Abstract

A 2D tomographic terahertz imaging set-up using a single pixel imaging approach is realized, where a liquid helium cooled bolometer is utilized as a bucket detector and a mercury-arc lamp serves as a broadband terahertz source. The different patterns of the terahertz radiation, which are necessary for the single pixel imaging approach, are realized by spatially addressed photodoping of a high resistivity float zone silicon window, employing a near-infrared laser diode, which is spatially modulated by a digital micromirror device. The two investigated sample objects have cylindrical and cuboid shapes and consist of polypropylene. Both sample shapes cause strong influences of refraction, reflection and diffraction, which distort the measured projections and thus have to be considered in the tomographic reconstruction. In order to consider these effects, a model is developed which combines refraction and diffraction effects by a hybrid approach using ray tracing and scalar diffraction theory yielding finally projections of the sample objects. These simulated projections are compared to the measured projections and show a good agreement between the experimental results and the developed model. In accordance with this result, an optimization problem is formulated, which offers an approach for tomographic reconstruction using the developed model.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation on reconstruction methods applied to 3D terahertz computed tomography

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham
Opt. Express 19(6) 5105-5117 (2011)

Propagation beam consideration for 3D THz computed tomography

B. Recur, J. P. Guillet, I. Manek-Hönninger, J. C. Delagnes, W. Benharbone, P. Desbarats, J. P. Domenger, L. Canioni, and P. Mounaix
Opt. Express 20(6) 5817-5829 (2012)

Real-time line projection for fast terahertz spectral computed tomography

Emmanuel Abraham, Yoshiyuki Ohgi, Masa-aki Minami, Mukesh Jewariya, Masaya Nagai, Tsutomu Araki, and Takeshi Yasui
Opt. Lett. 36(11) 2119-2121 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 1514–1527 (2007).
  2. K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47(21), 3743–3748 (2002).
  3. P. H. Siegel, W. Dai, R. A. Kloner, M. Csete, and V. Pikov, “First millimeter-wave animal in vivo measurements of L-Glucose and D-Glucose: Further steps towards a non-invasive glucometer,” in Proceedings of 41st International Conference on Infrared, Millimeter, and Terahertz waves (IEEE, 2016).
  4. R. Gente, S. F. Busch, E.-M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. THz Sci. Techn. 6(5), 754–756 (2016).
  5. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36(13), 2587–2589 (2011).
  6. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19(6), 5105–5117 (2011).
  7. R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).
  8. J. Zdanevičius, M. Bauer, S. Boppel, V. Palenskis, A. Lisauskas, V. Krozer, and H. G. Roskos, “Camera for high-speed THz imaging,” J. Infrared Millim. Te. 36(10), 986–997 (2015).
  9. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
  10. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).
  11. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
  12. D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507–12518 (2013).
  13. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
  14. R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).
  15. J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Caniono, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of Terahertz Tomography Techniques,” J. Infrared Millim. Te. 35(4), 382–411 (2014).
  16. A. Brahm, A. Wilms, M. Tymoshchuk, C. Grossmann, G. Notni, and A. Tünnermann, “Optical Effects at projection measurements for Terahertz tomography,” Opt. Laser Technol. 62, 49–57 (2014).
  17. T. Mohr, S. Breuer, G. Giuliani, and W. Elsäßer, “Two-dimensional tomographic terahertz imaging by homodyne self-mixing,” Opt. Express 23(21), 27221–27229 (2015).
  18. S. Mukherjee, J. Federici, P. Lopes, and M. Cabral, “Elimination of Fresnel Reflection Boundary Effects and Beam Steering in Pulsed Terahertz Computed Tomography,” J. Infrared Millim. Te. 34(9), 539–555 (2013).
  19. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
  20. P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene,” ACS Nano 6(10), 9118–9124 (2012).
  21. S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37(8), 1391–1393 (2012).
  22. W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24(22), 25129–25147 (2016).
  23. J. B. Perraud, J. Bou Sleiman, B. Recur, H. Balacey, F. Simoens, J. P. Guillet, and P. Mounaix, “Liquid index matching for 2D and 3D terahertz imaging,” Appl. Optics 55(32), 9185–9192 (2016).
  24. D. J. Butler and G. W. Forbes, “Fiber-diameter measurement by occlusion of a Gaussian beam,” Appl. Optics 37(13), 2598–2607 (1998).
  25. D. G. Voelz, Computational Fourier Optics: A MATLAB® Tutorial, SPIE (2011).
  26. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19(26), B848–B861 (2011).
  27. S. Augustin, J. Hieronymus, P. Jung, and H.-W. Hübers, “Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting,” J. Infrared Millim. Te. 36(5), 496–512 (2015).
  28. S. Cavuoti, M. Garofalo, M. Brescia, A. Pescape, G. Longo, and G. Ventre, “Genetic Algorithm Modeling with GPU Parallel Computing Technology,” in Proceedings of Neural Nets and Surroundings: 22nd Italian Workshop on Neural Nets19, 29–39 (2013).

