Abstract

We report for the first time laser action in resonantly-pumped transparent polycrystalline Er3+:YAG ceramic developed through a 2-step approach combining spark plasma sintering and HIP post treatment. Microstructural and spectroscopic properties, as well as the laser performance of large scale 0.5at.% Er:YAG transparent polycrystalline ceramic are discussed. A maximum slope efficiency of ∼31% and optical-optical efficiency of 20% was measured.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Resonantly pumped Q-switched Er:YAG ceramic laser at 1645 nm

Yong Wang, Ting Zhao, Deyuan Shen, Heyuan Zhu, Jian Zhang, and Dingyuan Tang
Opt. Express 22(20) 24004-24009 (2014)

Post-sintering treatment of neodymium-doped yttrium aluminum garnet (Nd:YAG) transparent ceramics

Lucie Chrétien, Rémy Boulesteix, Alexandre Maître, Christian Sallé, and Yves Reignoux
Opt. Mater. Express 4(10) 2166-2173 (2014)

Highly transparent Nd3+:Lu2O3 produced by spark plasma sintering and its laser oscillation

Liqiong An, Akihiko Ito, Jian Zhang, Dingyuan Tang, and Takashi Goto
Opt. Mater. Express 4(7) 1420-1426 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 µ m-erbium-doped yttrium aluminium garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).
    [Crossref]
  2. L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µ m Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10, 105813 (2013).
    [Crossref]
  3. M. Eichhorn, “Multi-kW-class 1.64 µ m Er3+:YAG lasers based on heat-capacity operation,” Opt. Mater. Express. 1, 321 (2011).
    [Crossref]
  4. S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).
  5. J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of Ceramic YAG Lasers,” Laser Phys. 11(10), 1053–1057 (2001).
  6. J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials: Past and present,” Opt. Mater. 35(4), 693–699 (2012).
    [Crossref]
  7. G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater. 34(3), 499–512 (2012).
    [Crossref]
  8. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [Crossref]
  9. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
    [Crossref]
  10. A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
    [Crossref]
  11. H. Yagi, T. Yanagitani, K. Takaichi, K. I. Ueda, and A. A. Kaminskii, “Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
    [Crossref]
  12. J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).
  13. X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
    [Crossref]
  14. W. Liu, J. Li, B. Jiang, D. Zhang, and Y. Pan, “2.44 kW laser output of Nd:YAG ceramic slab fabricated by a solid-state reactive sintering,” J. Alloys Compd. 538, 258–261 (2012).
    [Crossref]
  15. G. Qin, J. Lu, J. F. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun. 132(2), 103–106 (2004).
    [Crossref]
  16. R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng., R 63(4–6), 127–287 (2009).
    [Crossref]
  17. Z. A. Munir, D. V. Quach, and M. Ohyanagi, “Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process,” J. Am. Ceram. Soc. 94(1), 1–19 (2011).
    [Crossref]
  18. L. An, A. Ito, and T. Goto, “Transparent yttria produced by spark plasma sintering at moderate temperature and pressure profiles,” J. Eur. Ceram. Soc. 32(5), 1035–1040 (2012).
    [Crossref]
  19. D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically Transparent Polycrystalline Al2O3 Produced by Spark Plasma Sintering,” J. Am. Ceram. Soc. 91(1), 151–154 (2008).
    [Crossref]
  20. B.-N. Kim, K. Morita, J.-H. Lim, K. Hiraga, and H. Yoshida, “Effects of Preheating of Powder Before Spark Plasma Sintering of Transparent MgAl2O4 Spinel,” J. Am. Ceram. Soc. 93(8), 2158–2160 (2010).
    [Crossref]
  21. L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc. 31(9), 1597–1602 (2011).
    [Crossref]
  22. G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
    [Crossref]
  23. G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
    [Crossref]
  24. M. Sokol, S. Kalabukhov, V. Kasiyan, M. P. Dariel, and N. Frage, “Functional Properties of Nd:YAG Polycrystalline Ceramics Processed by High-Pressure Spark Plasma Sintering (HPSPS),” J. Am. Ceram. Soc. 99(3), 802–807 (2016).
    [Crossref]
  25. A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
    [Crossref]
  26. C. Marlot, “Elaboration de céramiques transparentes Er YAG : synthèse de poudre par co-précipitation et frittage SPS,” Ph.D. thesis, Université de Bourgogne, Dijon (2013).
  27. J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
    [Crossref]
  28. E. Cavalli, L. Esposito, J. Hostaša, and M. Pedroni, “Synthesis and optical spectroscopy of transparent YAG ceramics activated with Er3+,” J. Eur. Ceram. Soc. 33(8), 1425–1434 (2013).
    [Crossref]
  29. J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
    [Crossref]
  30. R. Chaim, M. Kalina, and J. Z. Shen, “Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering,” J. Eur. Ceram. Soc. 27(11), 3331–3337 (2007).
    [Crossref]
  31. B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
    [Crossref]
  32. G. Spina, G. Bonnefont, P. Palmero, G. Fantozzi, J. Chevalier, and L. Montanaro, “Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics,” J. Eur. Ceram. Soc. 32(11), 2957–2964 (2012).
    [Crossref]
  33. M. Prakasam, O. Viraphong, D. Michau, and A. Largeteau, “Critical parameters to obtain Yb3+ doped Lu2O3 and ZnO transparent ceramics,” Ceram. Int. 40(1, Part B), 1859–1864 (2014).
    [Crossref]
  34. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  35. X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
    [Crossref]
  36. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
    [Crossref] [PubMed]
  37. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]

