Abstract

A prototype multi-wavelength interferometric, phase shifting distance sensor based on linear electro optic effect has been demonstrated in this work to improve the measurement speed of a commercial four-wavelength interferometer. Experimental results revealed the phase modulation ability of the sensor, preserving equivalent efficiency for nanometer-scale absolute distance measurement similar to present piezoelectricity driven mechanical phase modulation. The electro optic sensor working under free beam propagation can significantly overcome the limitations experienced by mechanical phase modulation technique such as the restricted value for the modulating frequency and as well the high driving voltage requirement.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sinusoidal phase modulating absolute distance measurement interferometer combining frequency-sweeping and multi-wavelength interferometry

Shihua Zhang, Zheyi Xu, Benyong Chen, Liping Yan, and Jiandong Xie
Opt. Express 26(7) 9273-9284 (2018)

Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb

Xianyu Zhao, Xinghua Qu, Fumin Zhang, Yuhang Zhao, and Guoqing Tang
Opt. Lett. 43(4) 807-810 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
    [Crossref]
  2. P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An Overview and a Contribution to the Optical Measurement of Linear Displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
    [Crossref]
  3. H. J. Tiziani, “‘Heterodyne Interferometry using two wavelengths for dimensional measurements,” SPIE 1553, 490–501 (1991).
  4. R. Leach, Optical Measurement of Surface Topography (Springer, 2011).
  5. S. K. Everton, M. Hirscha, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
    [Crossref]
  6. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett. 26(16), 1271–1273 (2001).
    [Crossref] [PubMed]
  7. K. Meiners-Hagen, R. Schödel, F. Pollinger, and A. Abou-Zeid, “Multi-Wavelength Interferometry for Length Measurements Using Diode Lasers,” Meas. Sci. Rev. 9(1), 16–26 (2009).
    [Crossref]
  8. A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39(13), 2107–2115 (2000).
    [Crossref] [PubMed]
  9. J. Petter, “Multi Wavelength Interferometry for High Precision Distance Measurement,” in OPTO 2009 Proceedings of SENSOR + TEST Conference (2009), pp. 129–132.
  10. P. J. de Groot, Handbook of Optical Metrology: Principles and Applications, (CRC, 2015), Chap. 31.
  11. D. Su, M. Chiu, and C. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements’,” J. Opt. 27(1), 19–23 (1996).
    [Crossref]
  12. D. Guo, M. Wang, and S. Tan, “Self-mixing interferometer based on sinusoidal phase modulating technique,” Opt. Express 13(5), 1537–1543 (2005).
    [Crossref] [PubMed]
  13. S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory,” Phys. Rev. B 81, 214116 (2010).
  14. D. Kip and M. Wesner, Photorefractive Materials and their Applications 1 (Springer-Verlag, 2006), Chapter. 10.
  15. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991), Chapter. 18.
  16. T. A. Maldonado, Handbook of Optics, Volume II Devices, Measurements and Properties (McGraw-Hill, Inc., 1995) Chapter. 13.

2016 (1)

S. K. Everton, M. Hirscha, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

2012 (1)

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

2010 (1)

S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory,” Phys. Rev. B 81, 214116 (2010).

2009 (1)

K. Meiners-Hagen, R. Schödel, F. Pollinger, and A. Abou-Zeid, “Multi-Wavelength Interferometry for Length Measurements Using Diode Lasers,” Meas. Sci. Rev. 9(1), 16–26 (2009).
[Crossref]

2005 (1)

2001 (2)

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An Overview and a Contribution to the Optical Measurement of Linear Displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]

C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett. 26(16), 1271–1273 (2001).
[Crossref] [PubMed]

2000 (1)

1996 (1)

D. Su, M. Chiu, and C. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements’,” J. Opt. 27(1), 19–23 (1996).
[Crossref]

1991 (1)

H. J. Tiziani, “‘Heterodyne Interferometry using two wavelengths for dimensional measurements,” SPIE 1553, 490–501 (1991).

Abou-Zeid, A.

K. Meiners-Hagen, R. Schödel, F. Pollinger, and A. Abou-Zeid, “Multi-Wavelength Interferometry for Length Measurements Using Diode Lasers,” Meas. Sci. Rev. 9(1), 16–26 (2009).
[Crossref]

Badizadegan, K.

Berkovic, G.

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

Chen, C.

D. Su, M. Chiu, and C. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements’,” J. Opt. 27(1), 19–23 (1996).
[Crossref]

Chiu, M.

D. Su, M. Chiu, and C. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements’,” J. Opt. 27(1), 19–23 (1996).
[Crossref]

Clare, A. T.

S. K. Everton, M. Hirscha, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Dasari, R. R.

Everton, S. K.

S. K. Everton, M. Hirscha, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Faria, J. A. B.

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An Overview and a Contribution to the Optical Measurement of Linear Displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]

Feld, M. S.

Girao, P. M. B. S.

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An Overview and a Contribution to the Optical Measurement of Linear Displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]

Guo, D.

Hahn, M. S.

Harasaki, A.

Hirscha, M.