2016 (4)

R. Gente, S. F. Busch, E.-M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. THz Sci. Techn. 6(5), 754–756 (2016).

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).

W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt. Express 24(22), 25129–25147 (2016).

J. B. Perraud, J. Bou Sleiman, B. Recur, H. Balacey, F. Simoens, J. P. Guillet, and P. Mounaix, “Liquid index matching for 2D and 3D terahertz imaging,” Appl. Optics 55(32), 9185–9192 (2016).

2015 (4)

S. Augustin, J. Hieronymus, P. Jung, and H.-W. Hübers, “Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting,” J. Infrared Millim. Te. 36(5), 496–512 (2015).

T. Mohr, S. Breuer, G. Giuliani, and W. Elsäßer, “Two-dimensional tomographic terahertz imaging by homodyne self-mixing,” Opt. Express 23(21), 27221–27229 (2015).

J. Zdanevičius, M. Bauer, S. Boppel, V. Palenskis, A. Lisauskas, V. Krozer, and H. G. Roskos, “Camera for high-speed THz imaging,” J. Infrared Millim. Te. 36(10), 986–997 (2015).

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).

2014 (3)

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Caniono, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of Terahertz Tomography Techniques,” J. Infrared Millim. Te. 35(4), 382–411 (2014).

A. Brahm, A. Wilms, M. Tymoshchuk, C. Grossmann, G. Notni, and A. Tünnermann, “Optical Effects at projection measurements for Terahertz tomography,” Opt. Laser Technol. 62, 49–57 (2014).

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

2013 (3)

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507–12518 (2013).

S. Mukherjee, J. Federici, P. Lopes, and M. Cabral, “Elimination of Fresnel Reflection Boundary Effects and Beam Steering in Pulsed Terahertz Computed Tomography,” J. Infrared Millim. Te. 34(9), 539–555 (2013).

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).

2012 (3)

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene,” ACS Nano 6(10), 9118–9124 (2012).

S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37(8), 1391–1393 (2012).

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).

2011 (3)

2008 (1)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).

2007 (2)

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 1514–1527 (2007).

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).

2002 (1)

K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47(21), 3743–3748 (2002).

1998 (1)

D. J. Butler and G. W. Forbes, “Fiber-diameter measurement by occlusion of a Gaussian beam,” Appl. Optics 37(13), 2598–2607 (1998).

Abraham, E.

Al Hadi, R.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).

Augustin, S.

S. Augustin, J. Hieronymus, P. Jung, and H.-W. Hübers, “Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting,” J. Infrared Millim. Te. 36(5), 496–512 (2015).

Balacey, H.

J. B. Perraud, J. Bou Sleiman, B. Recur, H. Balacey, F. Simoens, J. P. Guillet, and P. Mounaix, “Liquid index matching for 2D and 3D terahertz imaging,” Appl. Optics 55(32), 9185–9192 (2016).

