Abstract

Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable single photon source with high purity at telecom wavelength

Rui-Bo Jin, Ryosuke Shimizu, Kentaro Wakui, Hugo Benichi, and Masahide Sasaki
Opt. Express 21(9) 10659-10666 (2013)

Independent high-purity photons created in domain-engineered crystals

Francesco Graffitti, Peter Barrow, Massimiliano Proietti, Dmytro Kundys, and Alessandro Fedrizzi
Optica 5(5) 514-517 (2018)

Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion

Fumihiro Kaneda, Karina Garay-Palmett, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 24(10) 10733-10747 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
    [Crossref] [PubMed]
  2. H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
    [Crossref]
  3. M. J. Hartmann, “Quantum simulation with interacting photons,” J. Opt. 18, 104005 (2016).
    [Crossref]
  4. E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
    [Crossref]
  5. F. Laudenbach, H. Hübel, M. Hentschel, P. Walther, and A. Poppe, “Modelling parametric down-conversion yielding spectrally pure photon pairs,” Opt. Express 24(3), 2712–2727 (2016).
    [Crossref] [PubMed]
  6. D.C. Burnham and D.L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
    [Crossref]
  7. F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Huebel, “Numerical investigation of photon-pair generation in periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As) crystals,” Phys. Rev. A 8(2), 024035 (2017).
    [Crossref]
  8. P. B. Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by gaussian phase-matching for quantum photonics,” Opt. Express 21(5), 5879–5890 (2013).
    [Crossref] [PubMed]
  9. A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
    [Crossref]
  10. R. H. Hadfield and G. Johansson, Superconducting Devices in Quantum Optics (Springer Verlag, 2016).
    [Crossref]
  11. N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
    [Crossref]
  12. J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22(6), 390–402 (2016).
    [Crossref]
  13. F. Kaneda, F. Xu, J. Chapman, and P. G. Kwiat, “Quantum-memory-assisted multi-photon generation for efficient quantum information processing,” Optica 4(9), 1034–1037 (2017).
    [Crossref]
  14. R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21(9), 10659–10666 (2013).
    [Crossref] [PubMed]
  15. N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22(14), 17246–17253 (2014).
    [Crossref] [PubMed]
  16. T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
    [Crossref]
  17. M. M. Weston, H. M. Chrzanowski, S. Wollmann, A. Boston, J. Ho, L. K. Shalm, V. B. Verma, M. S. Allman, S. W. Nam, R. B. Patel, S. Slussarenko, and G. J. Pryde, “Efficient and pure femtosecond-pulse-length source of polarization-entangled photons,” Opt. Express 24(10), 10869–10879 (2016).
    [Crossref] [PubMed]
  18. F. Kaneda, K. Garay-Palmett, A.B. U’Ren, and P. G. Kwiat, “Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion,” Opt. Express 24(10), 10733–10747 (2016).
    [Crossref] [PubMed]
  19. R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
    [Crossref]
  20. M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19(23), 22698–22708 (2011).
    [Crossref] [PubMed]
  21. R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
    [Crossref] [PubMed]
  22. X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
    [Crossref]
  23. E. A. B. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed., Chap. 21 (Wiley, 2007).
  24. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
    [Crossref]
  25. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
    [Crossref] [PubMed]
  26. C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2012).
    [Crossref]
  27. We remind that the HOM visibility of two photons from independent sources is given by the heralded coincidences (equivalent to the four-fold coincidence events) as V = 1−CCmin/CCmax, with CCmin the average coincidences when the two photons are indistinguishable (zero time delay, quantum case) and CCmax the average coincidences when they are fully distinguishable (far apart in time, classical case).
  28. W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik / The actual content of quantum theoretical kinematics and mechanics,” Z. Phys. 43(3–4), 172 (1927).
    [Crossref]
  29. A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
    [Crossref]
  30. C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. Wong, “Efficient generation and characterization of spectrally factorable biphotons,” Opt. Express 25(7), 7300–7312 (2017).
    [Crossref] [PubMed]
  31. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
    [Crossref]
  32. F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group velocity mismatch,” Appl. Phys. Lett. 84(10), 1644 (2004).
    [Crossref]
  33. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42(33), 6661–6665 (2003).
    [Crossref] [PubMed]
  34. F. Laudenbach, H. Huebel, M. Hentschel, and A. Poppe, “QPMoptics: a novel tool to simulate and optimise photon pair creation,” in Proceedings of SPIE Photonics Europe 2016 (International Society for Optics and Photonics, Brussels, 2016), pp. 98940V.