2017 (2)

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
[Crossref]

2016 (1)

M. Sokol, S. Kalabukhov, V. Kasiyan, M. P. Dariel, and N. Frage, “Functional Properties of Nd:YAG Polycrystalline Ceramics Processed by High-Pressure Spark Plasma Sintering (HPSPS),” J. Am. Ceram. Soc. 99(3), 802–807 (2016).
[Crossref]

2015 (2)

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

2014 (3)

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
[Crossref]

M. Prakasam, O. Viraphong, D. Michau, and A. Largeteau, “Critical parameters to obtain Yb3+ doped Lu2O3 and ZnO transparent ceramics,” Ceram. Int. 40(1, Part B), 1859–1864 (2014).
[Crossref]

2013 (3)

L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µ m Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10, 105813 (2013).
[Crossref]

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

E. Cavalli, L. Esposito, J. Hostaša, and M. Pedroni, “Synthesis and optical spectroscopy of transparent YAG ceramics activated with Er3+,” J. Eur. Ceram. Soc. 33(8), 1425–1434 (2013).
[Crossref]

2012 (7)

W. Liu, J. Li, B. Jiang, D. Zhang, and Y. Pan, “2.44 kW laser output of Nd:YAG ceramic slab fabricated by a solid-state reactive sintering,” J. Alloys Compd. 538, 258–261 (2012).
[Crossref]

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

L. An, A. Ito, and T. Goto, “Transparent yttria produced by spark plasma sintering at moderate temperature and pressure profiles,” J. Eur. Ceram. Soc. 32(5), 1035–1040 (2012).
[Crossref]

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials: Past and present,” Opt. Mater. 35(4), 693–699 (2012).
[Crossref]

G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater. 34(3), 499–512 (2012).
[Crossref]

X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
[Crossref]

G. Spina, G. Bonnefont, P. Palmero, G. Fantozzi, J. Chevalier, and L. Montanaro, “Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics,” J. Eur. Ceram. Soc. 32(11), 2957–2964 (2012).
[Crossref]

2011 (4)

Z. A. Munir, D. V. Quach, and M. Ohyanagi, “Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process,” J. Am. Ceram. Soc. 94(1), 1–19 (2011).
[Crossref]

L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc. 31(9), 1597–1602 (2011).
[Crossref]

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

M. Eichhorn, “Multi-kW-class 1.64 µ m Er3+:YAG lasers based on heat-capacity operation,” Opt. Mater. Express. 1, 321 (2011).
[Crossref]

2010 (1)

B.-N. Kim, K. Morita, J.-H. Lim, K. Hiraga, and H. Yoshida, “Effects of Preheating of Powder Before Spark Plasma Sintering of Transparent MgAl2O4 Spinel,” J. Am. Ceram. Soc. 93(8), 2158–2160 (2010).
[Crossref]

2009 (1)

R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng., R 63(4–6), 127–287 (2009).
[Crossref]

2008 (1)

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically Transparent Polycrystalline Al2O3 Produced by Spark Plasma Sintering,” J. Am. Ceram. Soc. 91(1), 151–154 (2008).
[Crossref]

2007 (3)

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

H. Yagi, T. Yanagitani, K. Takaichi, K. I. Ueda, and A. A. Kaminskii, “Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

R. Chaim, M. Kalina, and J. Z. Shen, “Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering,” J. Eur. Ceram. Soc. 27(11), 3331–3337 (2007).
[Crossref]

2006 (1)

2005 (1)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 µ m-erbium-doped yttrium aluminium garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).
[Crossref]

2004 (2)

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

G. Qin, J. Lu, J. F. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun. 132(2), 103–106 (2004).
[Crossref]

2001 (1)

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of Ceramic YAG Lasers,” Laser Phys. 11(10), 1053–1057 (2001).