Balzer, J. C.

R. Gente, S. F. Busch, E.-M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. THz Sci. Techn. 6(5), 754–756 (2016).

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).

Batenburg, K. J.

Bauer, M.

J. Zdanevičius, M. Bauer, S. Boppel, V. Palenskis, A. Lisauskas, V. Krozer, and H. G. Roskos, “Camera for high-speed THz imaging,” J. Infrared Millim. Te. 36(10), 986–997 (2015).

Bauer, T.

K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47(21), 3743–3748 (2002).

Bleichrodt, F.

Boppel, S.

J. Zdanevičius, M. Bauer, S. Boppel, V. Palenskis, A. Lisauskas, V. Krozer, and H. G. Roskos, “Camera for high-speed THz imaging,” J. Infrared Millim. Te. 36(10), 986–997 (2015).

Bou Sleiman, J.

J. B. Perraud, J. Bou Sleiman, B. Recur, H. Balacey, F. Simoens, J. P. Guillet, and P. Mounaix, “Liquid index matching for 2D and 3D terahertz imaging,” Appl. Optics 55(32), 9185–9192 (2016).

Bousquet, B.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Caniono, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of Terahertz Tomography Techniques,” J. Infrared Millim. Te. 35(4), 382–411 (2014).

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).

Bowman, R. W.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).

Brahm, A.

A. Brahm, A. Wilms, M. Tymoshchuk, C. Grossmann, G. Notni, and A. Tünnermann, “Optical Effects at projection measurements for Terahertz tomography,” Opt. Laser Technol. 62, 49–57 (2014).

Brescia, M.

S. Cavuoti, M. Garofalo, M. Brescia, A. Pescape, G. Longo, and G. Ventre, “Genetic Algorithm Modeling with GPU Parallel Computing Technology,” in Proceedings of Neural Nets and Surroundings: 22nd Italian Workshop on Neural Nets19, 29–39 (2013).

Breuer, S.

Brodyanski, A.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene,” ACS Nano 6(10), 9118–9124 (2012).

Busch, S.

Busch, S. F.

R. Gente, S. F. Busch, E.-M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. THz Sci. Techn. 6(5), 754–756 (2016).

Butler, D. J.

D. J. Butler and G. W. Forbes, “Fiber-diameter measurement by occlusion of a Gaussian beam,” Appl. Optics 37(13), 2598–2607 (1998).

Cabral, M.

S. Mukherjee, J. Federici, P. Lopes, and M. Cabral, “Elimination of Fresnel Reflection Boundary Effects and Beam Steering in Pulsed Terahertz Computed Tomography,” J. Infrared Millim. Te. 34(9), 539–555 (2013).

Caniono, L.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Caniono, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of Terahertz Tomography Techniques,” J. Infrared Millim. Te. 35(4), 382–411 (2014).

Cant, J.

Cathelin, A.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).

Caumes, J.-P.

Cavuoti, S.

S. Cavuoti, M. Garofalo, M. Brescia, A. Pescape, G. Longo, and G. Ventre, “Genetic Algorithm Modeling with GPU Parallel Computing Technology,” in Proceedings of Neural Nets and Surroundings: 22nd Italian Workshop on Neural Nets19, 29–39 (2013).

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).

Chassagne, B.

Chen, Y.

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 1514–1527 (2007).

Csete, M.

P. H. Siegel, W. Dai, R. A. Kloner, M. Csete, and V. Pikov, “First millimeter-wave animal in vivo measurements of L-Glucose and D-Glucose: Further steps towards a non-invasive glucometer,” in Proceedings of 41st International Conference on Infrared, Millimeter, and Terahertz waves (IEEE, 2016).

Czasch, S.

K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47(21), 3743–3748 (2002).

Dabravolski, A.

Dai, W.