2017 (5)

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Huebel, “Numerical investigation of photon-pair generation in periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As) crystals,” Phys. Rev. A 8(2), 024035 (2017).
[Crossref]

F. Kaneda, F. Xu, J. Chapman, and P. G. Kwiat, “Quantum-memory-assisted multi-photon generation for efficient quantum information processing,” Optica 4(9), 1034–1037 (2017).
[Crossref]

C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. Wong, “Efficient generation and characterization of spectrally factorable biphotons,” Opt. Express 25(7), 7300–7312 (2017).
[Crossref] [PubMed]

2016 (8)

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

M. M. Weston, H. M. Chrzanowski, S. Wollmann, A. Boston, J. Ho, L. K. Shalm, V. B. Verma, M. S. Allman, S. W. Nam, R. B. Patel, S. Slussarenko, and G. J. Pryde, “Efficient and pure femtosecond-pulse-length source of polarization-entangled photons,” Opt. Express 24(10), 10869–10879 (2016).
[Crossref] [PubMed]

F. Kaneda, K. Garay-Palmett, A.B. U’Ren, and P. G. Kwiat, “Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion,” Opt. Express 24(10), 10733–10747 (2016).
[Crossref] [PubMed]

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
[Crossref]

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22(6), 390–402 (2016).
[Crossref]

F. Laudenbach, H. Hübel, M. Hentschel, P. Walther, and A. Poppe, “Modelling parametric down-conversion yielding spectrally pure photon pairs,” Opt. Express 24(3), 2712–2727 (2016).
[Crossref] [PubMed]

M. J. Hartmann, “Quantum simulation with interacting photons,” J. Opt. 18, 104005 (2016).
[Crossref]

2015 (2)

R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
[Crossref]

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

2014 (2)

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22(14), 17246–17253 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2012).
[Crossref]

2011 (2)

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19(23), 22698–22708 (2011).
[Crossref] [PubMed]

2009 (1)

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

2008 (1)

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

2004 (1)

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group velocity mismatch,” Appl. Phys. Lett. 84(10), 1644 (2004).
[Crossref]

2003 (1)

1999 (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

1970 (1)

D.C. Burnham and D.L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

1927 (1)

W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik / The actual content of quantum theoretical kinematics and mechanics,” Z. Phys. 43(3–4), 172 (1927).
[Crossref]

Allman, M. S.

Almeida, M. P.

Arie, A.

S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42(33), 6661–6665 (2003).
[Crossref] [PubMed]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Aspelmeyer, M.

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Baehr-Jones, T.

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Barbieri, M.

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Bartley, T. J.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Benichi, H.

Bo, C.

Bonneau, D.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22(6), 390–402 (2016).
[Crossref]

Boston, A.

Branczyk, A. M.

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
[Crossref]

Broome, M. A.

Bruno, N.

Bunandar, D.

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Burnham, D.C.

D.C. Burnham and D.L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Chapman, J.

Chen, C.

C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. Wong, “Efficient generation and characterization of spectrally factorable biphotons,” Opt. Express 25(7), 7300–7312 (2017).
[Crossref] [PubMed]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Chen, L.-K.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Chen, M.-C.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

Chen, Y.-A.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Chrzanowski, H. M.

Cincio, L.

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
[Crossref]

Ding, X.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

Dixon, P. B.

Dosseva, A.

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
[Crossref]

Emanueli, S.

Englund, D.

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Fedrizzi, A.

M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19(23), 22698–22708 (2011).
[Crossref] [PubMed]

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Fujiwara, M.

R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
[Crossref]

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Garay-Palmett, K.

Gerrits, T.

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

Greganti, C.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Huebel, “Numerical investigation of photon-pair generation in periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As) crystals,” Phys. Rev. A 8(2), 024035 (2017).
[Crossref]

Guerreiro, T.

Hadfield, R. H.

R. H. Hadfield and G. Johansson, Superconducting Devices in Quantum Optics (Springer Verlag, 2016).
[Crossref]

Harris, N. C.

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Hartmann, M. J.