S. K. Everton, M. Hirscha, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Leach, R. K.

S. K. Everton, M. Hirscha, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Meiners-Hagen, K.

K. Meiners-Hagen, R. Schödel, F. Pollinger, and A. Abou-Zeid, “Multi-Wavelength Interferometry for Length Measurements Using Diode Lasers,” Meas. Sci. Rev. 9(1), 16–26 (2009).
[Crossref]

Pereira, J. M. C. D.

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An Overview and a Contribution to the Optical Measurement of Linear Displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]

Pollinger, F.

K. Meiners-Hagen, R. Schödel, F. Pollinger, and A. Abou-Zeid, “Multi-Wavelength Interferometry for Length Measurements Using Diode Lasers,” Meas. Sci. Rev. 9(1), 16–26 (2009).
[Crossref]

Postolache, O. A.

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An Overview and a Contribution to the Optical Measurement of Linear Displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]

Sanna, S.

S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory,” Phys. Rev. B 81, 214116 (2010).

Schmidt, W. G.

S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory,” Phys. Rev. B 81, 214116 (2010).

Schmit, J.

Schödel, R.

K. Meiners-Hagen, R. Schödel, F. Pollinger, and A. Abou-Zeid, “Multi-Wavelength Interferometry for Length Measurements Using Diode Lasers,” Meas. Sci. Rev. 9(1), 16–26 (2009).
[Crossref]

Shafir, E.

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

Stravroulakis, P.

S. K. Everton, M. Hirscha, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Su, D.

D. Su, M. Chiu, and C. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements’,” J. Opt. 27(1), 19–23 (1996).
[Crossref]

Tan, S.

Tiziani, H. J.

H. J. Tiziani, “‘Heterodyne Interferometry using two wavelengths for dimensional measurements,” SPIE 1553, 490–501 (1991).

Wang, M.

Wax, A.

Wyant, J. C.

Yang, C.

Adv. Opt. Photonics (1)

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4(4), 441–471 (2012).
[Crossref]

Appl. Opt. (1)

IEEE Sens. J. (1)

P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, “An Overview and a Contribution to the Optical Measurement of Linear Displacement,” IEEE Sens. J. 1(4), 322–331 (2001).
[Crossref]

J. Opt. (1)

D. Su, M. Chiu, and C. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements’,” J. Opt. 27(1), 19–23 (1996).
[Crossref]

Mater. Des. (1)

S. K. Everton, M. Hirscha, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Meas. Sci. Rev. (1)

K. Meiners-Hagen, R. Schödel, F. Pollinger, and A. Abou-Zeid, “Multi-Wavelength Interferometry for Length Measurements Using Diode Lasers,” Meas. Sci. Rev. 9(1), 16–26 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory,” Phys. Rev. B 81, 214116 (2010).

SPIE (1)

H. J. Tiziani, “‘Heterodyne Interferometry using two wavelengths for dimensional measurements,” SPIE 1553, 490–501 (1991).

Other (6)

R. Leach, Optical Measurement of Surface Topography (Springer, 2011).

J. Petter, “Multi Wavelength Interferometry for High Precision Distance Measurement,” in OPTO 2009 Proceedings of SENSOR + TEST Conference (2009), pp. 129–132.

P. J. de Groot, Handbook of Optical Metrology: Principles and Applications, (CRC, 2015), Chap. 31.

D. Kip and M. Wesner, Photorefractive Materials and their Applications 1 (Springer-Verlag, 2006), Chapter. 10.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 1991), Chapter. 18.

T. A. Maldonado, Handbook of Optics, Volume II Devices, Measurements and Properties (McGraw-Hill, Inc., 1995) Chapter. 13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Present MWLI system with PZT based mechanical phase modulation process.
Fig. 2
Fig. 2 Experimental set up with EO crystal LiNbO3 using MWLI.
Fig. 3
Fig. 3 Intensity distribution of the π-phase modulated interferometric signal obtained from the photo-diode voltage during the experiment under (a) mechanical phase modulation; (b) EO phase modulation’.
Fig. 4
Fig. 4 Comparative test on distance measurement sensitivity between PZT and EO driven phase modulation over 1200 seconds for a fixed target position.
Fig. 5
Fig. 5 Performance evaluation on measuring piezo actuated absolute positioning of the target (a) comparison on displacement measurement using PZT and EO phase modulation; (b) verifying displacement measurement by EOM with actual target movement measured by the current PZT based system.
Fig. 6
Fig. 6 Comparison on interferometric stability at higher modulating frequency (~5 kHz) between PZT and EO phase modulation.
Fig. 7
Fig. 7 Performance on measurement of piezo actuated periodic target displacement at higher modulating frequency ~5kHz (a) comparison on displacement measurement between PZT and EO phase modulation; (b) test on linearity between the measured values of target displacement by PZT and EO phase modulation.

Tables (1)

Tables Icon

Table 1 Experimental results obtained from the test for verifying linearity between the measurements performed by PZT and EO phase modulation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I( L,t )= I DC + I AC cos( KL+π (sin( ω p t) )
Λ=  λ 1 λ 2 ( λ 1 λ 2 )

Metrics