P. H. Siegel, W. Dai, R. A. Kloner, M. Csete, and V. Pikov, “First millimeter-wave animal in vivo measurements of L-Glucose and D-Glucose: Further steps towards a non-invasive glucometer,” in Proceedings of 41st International Conference on Infrared, Millimeter, and Terahertz waves (IEEE, 2016).

Davies, A. G.

De Beenhouwer, J.

Dean, P.

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).

Desbarats, P.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Caniono, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of Terahertz Tomography Techniques,” J. Infrared Millim. Te. 35(4), 382–411 (2014).

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19(6), 5105–5117 (2011).

Dupuis, A.

Edgar, M. P.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).

Elsäßer, W.

Federici, J.

S. Mukherjee, J. Federici, P. Lopes, and M. Cabral, “Elimination of Fresnel Reflection Boundary Effects and Beam Steering in Pulsed Terahertz Computed Tomography,” J. Infrared Millim. Te. 34(9), 539–555 (2013).

Forbes, G. W.

D. J. Butler and G. W. Forbes, “Fiber-diameter measurement by occlusion of a Gaussian beam,” Appl. Optics 37(13), 2598–2607 (1998).

Forster, W.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).

Frederique, L.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Caniono, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of Terahertz Tomography Techniques,” J. Infrared Millim. Te. 35(4), 382–411 (2014).

Garcia-Pomar, J. L.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene,” ACS Nano 6(10), 9118–9124 (2012).

Garofalo, M.

S. Cavuoti, M. Garofalo, M. Brescia, A. Pescape, G. Longo, and G. Ventre, “Genetic Algorithm Modeling with GPU Parallel Computing Technology,” in Proceedings of Neural Nets and Surroundings: 22nd Italian Workshop on Neural Nets19, 29–39 (2013).

Gente, R.

R. Gente, S. F. Busch, E.-M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. THz Sci. Techn. 6(5), 754–756 (2016).

Gibson, G. M.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).

Giuliani, G.

Grossmann, C.

A. Brahm, A. Wilms, M. Tymoshchuk, C. Grossmann, G. Notni, and A. Tünnermann, “Optical Effects at projection measurements for Terahertz tomography,” Opt. Laser Technol. 62, 49–57 (2014).

Grzyb, J.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).

Guillet, J. P.

J. B. Perraud, J. Bou Sleiman, B. Recur, H. Balacey, F. Simoens, J. P. Guillet, and P. Mounaix, “Liquid index matching for 2D and 3D terahertz imaging,” Appl. Optics 55(32), 9185–9192 (2016).

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Caniono, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of Terahertz Tomography Techniques,” J. Infrared Millim. Te. 35(4), 382–411 (2014).

Harrison, P.

Hendry, E.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).

Hieronymus, J.

S. Augustin, J. Hieronymus, P. Jung, and H.-W. Hübers, “Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting,” J. Infrared Millim. Te. 36(5), 496–512 (2015).

Hirschmann, C. B.

R. Gente, S. F. Busch, E.-M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. THz Sci. Techn. 6(5), 754–756 (2016).

Hobson, P. A.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).

Höh, M.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene,” ACS Nano 6(10), 9118–9124 (2012).

Hornett, S. M.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).

Hübers, H.-W.

S. Augustin, J. Hieronymus, P. Jung, and H.-W. Hübers, “Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting,” J. Infrared Millim. Te. 36(5), 496–512 (2015).

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

Ikonic, Z.

Indjin, D.

Janssens, E.

Jung, P.

S. Augustin, J. Hieronymus, P. Jung, and H.-W. Hübers, “Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting,” J. Infrared Millim. Te. 36(5), 496–512 (2015).

Kaiser, A.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).

Karpowicz, N.

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 1514–1527 (2007).

Keller, H. M.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).

Khanna, S. P.

Kliese, R.

Kloner, R. A.