M. J. Hartmann, “Quantum simulation with interacting photons,” J. Opt. 18, 104005 (2016).
[Crossref]

He, Y.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

He, Y.-M.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

Heisenberg, W.

W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik / The actual content of quantum theoretical kinematics and mechanics,” Z. Phys. 43(3–4), 172 (1927).
[Crossref]

Hentschel, M.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Huebel, “Numerical investigation of photon-pair generation in periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As) crystals,” Phys. Rev. A 8(2), 024035 (2017).
[Crossref]

F. Laudenbach, H. Hübel, M. Hentschel, P. Walther, and A. Poppe, “Modelling parametric down-conversion yielding spectrally pure photon pairs,” Opt. Express 24(3), 2712–2727 (2016).
[Crossref] [PubMed]

F. Laudenbach, H. Huebel, M. Hentschel, and A. Poppe, “QPMoptics: a novel tool to simulate and optimise photon pair creation,” in Proceedings of SPIE Photonics Europe 2016 (International Society for Optics and Photonics, Brussels, 2016), pp. 98940V.

Herbst, T.

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Herrmann, H.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Ho, J.

Hochberg, M.

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Hoefling, S.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Hu, Y.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Huang, H.-L.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Hübel, H.

Huebel, H.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Huebel, “Numerical investigation of photon-pair generation in periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As) crystals,” Phys. Rev. A 8(2), 024035 (2017).
[Crossref]

F. Laudenbach, H. Huebel, M. Hentschel, and A. Poppe, “QPMoptics: a novel tool to simulate and optimise photon pair creation,” in Proceedings of SPIE Photonics Europe 2016 (International Society for Optics and Photonics, Brussels, 2016), pp. 98940V.

Izumi, S.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Jennewein, T.

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Jiang, X.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Jin, R. B.

R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
[Crossref]

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21(9), 10659–10666 (2013).
[Crossref] [PubMed]

Jin, R.-B.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Huebel, “Numerical investigation of photon-pair generation in periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As) crystals,” Phys. Rev. A 8(2), 024035 (2017).
[Crossref]

Johansson, G.

R. H. Hadfield and G. Johansson, Superconducting Devices in Quantum Optics (Springer Verlag, 2016).
[Crossref]

Kamp, M.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

Kaneda, F.

Kofler, J.

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

König, F.

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group velocity mismatch,” Appl. Phys. Lett. 84(10), 1644 (2004).
[Crossref]

Kwiat, P. G.

Laudenbach, F.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Huebel, “Numerical investigation of photon-pair generation in periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As) crystals,” Phys. Rev. A 8(2), 024035 (2017).
[Crossref]

F. Laudenbach, H. Hübel, M. Hentschel, P. Walther, and A. Poppe, “Modelling parametric down-conversion yielding spectrally pure photon pairs,” Opt. Express 24(3), 2712–2727 (2016).
[Crossref] [PubMed]

F. Laudenbach, H. Huebel, M. Hentschel, and A. Poppe, “QPMoptics: a novel tool to simulate and optimise photon pair creation,” in Proceedings of SPIE Photonics Europe 2016 (International Society for Optics and Photonics, Brussels, 2016), pp. 98940V.

Li, B.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

Li, J.-P.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

Li, L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Li, W.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Li, Y.-H.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

Li, Z.-D.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Liu, C.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Liu, N.-L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Lu, C.-Y.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Lu, H.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Luo, Y.-H.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Ma, X.-S.

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Marsili, F.

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

Martin, A.

Meyer-Scott, E.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Miki, S.

R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
[Crossref]

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Mirin, R. P.

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

Montaut, N.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Morohashi, I.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Mosley, P. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Mower, J.

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Nam, S. W.

Niu, M. Y.

O’Brien, J. L.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22(6), 390–402 (2016).
[Crossref]

Osorio, C. I.

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2012).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Pan, J.-W.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Pant, M.

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Patel, R. B.

Peng, C.-Z.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Poppe, A.

F. Laudenbach, H. Hübel, M. Hentschel, P. Walther, and A. Poppe, “Modelling parametric down-conversion yielding spectrally pure photon pairs,” Opt. Express 24(3), 2712–2727 (2016).
[Crossref] [PubMed]

F. Laudenbach, H. Huebel, M. Hentschel, and A. Poppe, “QPMoptics: a novel tool to simulate and optimise photon pair creation,” in Proceedings of SPIE Photonics Europe 2016 (International Society for Optics and Photonics, Brussels, 2016), pp. 98940V.