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Aggarwal, I.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials: Past and present,” Opt. Mater. 35(4), 693–699 (2012).
[Crossref]

Alombert-Goget, G.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

An, L.

L. An, A. Ito, and T. Goto, “Transparent yttria produced by spark plasma sintering at moderate temperature and pressure profiles,” J. Eur. Ceram. Soc. 32(5), 1035–1040 (2012).
[Crossref]

L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc. 31(9), 1597–1602 (2011).
[Crossref]

Anselmi-Tamburini, U.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically Transparent Polycrystalline Al2O3 Produced by Spark Plasma Sintering,” J. Am. Ceram. Soc. 91(1), 151–154 (2008).
[Crossref]

Aung, Y. L.

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

Ba, X.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

Baker, C.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials: Past and present,” Opt. Mater. 35(4), 693–699 (2012).
[Crossref]

Barraud, E.

A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
[Crossref]

Bigotta, S.

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

Bisson, J. F.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

G. Qin, J. Lu, J. F. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun. 132(2), 103–106 (2004).
[Crossref]

Blanc, A.

A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
[Crossref]

Böhmler, J.

A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
[Crossref]

Bonnefont, G.

G. Spina, G. Bonnefont, P. Palmero, G. Fantozzi, J. Chevalier, and L. Montanaro, “Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics,” J. Eur. Ceram. Soc. 32(11), 2957–2964 (2012).
[Crossref]

Boulon, G.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater. 34(3), 499–512 (2012).
[Crossref]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Cao, G.

R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng., R 63(4–6), 127–287 (2009).
[Crossref]

Cavalli, E.

E. Cavalli, L. Esposito, J. Hostaša, and M. Pedroni, “Synthesis and optical spectroscopy of transparent YAG ceramics activated with Er3+,” J. Eur. Ceram. Soc. 33(8), 1425–1434 (2013).
[Crossref]

Chaim, R.

R. Chaim, M. Kalina, and J. Z. Shen, “Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering,” J. Eur. Ceram. Soc. 27(11), 3331–3337 (2007).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chen, H.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Chen, M.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

Cheng, X.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

Chevalier, J.

G. Spina, G. Bonnefont, P. Palmero, G. Fantozzi, J. Chevalier, and L. Montanaro, “Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics,” J. Eur. Ceram. Soc. 32(11), 2957–2964 (2012).
[Crossref]

Cincotti, A.

R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng., R 63(4–6), 127–287 (2009).
[Crossref]

Ciofini, M.

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

Clarkson, W. A.

d’Astorg, S.

A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
[Crossref]

Dariel, M. P.

M. Sokol, S. Kalabukhov, V. Kasiyan, M. P. Dariel, and N. Frage, “Functional Properties of Nd:YAG Polycrystalline Ceramics Processed by High-Pressure Spark Plasma Sintering (HPSPS),” J. Am. Ceram. Soc. 99(3), 802–807 (2016).
[Crossref]

Diener, K.

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

Dubinskii, M.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 µ m-erbium-doped yttrium aluminium garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).
[Crossref]

Eichhorn, M.

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
[Crossref]

L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µ m Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10, 105813 (2013).
[Crossref]

M. Eichhorn, “Multi-kW-class 1.64 µ m Er3+:YAG lasers based on heat-capacity operation,” Opt. Mater. Express. 1, 321 (2011).
[Crossref]

Esposito, L.

E. Cavalli, L. Esposito, J. Hostaša, and M. Pedroni, “Synthesis and optical spectroscopy of transparent YAG ceramics activated with Er3+,” J. Eur. Ceram. Soc. 33(8), 1425–1434 (2013).
[Crossref]

Fantozzi, G.

G. Spina, G. Bonnefont, P. Palmero, G. Fantozzi, J. Chevalier, and L. Montanaro, “Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics,” J. Eur. Ceram. Soc. 32(11), 2957–2964 (2012).
[Crossref]

Feng, Y.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

G. Qin, J. Lu, J. F. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun. 132(2), 103–106 (2004).
[Crossref]

Frage, N.

M. Sokol, S. Kalabukhov, V. Kasiyan, M. P. Dariel, and N. Frage, “Functional Properties of Nd:YAG Polycrystalline Ceramics Processed by High-Pressure Spark Plasma Sintering (HPSPS),” J. Am. Ceram. Soc. 99(3), 802–807 (2016).
[Crossref]

Frantz, J.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials: Past and present,” Opt. Mater. 35(4), 693–699 (2012).
[Crossref]

Galecki, L.

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µ m Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10, 105813 (2013).
[Crossref]

Garbuzov, D.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 µ m-erbium-doped yttrium aluminium garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).
[Crossref]

Geiss, L.

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

Goto, T.

