. 4 Output power as a function of absorbed pump power at various OC transmittances for CW operation of the Er:Lu2O3 ceramic lasers. The Er3+ doping concentrations were (a) 5 at.%, (b) 10 at.%, (c) 11 at.%, and (d) 15 at.%.
Fig. 5
Fig. 5 Laser output spectra for the 11 at.% Er:Lu2O3 ceramic at various pump powers. Inset: Typical intensity profile of the output beam measured at a distance of 300 mm from the OC.
Fig. 6
Fig. 6 Output power as a function of absorbed pump power for the 11 at.% Er:Lu2O3 ceramic laser using the OC with a transmittance of 5%.
Fig. 7
Fig. 7 Lifetimes of the upper (4I11/2, red symbols) and lower (4I13/2, blue symbols) laser levels plotted against the Er3+ concentration for the Er:Lu2O3 ceramics. The results reported in the literature for Er:Lu2O3 ceramics [33] and single crystals [13] are also plotted for comparison.
Fig. 8
Fig. 8 Emission spectra of the Er:Lu2O3 ceramics with various doping concentrations for the (a) 2.8 μm and (b) 1.6 μm wavelength bands.

Tables (1)

Tables Icon

Table 1 Power-law fitting parameters for the extinction curves of the Er:Lu2O3 ceramics.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Extinction (cm 1 ) = a λ b + c
σ ( λ ) = λ 5 8 π c n 2 ( τ r / β ) 3 I α ( λ ) [ 2 I σ ( λ ) + I π ( λ ) ] λ d λ ,

Metrics