Abstract

In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 Vrms, a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bistable switching between homeotropic and focal-conic states in an ion-doped chiral nematic liquid crystal cell

Jin-Hun Kim, Jae-Won Huh, Seung-Won Oh, Seong-Min Ji, Young-Seo Jo, Byeong-Hun Yu, and Tae-Hoon Yoon
Opt. Express 25(23) 29180-29188 (2017)

See-through integral imaging display with background occlusion capability

Yuta Yamaguchi and Yasuhiro Takaki
Appl. Opt. 55(3) A144-A149 (2016)

Compact design for optical-see-through holographic displays employing holographic optical elements

Pengcheng Zhou, Yan Li, Shuxin Liu, and Yikai Su
Opt. Express 26(18) 22866-22876 (2018)

References

  • View by:
  • |
  • |
  • |

  1. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  2. J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
    [Crossref]
  3. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  4. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref] [PubMed]
  5. G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
    [Crossref] [PubMed]
  6. K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
    [Crossref] [PubMed]
  7. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [Crossref] [PubMed]
  8. X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
    [Crossref]
  9. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [Crossref] [PubMed]
  10. H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [Crossref] [PubMed]
  11. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [Crossref] [PubMed]
  12. W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett. 12(6), 060010 (2014).
    [Crossref]
  13. S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
    [Crossref]
  14. D. Teng, L. Liu, and B. Wang, “Super multi-view three-dimensional display through spatial-spectrum time-multiplexing of planar aligned OLED microdisplays,” Opt. Express 22(25), 31448–31457 (2014).
    [Crossref] [PubMed]
  15. S. Liu and H. Hua, “Time-multiplexed dual-focal plane head-mounted display with a liquid lens,” Opt. Lett. 34(11), 1642–1644 (2009).
    [Crossref] [PubMed]
  16. D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
    [Crossref] [PubMed]
  17. C.-K. Lee, S. Moon, S. Lee, D. Yoo, J.-Y. Hong, and B. Lee, “Compact three-dimensional head-mounted display system with Savart plate,” Opt. Express 24(17), 19531–19544 (2016).
    [Crossref] [PubMed]
  18. Y.-H. Lee, F. Peng, and S.-T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
    [Crossref] [PubMed]
  19. Y.-H. Lee, G. Tan, Y. Weng, and S.-T. Wu, “Switchable Lens based on Cycloidal Diffractive Waveplate for AR and VR Applications,” SID Symp. Digest48(1), 1061–1064 (2017).
    [Crossref]
  20. Y.-H. Lee, H. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image Plane Display based on Polymer-stabilized Cholesteric Texture,” SID Symp. Digest48(1), 760–762 (2017).
    [Crossref]
  21. G. D. Love, D. M. Hoffman, P. J. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
    [Crossref] [PubMed]
  22. S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
    [Crossref]
  23. H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
    [Crossref]
  24. H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
    [Crossref]
  25. D.-K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2014).
  26. J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 183–192 (2014).
    [Crossref]
  27. F. Du, S. Gauza, and S.-T. Wu, “Influence of curing temperature and high birefringence on the properties of polymerstabilized liquid crystals,” Opt. Express 11(22), 2891–2896 (2003).
    [Crossref] [PubMed]
  28. I. Dierking, “Polymer network–stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
    [Crossref]

2017 (1)

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

2016 (5)

C.-K. Lee, S. Moon, S. Lee, D. Yoo, J.-Y. Hong, and B. Lee, “Compact three-dimensional head-mounted display system with Savart plate,” Opt. Express 24(17), 19531–19544 (2016).
[Crossref] [PubMed]

Y.-H. Lee, F. Peng, and S.-T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[Crossref] [PubMed]

G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
[Crossref] [PubMed]

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

2015 (1)

2014 (5)

2013 (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

2011 (2)

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
[Crossref]

2010 (3)

2009 (2)

2006 (1)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

2005 (1)

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

2003 (1)

2002 (1)

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[Crossref]

2000 (1)

I. Dierking, “Polymer network–stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
[Crossref]

Aksit, K.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Anisetti, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Banks, M. S.

Cakmakci, O.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Carmigniani, J.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Ceravolo, P.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Chen, H.