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

L. An, A. Ito, and T. Goto, “Transparent yttria produced by spark plasma sintering at moderate temperature and pressure profiles,” J. Eur. Ceram. Soc. 32(5), 1035–1040 (2012).
[Crossref]

L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc. 31(9), 1597–1602 (2011).
[Crossref]

Guo, J.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
[Crossref]

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Guyot, Y.

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Guzik, M.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Hiraga, K.

B.-N. Kim, K. Morita, J.-H. Lim, K. Hiraga, and H. Yoshida, “Effects of Preheating of Powder Before Spark Plasma Sintering of Transparent MgAl2O4 Spinel,” J. Am. Ceram. Soc. 93(8), 2158–2160 (2010).
[Crossref]

Hostaša, J.

E. Cavalli, L. Esposito, J. Hostaša, and M. Pedroni, “Synthesis and optical spectroscopy of transparent YAG ceramics activated with Er3+,” J. Eur. Ceram. Soc. 33(8), 1425–1434 (2013).
[Crossref]

Hulbert, D. M.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically Transparent Polycrystalline Al2O3 Produced by Spark Plasma Sintering,” J. Am. Ceram. Soc. 91(1), 151–154 (2008).
[Crossref]

Ibach, T.

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

Ikesue, A.

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Ito, A.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

L. An, A. Ito, and T. Goto, “Transparent yttria produced by spark plasma sintering at moderate temperature and pressure profiles,” J. Eur. Ceram. Soc. 32(5), 1035–1040 (2012).
[Crossref]

L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc. 31(9), 1597–1602 (2011).
[Crossref]

Ivanov, M.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
[Crossref]

Jiang, B.

W. Liu, J. Li, B. Jiang, D. Zhang, and Y. Pan, “2.44 kW laser output of Nd:YAG ceramic slab fabricated by a solid-state reactive sintering,” J. Alloys Compd. 538, 258–261 (2012).
[Crossref]

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

Jiang, D.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically Transparent Polycrystalline Al2O3 Produced by Spark Plasma Sintering,” J. Am. Ceram. Soc. 91(1), 151–154 (2008).
[Crossref]

Kalabukhov, S.

M. Sokol, S. Kalabukhov, V. Kasiyan, M. P. Dariel, and N. Frage, “Functional Properties of Nd:YAG Polycrystalline Ceramics Processed by High-Pressure Spark Plasma Sintering (HPSPS),” J. Am. Ceram. Soc. 99(3), 802–807 (2016).
[Crossref]

Kalina, M.

R. Chaim, M. Kalina, and J. Z. Shen, “Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering,” J. Eur. Ceram. Soc. 27(11), 3331–3337 (2007).
[Crossref]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kamimura, T.

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

Kaminskii, A. A.

H. Yagi, T. Yanagitani, K. Takaichi, K. I. Ueda, and A. A. Kaminskii, “Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of Ceramic YAG Lasers,” Laser Phys. 11(10), 1053–1057 (2001).

Kasiyan, V.

M. Sokol, S. Kalabukhov, V. Kasiyan, M. P. Dariel, and N. Frage, “Functional Properties of Nd:YAG Polycrystalline Ceramics Processed by High-Pressure Spark Plasma Sintering (HPSPS),” J. Am. Ceram. Soc. 99(3), 802–807 (2016).
[Crossref]

Katz, A.

A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
[Crossref]

Kikuchi, M.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

Kim, B.-N.

B.-N. Kim, K. Morita, J.-H. Lim, K. Hiraga, and H. Yoshida, “Effects of Preheating of Powder Before Spark Plasma Sintering of Transparent MgAl2O4 Spinel,” J. Am. Ceram. Soc. 93(8), 2158–2160 (2010).
[Crossref]

Kim, W.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials: Past and present,” Opt. Mater. 35(4), 693–699 (2012).
[Crossref]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kou, H.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Kudryashov, A.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of Ceramic YAG Lasers,” Laser Phys. 11(10), 1053–1057 (2001).

Kudryashov, I.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 µ m-erbium-doped yttrium aluminium garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).
[Crossref]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Land, D.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically Transparent Polycrystalline Al2O3 Produced by Spark Plasma Sintering,” J. Am. Ceram. Soc. 91(1), 151–154 (2008).
[Crossref]

Lapucci, A.

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

Largeteau, A.

M. Prakasam, O. Viraphong, D. Michau, and A. Largeteau, “Critical parameters to obtain Yb3+ doped Lu2O3 and ZnO transparent ceramics,” Ceram. Int. 40(1, Part B), 1859–1864 (2014).
[Crossref]

Lemonnier, S.

A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
[Crossref]

Leriche, A.