P. H. Siegel, W. Dai, R. A. Kloner, M. Csete, and V. Pikov, “First millimeter-wave animal in vivo measurements of L-Glucose and D-Glucose: Further steps towards a non-invasive glucometer,” in Proceedings of 41st International Conference on Infrared, Millimeter, and Terahertz waves (IEEE, 2016).

Koch, M.

R. Gente, S. F. Busch, E.-M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. THz Sci. Techn. 6(5), 754–756 (2016).

S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37(8), 1391–1393 (2012).

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

Krozer, V.

J. Zdanevičius, M. Bauer, S. Boppel, V. Palenskis, A. Lisauskas, V. Krozer, and H. G. Roskos, “Camera for high-speed THz imaging,” J. Infrared Millim. Te. 36(10), 986–997 (2015).

Lachab, M.

Leonhardt, R.

K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47(21), 3743–3748 (2002).

Lim, Y. L.

Linfield, E. H.

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

Lisauskas, A.

J. Zdanevičius, M. Bauer, S. Boppel, V. Palenskis, A. Lisauskas, V. Krozer, and H. G. Roskos, “Camera for high-speed THz imaging,” J. Infrared Millim. Te. 36(10), 986–997 (2015).

Liu, H.-B.

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 1514–1527 (2007).

Löffler, T.

K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47(21), 3743–3748 (2002).

Longo, G.

S. Cavuoti, M. Garofalo, M. Brescia, A. Pescape, G. Longo, and G. Ventre, “Genetic Algorithm Modeling with GPU Parallel Computing Technology,” in Proceedings of Neural Nets and Surroundings: 22nd Italian Workshop on Neural Nets19, 29–39 (2013).

Lopes, P.

S. Mukherjee, J. Federici, P. Lopes, and M. Cabral, “Elimination of Fresnel Reflection Boundary Effects and Beam Steering in Pulsed Terahertz Computed Tomography,” J. Infrared Millim. Te. 34(9), 539–555 (2013).

Manek-Hönninger, I.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Caniono, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of Terahertz Tomography Techniques,” J. Infrared Millim. Te. 35(4), 382–411 (2014).

Mazhorova, A.

Mitchell, K. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).

Mittleman, D. M.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).

Mohr, T.

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

Mounaix, P.

J. B. Perraud, J. Bou Sleiman, B. Recur, H. Balacey, F. Simoens, J. P. Guillet, and P. Mounaix, “Liquid index matching for 2D and 3D terahertz imaging,” Appl. Optics 55(32), 9185–9192 (2016).

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Caniono, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of Terahertz Tomography Techniques,” J. Infrared Millim. Te. 35(4), 382–411 (2014).

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19(6), 5105–5117 (2011).

Mukherjee, S.

S. Mukherjee, J. Federici, P. Lopes, and M. Cabral, “Elimination of Fresnel Reflection Boundary Effects and Beam Steering in Pulsed Terahertz Computed Tomography,” J. Infrared Millim. Te. 34(9), 539–555 (2013).

Nikolic, M.

Notni, G.

A. Brahm, A. Wilms, M. Tymoshchuk, C. Grossmann, G. Notni, and A. Tünnermann, “Optical Effects at projection measurements for Terahertz tomography,” Opt. Laser Technol. 62, 49–57 (2014).

Padgett, M. J.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507–12518 (2013).

Palenskis, V.

J. Zdanevičius, M. Bauer, S. Boppel, V. Palenskis, A. Lisauskas, V. Krozer, and H. G. Roskos, “Camera for high-speed THz imaging,” J. Infrared Millim. Te. 36(10), 986–997 (2015).

Palenstijn, W. J.

Perraud, J. B.

J. B. Perraud, J. Bou Sleiman, B. Recur, H. Balacey, F. Simoens, J. P. Guillet, and P. Mounaix, “Liquid index matching for 2D and 3D terahertz imaging,” Appl. Optics 55(32), 9185–9192 (2016).