Y.-H. Lee, H. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image Plane Display based on Polymer-stabilized Cholesteric Texture,” SID Symp. Digest48(1), 760–762 (2017).
[Crossref]

Chen, H.-S.

Chen, P.-J.

Cheng, D.

W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett. 12(6), 060010 (2014).
[Crossref]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Cho, J.

Damiani, E.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Didyk, P.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Dierking, I.

I. Dierking, “Polymer network–stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
[Crossref]

Du, F.

Dunn, D.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Fan, Y.-H.

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Fuchs, H.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Furht, B.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Gao, J.

Gauza, S.

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Hands, P. J.

Hoffman, D. M.

Hong, J.-Y.

Hsieh, P.-Y.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Hu, X.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Hua, H.

Huang, S.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Huang, Y.-P.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Ichihashi, Y.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Ivkovic, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Javidi, B.

Jeong, Y.

Kellnhofer, P.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Kim, D.-W.

S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
[Crossref]

Kim, E.-H.

S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
[Crossref]

Kim, S.-K.

S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
[Crossref]

Kirby, A. K.

Lee, B.

Lee, C.-K.

Lee, D.

Lee, S.

Lee, Y.-H.

Y.-H. Lee, F. Peng, and S.-T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[Crossref] [PubMed]

Y.-H. Lee, H. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image Plane Display based on Polymer-stabilized Cholesteric Texture,” SID Symp. Digest48(1), 760–762 (2017).
[Crossref]

Y.-H. Lee, G. Tan, Y. Weng, and S.-T. Wu, “Switchable Lens based on Cycloidal Diffractive Waveplate for AR and VR Applications,” SID Symp. Digest48(1), 1061–1064 (2017).
[Crossref]

Li, G.

Li, X.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Li, Y.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Lin, Y.-H.

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref] [PubMed]

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Liu, L.

Liu, S.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref] [PubMed]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref] [PubMed]

S. Liu and H. Hua, “Time-multiplexed dual-focal plane head-mounted display with a liquid lens,” Opt. Lett. 34(11), 1642–1644 (2009).
[Crossref] [PubMed]

Liu, Y.

Love, G. D.

Lu, W.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Luebke, D.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Martinez, R.

Y.-H. Lee, H. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image Plane Display based on Polymer-stabilized Cholesteric Texture,” SID Symp. Digest48(1), 760–762 (2017).
[Crossref]

Moon, S.

Myszkowski, K.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Oi, R.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Okui, M.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Pang, S.

Y.-H. Lee, H. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image Plane Display based on Polymer-stabilized Cholesteric Texture,” SID Symp. Digest48(1), 760–762 (2017).
[Crossref]

Peng, F.

Ren, H.

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[Crossref]

Rolland, J.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Rong, N.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Sasaki, H.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Senoh, T.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Song, W.

Su, Y.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Sun, J.

J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

Sun, Y.

Y.-H. Lee, H. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image Plane Display based on Polymer-stabilized Cholesteric Texture,” SID Symp. Digest48(1), 760–762 (2017).
[Crossref]

Tan, G.

Y.-H. Lee, G. Tan, Y. Weng, and S.-T. Wu, “Switchable Lens based on Cycloidal Diffractive Waveplate for AR and VR Applications,” SID Symp. Digest48(1), 1061–1064 (2017).
[Crossref]

Teng, D.

Tippets, C.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Torell, K.

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

Wakunami, K.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Wang, B.

Wang, Y.

Wang, Y.-J.

Weng, Y.

Y.-H. Lee, G. Tan, Y. Weng, and S.-T. Wu, “Switchable Lens based on Cycloidal Diffractive Waveplate for AR and VR Applications,” SID Symp. Digest48(1), 1061–1064 (2017).
[Crossref]

Wu, S.-T.