A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
[Crossref]

Li, J.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
[Crossref]

W. Liu, J. Li, B. Jiang, D. Zhang, and Y. Pan, “2.44 kW laser output of Nd:YAG ceramic slab fabricated by a solid-state reactive sintering,” J. Alloys Compd. 538, 258–261 (2012).
[Crossref]

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

Licheri, R.

R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng., R 63(4–6), 127–287 (2009).
[Crossref]

Lim, J.-H.

B.-N. Kim, K. Morita, J.-H. Lim, K. Hiraga, and H. Yoshida, “Effects of Preheating of Powder Before Spark Plasma Sintering of Transparent MgAl2O4 Spinel,” J. Am. Ceram. Soc. 93(8), 2158–2160 (2010).
[Crossref]

Lin, L.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

Liu, B.

B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
[Crossref]

Liu, J.

B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
[Crossref]

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

Liu, Q.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

Liu, W.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
[Crossref]

W. Liu, J. Li, B. Jiang, D. Zhang, and Y. Pan, “2.44 kW laser output of Nd:YAG ceramic slab fabricated by a solid-state reactive sintering,” J. Alloys Compd. 538, 258–261 (2012).
[Crossref]

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

Locci, A. M.

R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng., R 63(4–6), 127–287 (2009).
[Crossref]

Lu, J.

G. Qin, J. Lu, J. F. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun. 132(2), 103–106 (2004).
[Crossref]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of Ceramic YAG Lasers,” Laser Phys. 11(10), 1053–1057 (2001).

Luo, D.

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
[Crossref]

Ma, J.

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
[Crossref]

Marlot, C.

C. Marlot, “Elaboration de céramiques transparentes Er YAG : synthèse de poudre par co-précipitation et frittage SPS,” Ph.D. thesis, Université de Bourgogne, Dijon (2013).

Michau, D.

M. Prakasam, O. Viraphong, D. Michau, and A. Largeteau, “Critical parameters to obtain Yb3+ doped Lu2O3 and ZnO transparent ceramics,” Ceram. Int. 40(1, Part B), 1859–1864 (2014).
[Crossref]

Montanaro, L.

G. Spina, G. Bonnefont, P. Palmero, G. Fantozzi, J. Chevalier, and L. Montanaro, “Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics,” J. Eur. Ceram. Soc. 32(11), 2957–2964 (2012).
[Crossref]

Morita, K.

B.-N. Kim, K. Morita, J.-H. Lim, K. Hiraga, and H. Yoshida, “Effects of Preheating of Powder Before Spark Plasma Sintering of Transparent MgAl2O4 Spinel,” J. Am. Ceram. Soc. 93(8), 2158–2160 (2010).
[Crossref]

Mukherjee, A. K.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically Transparent Polycrystalline Al2O3 Produced by Spark Plasma Sintering,” J. Am. Ceram. Soc. 91(1), 151–154 (2008).
[Crossref]

Munir, Z. A.

Z. A. Munir, D. V. Quach, and M. Ohyanagi, “Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process,” J. Am. Ceram. Soc. 94(1), 1–19 (2011).
[Crossref]

Nakayama, S.

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

Ng, T.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically Transparent Polycrystalline Al2O3 Produced by Spark Plasma Sintering,” J. Am. Ceram. Soc. 91(1), 151–154 (2008).
[Crossref]

Ohyanagi, M.

Z. A. Munir, D. V. Quach, and M. Ohyanagi, “Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process,” J. Am. Ceram. Soc. 94(1), 1–19 (2011).
[Crossref]

Orrù, R.

R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng., R 63(4–6), 127–287 (2009).
[Crossref]

Palmero, P.

G. Spina, G. Bonnefont, P. Palmero, G. Fantozzi, J. Chevalier, and L. Montanaro, “Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics,” J. Eur. Ceram. Soc. 32(11), 2957–2964 (2012).
[Crossref]

Pan, Y.

B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
[Crossref]

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

W. Liu, J. Li, B. Jiang, D. Zhang, and Y. Pan, “2.44 kW laser output of Nd:YAG ceramic slab fabricated by a solid-state reactive sintering,” J. Alloys Compd. 538, 258–261 (2012).
[Crossref]

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Pedroni, M.

E. Cavalli, L. Esposito, J. Hostaša, and M. Pedroni, “Synthesis and optical spectroscopy of transparent YAG ceramics activated with Er3+,” J. Eur. Ceram. Soc. 33(8), 1425–1434 (2013).
[Crossref]

Pirri, A.

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

Prabhu, M.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of Ceramic YAG Lasers,” Laser Phys. 11(10), 1053–1057 (2001).

Prakasam, M.