Pescape, A.

S. Cavuoti, M. Garofalo, M. Brescia, A. Pescape, G. Longo, and G. Ventre, “Genetic Algorithm Modeling with GPU Parallel Computing Technology,” in Proceedings of Neural Nets and Surroundings: 22nd Italian Workshop on Neural Nets19, 29–39 (2013).

Pfeiffer, U. R.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).

Pikov, V.

P. H. Siegel, W. Dai, R. A. Kloner, M. Csete, and V. Pikov, “First millimeter-wave animal in vivo measurements of L-Glucose and D-Glucose: Further steps towards a non-invasive glucometer,” in Proceedings of 41st International Conference on Infrared, Millimeter, and Terahertz waves (IEEE, 2016).

Quast, H.

K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47(21), 3743–3748 (2002).

Radwell, N.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).

Rahm, M.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene,” ACS Nano 6(10), 9118–9124 (2012).

Rakic, A. D.

Recur, B.

J. B. Perraud, J. Bou Sleiman, B. Recur, H. Balacey, F. Simoens, J. P. Guillet, and P. Mounaix, “Liquid index matching for 2D and 3D terahertz imaging,” Appl. Optics 55(32), 9185–9192 (2016).

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Caniono, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of Terahertz Tomography Techniques,” J. Infrared Millim. Te. 35(4), 382–411 (2014).

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19(6), 5105–5117 (2011).

Reinhard, B.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene,” ACS Nano 6(10), 9118–9124 (2012).

Roskos, H. G.

J. Zdanevičius, M. Bauer, S. Boppel, V. Palenskis, A. Lisauskas, V. Krozer, and H. G. Roskos, “Camera for high-speed THz imaging,” J. Infrared Millim. Te. 36(10), 986–997 (2015).

K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47(21), 3743–3748 (2002).

Rozé, M.

Salort, S.

Scheller, M.

Scherger, B.

Schneider, L. M.

R. Gente, S. F. Busch, E.-M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. THz Sci. Techn. 6(5), 754–756 (2016).

Sherry, H.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507–12518 (2013).

Siebert, K. J.

K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47(21), 3743–3748 (2002).

Siegel, P. H.

P. H. Siegel, W. Dai, R. A. Kloner, M. Csete, and V. Pikov, “First millimeter-wave animal in vivo measurements of L-Glucose and D-Glucose: Further steps towards a non-invasive glucometer,” in Proceedings of 41st International Conference on Infrared, Millimeter, and Terahertz waves (IEEE, 2016).

Sijbers, J.

Simoens, F.

J. B. Perraud, J. Bou Sleiman, B. Recur, H. Balacey, F. Simoens, J. P. Guillet, and P. Mounaix, “Liquid index matching for 2D and 3D terahertz imaging,” Appl. Optics 55(32), 9185–9192 (2016).

Skorobogatiy, M.

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

Stantchev, R. I.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).

Stübling, E.-M.

R. Gente, S. F. Busch, E.-M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. THz Sci. Techn. 6(5), 754–756 (2016).

Sun, B.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).

Thomson, M.

K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47(21), 3743–3748 (2002).

Tünnermann, A.

A. Brahm, A. Wilms, M. Tymoshchuk, C. Grossmann, G. Notni, and A. Tünnermann, “Optical Effects at projection measurements for Terahertz tomography,” Opt. Laser Technol. 62, 49–57 (2014).

Tymoshchuk, M.

A. Brahm, A. Wilms, M. Tymoshchuk, C. Grossmann, G. Notni, and A. Tünnermann, “Optical Effects at projection measurements for Terahertz tomography,” Opt. Laser Technol. 62, 49–57 (2014).

Ung, B.

Valavanis, A.

van Aarle, W.

Ventre, G.