Y.-H. Lee, F. Peng, and S.-T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[Crossref] [PubMed]

J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

F. Du, S. Gauza, and S.-T. Wu, “Influence of curing temperature and high birefringence on the properties of polymerstabilized liquid crystals,” Opt. Express 11(22), 2891–2896 (2003).
[Crossref] [PubMed]

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[Crossref]

Y.-H. Lee, H. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image Plane Display based on Polymer-stabilized Cholesteric Texture,” SID Symp. Digest48(1), 760–762 (2017).
[Crossref]

Y.-H. Lee, G. Tan, Y. Weng, and S.-T. Wu, “Switchable Lens based on Cycloidal Diffractive Waveplate for AR and VR Applications,” SID Symp. Digest48(1), 1061–1064 (2017).
[Crossref]

Yamamoto, K.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Yoo, D.

Zhou, P.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Adv. Mater. (1)

I. Dierking, “Polymer network–stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
[Crossref]

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Trans. Vis. Comput. Graph. (2)

D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs, “Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors,” IEEE Trans. Vis. Comput. Graph. 23(4), 1322–1331 (2017).
[Crossref] [PubMed]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[Crossref]

J. Disp. Technol. (2)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

J. Polym. Sci., Part B: Polym. Phys. (1)

J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

J. Soc. Inf. Disp. (1)

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Multimedia Tools Appl. (1)

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Nat. Commun. (1)

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y.-P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7, 12954 (2016).
[Crossref] [PubMed]

Opt. Eng. (1)

S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
[Crossref]

Opt. Express (9)

D. Teng, L. Liu, and B. Wang, “Super multi-view three-dimensional display through spatial-spectrum time-multiplexing of planar aligned OLED microdisplays,” Opt. Express 22(25), 31448–31457 (2014).
[Crossref] [PubMed]

C.-K. Lee, S. Moon, S. Lee, D. Yoo, J.-Y. Hong, and B. Lee, “Compact three-dimensional head-mounted display system with Savart plate,” Opt. Express 24(17), 19531–19544 (2016).
[Crossref] [PubMed]

Y.-H. Lee, F. Peng, and S.-T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[Crossref] [PubMed]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref] [PubMed]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref] [PubMed]

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref] [PubMed]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

F. Du, S. Gauza, and S.-T. Wu, “Influence of curing temperature and high birefringence on the properties of polymerstabilized liquid crystals,” Opt. Express 11(22), 2891–2896 (2003).
[Crossref] [PubMed]

G. D. Love, D. M. Hoffman, P. J. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (3)

Y.-H. Lee, G. Tan, Y. Weng, and S.-T. Wu, “Switchable Lens based on Cycloidal Diffractive Waveplate for AR and VR Applications,” SID Symp. Digest48(1), 1061–1064 (2017).
[Crossref]

Y.-H. Lee, H. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image Plane Display based on Polymer-stabilized Cholesteric Texture,” SID Symp. Digest48(1), 760–762 (2017).
[Crossref]

D.-K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2014).

Supplementary Material (1)

NameDescription
» Visualization 1       Captured video of augmented scene, when the camera changes focus

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) System scheme of the multi-plane optical see-through display. Reverse mode PSLC scattering shutter (b) in the transparent state (voltage off) and (c).scattering state (voltage on).
Fig. 2
Fig. 2 Schematics of a reverse mode PSLC film in (a) the clear and (b) scattering states, respectively.
Fig. 3
Fig. 3 (a) V-T curves of two reverse mode PSLC films using a negative liquid crystal with different monomers RM 257 and TMPTA, respectively. (b) Transmittance of the clear and scattering states at different polarization angles for a RM257 PSLC scattering shutter (red line) and a TMPTA PSLC scattering shutter (blue line).
Fig. 4
Fig. 4 Response times of (a) the RM257 PSLC scattering shutter and (b) TMPTA PSLC scattering shutter.
Fig. 5
Fig. 5 Measured (a) V-T curves and (b) response times of the 9 μm PSLC scattering shutters with different RM257 concentrations.
Fig. 6
Fig. 6 Measured V-T curves of PSLC scattering shutters with different cell gaps.
Fig. 7
Fig. 7 Quasi-collimated image source design based on a commercial projector (a) ray tracing diagram and (b) experimental setup.
Fig. 8
Fig. 8 Displayed two-depth color images. Camera focused (a) at 20 cm and (b) at 80cm.
Fig. 9
Fig. 9 Displayed four-depth color images. Camera focused (a) at 20 cm, (b) at 40cm, (c) at 80cm and (d) at 500cm.

Metrics