M. Prakasam, O. Viraphong, D. Michau, and A. Largeteau, “Critical parameters to obtain Yb3+ doped Lu2O3 and ZnO transparent ceramics,” Ceram. Int. 40(1, Part B), 1859–1864 (2014).
[Crossref]

Qin, G.

G. Qin, J. Lu, J. F. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun. 132(2), 103–106 (2004).
[Crossref]

Qin, X.

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
[Crossref]

Quach, D. V.

Z. A. Munir, D. V. Quach, and M. Ohyanagi, “Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process,” J. Am. Ceram. Soc. 94(1), 1–19 (2011).
[Crossref]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Sadowski, B.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials: Past and present,” Opt. Mater. 35(4), 693–699 (2012).
[Crossref]

Sahu, J. K.

Sanghera, J.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials: Past and present,” Opt. Mater. 35(4), 693–699 (2012).
[Crossref]

Scharf, H.

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

Schöner, J.

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

Shaw, B.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials: Past and present,” Opt. Mater. 35(4), 693–699 (2012).
[Crossref]

Shen, D.

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Shen, D. Y.

Shen, J. Z.

R. Chaim, M. Kalina, and J. Z. Shen, “Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering,” J. Eur. Ceram. Soc. 27(11), 3331–3337 (2007).
[Crossref]

Shen, Y.

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

Shi, Y.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

Shirakawa, A.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Sokol, M.

M. Sokol, S. Kalabukhov, V. Kasiyan, M. P. Dariel, and N. Frage, “Functional Properties of Nd:YAG Polycrystalline Ceramics Processed by High-Pressure Spark Plasma Sintering (HPSPS),” J. Am. Ceram. Soc. 99(3), 802–807 (2016).
[Crossref]

Sorrel, E.

A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
[Crossref]

Spina, G.

G. Spina, G. Bonnefont, P. Palmero, G. Fantozzi, J. Chevalier, and L. Montanaro, “Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics,” J. Eur. Ceram. Soc. 32(11), 2957–2964 (2012).
[Crossref]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Takaichi, K.

H. Yagi, T. Yanagitani, K. Takaichi, K. I. Ueda, and A. A. Kaminskii, “Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Tang, D.

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
[Crossref]

Toci, G.

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

Ueda, K.

G. Qin, J. Lu, J. F. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun. 132(2), 103–106 (2004).
[Crossref]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of Ceramic YAG Lasers,” Laser Phys. 11(10), 1053–1057 (2001).

Ueda, K. I.

H. Yagi, T. Yanagitani, K. Takaichi, K. I. Ueda, and A. A. Kaminskii, “Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Uematsu, T.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Vannini, M.

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

Villalobos, G.

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials: Past and present,” Opt. Mater. 35(4), 693–699 (2012).
[Crossref]

Vincent, G.

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

Viraphong, O.

M. Prakasam, O. Viraphong, D. Michau, and A. Largeteau, “Critical parameters to obtain Yb3+ doped Lu2O3 and ZnO transparent ceramics,” Ceram. Int. 40(1, Part B), 1859–1864 (2014).
[Crossref]

von Salisch, M.

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

Wang, L.

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

Wang, S.

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
[Crossref]

Xie, T.

B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
[Crossref]

Yagi, H.

H. Yagi, T. Yanagitani, K. Takaichi, K. I. Ueda, and A. A. Kaminskii, “Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

G. Qin, J. Lu, J. F. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun. 132(2), 103–106 (2004).
[Crossref]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of Ceramic YAG Lasers,” Laser Phys. 11(10), 1053–1057 (2001).

Yanagitani, T.

H. Yagi, T. Yanagitani, K. Takaichi, K. I. Ueda, and A. A. Kaminskii, “Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

G. Qin, J. Lu, J. F. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun. 132(2), 103–106 (2004).
[Crossref]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of Ceramic YAG Lasers,” Laser Phys. 11(10), 1053–1057 (2001).

Yang, H.

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
[Crossref]

Yang, X.

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Yang, Y.

X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
[Crossref]

Yoda, T.

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

Yoshida, H.

B.-N. Kim, K. Morita, J.-H. Lim, K. Hiraga, and H. Yoshida, “Effects of Preheating of Powder Before Spark Plasma Sintering of Transparent MgAl2O4 Spinel,” J. Am. Ceram. Soc. 93(8), 2158–2160 (2010).
[Crossref]

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Yoshikawa, A.

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

Yuan, Y.

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

Zendzian, W.

L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µ m Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10, 105813 (2013).
[Crossref]

Zhang, D.

W. Liu, J. Li, B. Jiang, D. Zhang, and Y. Pan, “2.44 kW laser output of Nd:YAG ceramic slab fabricated by a solid-state reactive sintering,” J. Alloys Compd. 538, 258–261 (2012).
[Crossref]

Zhang, J.