S. Cavuoti, M. Garofalo, M. Brescia, A. Pescape, G. Longo, and G. Ventre, “Genetic Algorithm Modeling with GPU Parallel Computing Technology,” in Proceedings of Neural Nets and Surroundings: 22nd Italian Workshop on Neural Nets19, 29–39 (2013).

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).

Voelz, D. G.

D. G. Voelz, Computational Fourier Optics: A MATLAB® Tutorial, SPIE (2011).

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507–12518 (2013).

Weis, P.

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene,” ACS Nano 6(10), 9118–9124 (2012).

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).

Welsh, S. S.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).

Wilms, A.

A. Brahm, A. Wilms, M. Tymoshchuk, C. Grossmann, G. Notni, and A. Tünnermann, “Optical Effects at projection measurements for Terahertz tomography,” Opt. Laser Technol. 62, 49–57 (2014).

Younus, A.

Zdanevicius, J.

J. Zdanevičius, M. Bauer, S. Boppel, V. Palenskis, A. Lisauskas, V. Krozer, and H. G. Roskos, “Camera for high-speed THz imaging,” J. Infrared Millim. Te. 36(10), 986–997 (2015).

Zhang, X.-C.

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 1514–1527 (2007).

Zhao, Y.

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).

Zhong, H.

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 1514–1527 (2007).

ACS Nano (1)

P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene,” ACS Nano 6(10), 9118–9124 (2012).

Appl. Optics (2)

J. B. Perraud, J. Bou Sleiman, B. Recur, H. Balacey, F. Simoens, J. P. Guillet, and P. Mounaix, “Liquid index matching for 2D and 3D terahertz imaging,” Appl. Optics 55(32), 9185–9192 (2016).

D. J. Butler and G. W. Forbes, “Fiber-diameter measurement by occlusion of a Gaussian beam,” Appl. Optics 37(13), 2598–2607 (1998).

Appl. Phys. Lett. (1)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).

IEEE J. Solid-State Circuits (1)

R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012).

IEEE Trans. THz Sci. Techn. (1)

R. Gente, S. F. Busch, E.-M. Stübling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. THz Sci. Techn. 6(5), 754–756 (2016).

J. Infrared Millim. Te. (4)

J. Zdanevičius, M. Bauer, S. Boppel, V. Palenskis, A. Lisauskas, V. Krozer, and H. G. Roskos, “Camera for high-speed THz imaging,” J. Infrared Millim. Te. 36(10), 986–997 (2015).

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Caniono, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of Terahertz Tomography Techniques,” J. Infrared Millim. Te. 35(4), 382–411 (2014).

S. Mukherjee, J. Federici, P. Lopes, and M. Cabral, “Elimination of Fresnel Reflection Boundary Effects and Beam Steering in Pulsed Terahertz Computed Tomography,” J. Infrared Millim. Te. 34(9), 539–555 (2013).

S. Augustin, J. Hieronymus, P. Jung, and H.-W. Hübers, “Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting,” J. Infrared Millim. Te. 36(5), 496–512 (2015).

Nat. Photonics (1)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).

Opt. Express (5)

Opt. Laser Technol. (1)

A. Brahm, A. Wilms, M. Tymoshchuk, C. Grossmann, G. Notni, and A. Tünnermann, “Optical Effects at projection measurements for Terahertz tomography,” Opt. Laser Technol. 62, 49–57 (2014).

Opt. Lett. (2)

Phys. Med. Biol. (1)

K. J. Siebert, T. Löffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47(21), 3743–3748 (2002).

Proc. IEEE (1)

H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 1514–1527 (2007).

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).

Sci. Adv. (1)

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2(6), e1600190 (2016).

Sci. Rep. (1)

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors,” Science 340(6134), 844–847 (2013).

Other (3)

P. H. Siegel, W. Dai, R. A. Kloner, M. Csete, and V. Pikov, “First millimeter-wave animal in vivo measurements of L-Glucose and D-Glucose: Further steps towards a non-invasive glucometer,” in Proceedings of 41st International Conference on Infrared, Millimeter, and Terahertz waves (IEEE, 2016).