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
[Crossref]

Zhang, W.

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

Zhao, T.

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Zhou, G.

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
[Crossref]

Zhou, J.

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

Zhuo, S.

B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
[Crossref]

Appl. Phys. B (1)

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004).
[Crossref]

Appl. Phys. Lett. (1)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6 µ m-erbium-doped yttrium aluminium garnet solid-state laser,” Appl. Phys. Lett. 86, 131115 (2005).
[Crossref]

Ceram. Int. (3)

A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, J. Böhmler, A. Blanc, M. Eichhorn, S. d’Astorg, and A. Leriche, “Influence of powder physicochemical characteristics on microstructural and optical aspects of YAG and Er:YAG ceramics obtained by SPS,” Ceram. Int. 43(14), 10673–10682 (2017).
[Crossref]

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12,” Ceram. Int. 37(1), 119–125 (2011).
[Crossref]

M. Prakasam, O. Viraphong, D. Michau, and A. Largeteau, “Critical parameters to obtain Yb3+ doped Lu2O3 and ZnO transparent ceramics,” Ceram. Int. 40(1, Part B), 1859–1864 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Int. J. Appl. Ceram. Technol. (1)

X. Qin, H. Yang, D. Shen, H. Chen, G. Zhou, D. Luo, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and Optical Properties of Highly Transparent Er:YAG Polycrystalline Ceramics for Eye-Safe Solid-State Lasers,” Int. J. Appl. Ceram. Technol. 10(1), 123–128 (2013).
[Crossref]

J. Alloys Compd. (1)

W. Liu, J. Li, B. Jiang, D. Zhang, and Y. Pan, “2.44 kW laser output of Nd:YAG ceramic slab fabricated by a solid-state reactive sintering,” J. Alloys Compd. 538, 258–261 (2012).
[Crossref]

J. Am. Ceram. Soc. (6)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

J. Li, J. Zhou, Y. Pan, W. Liu, W. Zhang, J. Guo, H. Chen, D. Shen, X. Yang, and T. Zhao, “Solid-State Reactive Sintering and Optical Characteristics of Transparent Er:YAG Laser Ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically Transparent Polycrystalline Al2O3 Produced by Spark Plasma Sintering,” J. Am. Ceram. Soc. 91(1), 151–154 (2008).
[Crossref]

B.-N. Kim, K. Morita, J.-H. Lim, K. Hiraga, and H. Yoshida, “Effects of Preheating of Powder Before Spark Plasma Sintering of Transparent MgAl2O4 Spinel,” J. Am. Ceram. Soc. 93(8), 2158–2160 (2010).
[Crossref]

Z. A. Munir, D. V. Quach, and M. Ohyanagi, “Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process,” J. Am. Ceram. Soc. 94(1), 1–19 (2011).
[Crossref]

M. Sokol, S. Kalabukhov, V. Kasiyan, M. P. Dariel, and N. Frage, “Functional Properties of Nd:YAG Polycrystalline Ceramics Processed by High-Pressure Spark Plasma Sintering (HPSPS),” J. Am. Ceram. Soc. 99(3), 802–807 (2016).
[Crossref]

J. Eur. Ceram. Soc. (5)

L. An, A. Ito, and T. Goto, “Transparent yttria produced by spark plasma sintering at moderate temperature and pressure profiles,” J. Eur. Ceram. Soc. 32(5), 1035–1040 (2012).
[Crossref]

E. Cavalli, L. Esposito, J. Hostaša, and M. Pedroni, “Synthesis and optical spectroscopy of transparent YAG ceramics activated with Er3+,” J. Eur. Ceram. Soc. 33(8), 1425–1434 (2013).
[Crossref]

G. Spina, G. Bonnefont, P. Palmero, G. Fantozzi, J. Chevalier, and L. Montanaro, “Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics,” J. Eur. Ceram. Soc. 32(11), 2957–2964 (2012).
[Crossref]

R. Chaim, M. Kalina, and J. Z. Shen, “Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering,” J. Eur. Ceram. Soc. 27(11), 3331–3337 (2007).
[Crossref]

L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc. 31(9), 1597–1602 (2011).
[Crossref]

Laser Phys. (1)

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of Ceramic YAG Lasers,” Laser Phys. 11(10), 1053–1057 (2001).