D. G. Voelz, Computational Fourier Optics: A MATLAB® Tutorial, SPIE (2011).

S. Cavuoti, M. Garofalo, M. Brescia, A. Pescape, G. Longo, and G. Ventre, “Genetic Algorithm Modeling with GPU Parallel Computing Technology,” in Proceedings of Neural Nets and Surroundings: 22nd Italian Workshop on Neural Nets19, 29–39 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Photograph of the experimental set-up. (b) Schematic depiction of the 2D tomographic imaging set-up. The inset shows the 32nd pattern as it is radiated on the HRFZ-Si window by the 808 nm laser diode.
Fig. 2
Fig. 2 Illustration of the pattern generation instructions of a 32 × 32 Hadamard matrix used for the single pixel imaging. Each row of the Hadamard matrix represents two patterns. The H+ patterns are created by transparent regions represented by +1 entries and opaque regions for the −1 entries, while this is reversed for the H patterns.
Fig. 3
Fig. 3 Typical example of the measured beam profile and the raw object transmission for a cuboid sample object under a rotation angle of 120°. The object is divided by the beam profile to achieve the normalized transmission of the object as shown on the right. The normalized transmissions are then converted into absorption values, which are used for the tomographic image reconstruction. Due to the low intensity on the left and right side of the beam profile the outer pixels are discarded.
Fig. 4
Fig. 4 (a) Measured projection under a rotation angle of 0° and (b) measured sinogram of a cylindrical PP sample with a diameter of 14 mm. From the projection (a), the diameter of the cylinder can be estimated between 13 and 14.5 mm.
Fig. 5
Fig. 5 Two measured projections under a rotation angle of (a) 180° and (b) 120° and (d) measured sinogram of a cuboid PP sample with edge lengths of 14 × 7 mm. (c) Ray tracing simulation for a rectangular object with edge lengths of 14 × 7 mm and a refractive index of 1.5 under a rotation of 120°. Red colored rays indicate rays which get totally reflected on the rear side, while green rays can pass the object.
Fig. 6
Fig. 6 Reconstructed images of (a) a cylindrical and (b) a cuboid PP sample using the measured sinograms and performing the reconstruction by applying the SART algorithm.
Fig. 7
Fig. 7 Schematic sketch of the model combining Hadamard imaging and refraction, reflection and diffraction effects for projection calculations of a circular PP object.
Fig. 8
Fig. 8 (a) Calculated projection under an arbitrary rotation angle and (b) sinogram of a cylindrical PP sample with diameter of 14 mm at a frequency of 1 THz.
Fig. 9
Fig. 9 Calculated projections under a rotation angle of (a) 180° and (b) 120° and (c) sinogram of a rectangular PP sample with edge lengths of 14 × 7 mm at a frequency of 1 THz.
Fig. 10
Fig. 10 Reconstructed images of modeled (a) cylindrical and (b) rectangular PP samples using the calculated sinograms for a frequency of 1 THz and performing the reconstruction by applying the SART algorithm.

Tables (1)

Tables Icon

Table 1 Results for the fitting of the measured sinograms to the developed model. The initial values of the fit parameters are a = 10 and b = 10 for both objects, while s has an initial value of 0, in case of the circular object and 1, in case of the rectangular object, in order to prevent a bias of the algorithm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H O = ( 𝟙 n n + H 2 𝟙 n n H 2 ) O = H + O H O = M + M ,
O = H 1 ( M + M ) = 1 n H ( M + M ) .
E obj ( z = 0 , x ) = d i λ + H i ( x ) E 0 exp ( i k r 12 ) r 12 2 d x , with r 12 = ( x x ) 2 + d 2 .
MSE = 1 n θ y x ( Data ( θ y , x ) Model ( θ y , x , a , b , s ) ) 2 .

Metrics