Laser Phys. Lett. (1)

L. Galecki, M. Eichhorn, and W. Zendzian, “Pulsed 1.645 µ m Er3+:YAG laser with increased average output power and diffraction limited beam quality,” Laser Phys. Lett. 10, 105813 (2013).
[Crossref]

Mater. Sci. Eng., R (1)

R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng., R 63(4–6), 127–287 (2009).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (9)

B. Liu, J. Li, M. Ivanov, W. Liu, J. Liu, T. Xie, S. Zhuo, Y. Pan, and J. Guo, “Solid-state reactive sintering of Nd:YAG transparent ceramics: The effect of Y2O3 powders pretreatment,” Opt. Mater. 36(9), 1591–1597 (2014).
[Crossref]

X. Qin, H. Yang, G. Zhou, D. Luo, Y. Yang, J. Zhang, S. Wang, J. Ma, and D. Tang, “Fabrication and properties of highly transparent Er:YAG ceramics,” Opt. Mater. 34(6), 973–976 (2012).
[Crossref]

J. Liu, Q. Liu, J. Li, M. Ivanov, X. Ba, Y. Yuan, L. Lin, M. Chen, W. Liu, H. Kou, Y. Shi, H. Chen, Y. Pan, X. Cheng, and J. Guo, “Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics,” Opt. Mater. 37, 706–713 (2014).
[Crossref]

J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, and I. Aggarwal, “Ceramic laser materials: Past and present,” Opt. Mater. 35(4), 693–699 (2012).
[Crossref]

G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater. 34(3), 499–512 (2012).
[Crossref]

A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007).
[Crossref]

H. Yagi, T. Yanagitani, K. Takaichi, K. I. Ueda, and A. A. Kaminskii, “Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics,” Opt. Mater. 29(10), 1258–1262 (2007).
[Crossref]

G. Alombert-Goget, Y. Guyot, M. Guzik, G. Boulon, A. Ito, T. Goto, A. Yoshikawa, and M. Kikuchi, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 1: Structural, thermal conductivity and spectroscopic characterization,” Opt. Mater. 41, 3–11 (2015).
[Crossref]

G. Toci, M. Vannini, M. Ciofini, A. Lapucci, A. Pirri, A. Ito, T. Goto, A. Yoshikawa, A. Ikesue, G. Alombert-Goget, Y. Guyot, and G. Boulon, “Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the Spark Plasma Sintering (SPS) method. Part 2: First laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method,” Opt. Mater. 41, 12–16 (2015).
[Crossref]

Opt. Mater. Express. (1)

M. Eichhorn, “Multi-kW-class 1.64 µ m Er3+:YAG lasers based on heat-capacity operation,” Opt. Mater. Express. 1, 321 (2011).
[Crossref]

Proc. SPIE (1)

S. Bigotta, K. Diener, M. Eichhorn, L. Galecki, L. Geiss, T. Ibach, H. Scharf, M. von Salisch, J. Schöner, and G. Vincent, “Investigation on scalable high-power lasers with enhanced ‘eye-safety’ for future weapon systems,” Proc. SPIE 9990999003 (2017).

Solid State Commun. (1)

G. Qin, J. Lu, J. F. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun. 132(2), 103–106 (2004).
[Crossref]

Other (1)

C. Marlot, “Elaboration de céramiques transparentes Er YAG : synthèse de poudre par co-précipitation et frittage SPS,” Ph.D. thesis, Université de Bourgogne, Dijon (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Er3+:YAG transparent polycrystalline ceramic (ø = 50 mm, t = 3.8 mm) developed by SPS and HIP post-treatment with 0.25 wt% LiF. (b) and (c) SEM images at two different areas observed of the fracture surfaces.
Fig. 2
Fig. 2 In-line transmission, normalized to a thickness of 3 mm, obtained for the 0.5at.% Er3+:YAG transparent polycrystalline ceramic (ø = 50 mm, t = 3.8 mm) developed by SPS-HIP in the present study and the 0.5at.% Er3+:YAG single crystal grown by the Czochralski method.
Fig. 3
Fig. 3 Absorption spectra of the 0.5at.% Er3+:YAG transparent polycrystalline ceramic (ø = 50 mm, t = 3.8 mm) developed by SPS-HIP in the present study and the 0.5at.% Er3+:YAG single crystal grown by the Czochralski method.
Fig. 4
Fig. 4 Lifetime of the 0.5at.% Er3+:YAG transparent polycrystalline ceramic (ø = 50 mm, t = 3.8 mm) developed by SPS-HIP in the present study and the 0.5at.% Er3+:YAG single crystal grown by the Czochralski method.
Fig. 5
Fig. 5 Experimental set-up of the laser cavity
Fig. 6
Fig. 6 CW Laser output power as a function of the incident pump power for different output coupler reflectivity.

Tables (1)

Tables Icon

Table 1 Transmission values at 400 nm and 1100 nm normalised to a thickness of 3 mm obtained for Er3+:YAG transparent polycrystalline ceramics developed by SPS-HIP in the present study and those from the literature processed by pressureless sintering.

Metrics