Prabhu, M.

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Pryde, G. J.

Qin, J.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Sakamoto, T.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Saleh, E. A. B.

E. A. B. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed., Chap. 21 (Wiley, 2007).

Sangouard, N.

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2012).
[Crossref]

Sanguinetti, B.

Sansoni, L.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Sasaki, M.

R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
[Crossref]

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21(9), 10659–10666 (2013).
[Crossref] [PubMed]

Schneider, C.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

Shalm, L. K.

Shapiro, J. H.

Shaw, M.

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

Shimizu, R.

R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
[Crossref]

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21(9), 10659–10666 (2013).
[Crossref] [PubMed]

Silberhorn, C.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22(6), 390–402 (2016).
[Crossref]

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Slussarenko, S.

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Steinbrecher, G. R.

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Su, Z.-E.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Takeoka, M.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Teich, M. C.

E. A. B. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed., Chap. 21 (Wiley, 2007).

Terai, H.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Terai, Hirotaka

R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
[Crossref]

Thew, R. T.

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22(14), 17246–17253 (2014).
[Crossref] [PubMed]

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2012).
[Crossref]

Thompson, M. G.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22(6), 390–402 (2016).
[Crossref]

Tiedau, J.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

U’Ren, A.B.

Verma, V. B.

Wakui, K.

R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
[Crossref]

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21(9), 10659–10666 (2013).
[Crossref] [PubMed]

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Walther, P.

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Huebel, “Numerical investigation of photon-pair generation in periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As) crystals,” Phys. Rev. A 8(2), 024035 (2017).
[Crossref]

F. Laudenbach, H. Hübel, M. Hentschel, P. Walther, and A. Poppe, “Modelling parametric down-conversion yielding spectrally pure photon pairs,” Opt. Express 24(3), 2712–2727 (2016).
[Crossref] [PubMed]

Wang, H.

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

Wang, X.-L.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Wang, Z.

R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
[Crossref]

Weinberg, D.L.

D.C. Burnham and D.L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Weston, M. M.

Whang, Z.

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

White, A. G.

Wollmann, S.

Wong, F. N.

Wong, F. N. C.

P. B. Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by gaussian phase-matching for quantum photonics,” Opt. Express 21(5), 5879–5890 (2013).
[Crossref] [PubMed]

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group velocity mismatch,” Appl. Phys. Lett. 84(10), 1644 (2004).
[Crossref]

Wu, D.

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

Xu, F.

Yamashita, T.

R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
[Crossref]

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Zeilinger, A.

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Zhang, Z.

Zotter, S.

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group velocity mismatch,” Appl. Phys. Lett. 84(10), 1644 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22(6), 390–402 (2016).
[Crossref]

J. Opt. (1)

M. J. Hartmann, “Quantum simulation with interacting photons,” J. Opt. 18, 104005 (2016).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B: At. Mol. Opt. Phys. 46, 055501 (2012).
[Crossref]

Nanophotonics (1)

N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower, M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale quantum photonic circuits in silicon,” Nanophotonics 5(3), 456–468 (2016).
[Crossref]

Nat. Photon. (1)

H. Wang, Y. He, Y.-H. Li, Z.-E. Su, B. Li, H.-L. Huang, X. Ding, M.-C. Chen, C. Liu, J. Qin, J.-P. Li, Y.-M. He, C. Schneider, M. Kamp, C.-Z. Peng, S. Hoefling, C.-Y. Lu, and J.-W. Pan, “High-efficiency multiphoton boson sampling,” Nat. Photon. 11, 361 (2017).
[Crossref]

New J. Phys. (2)

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Opt. Commun. (1)

R. B. Jin, M. Fujiwara, T. Yamashita, S. Miki, Hirotaka Terai, Z. Wang, K. Wakui, R. Shimizu, and M. Sasaki, “Efficient detection of a highly bright photon source using superconducting nanowire single photon detectors,” Opt. Commun. 336, 47–54 (2015).
[Crossref]

Opt. Express (8)

M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19(23), 22698–22708 (2011).
[Crossref] [PubMed]

C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. Wong, “Efficient generation and characterization of spectrally factorable biphotons,” Opt. Express 25(7), 7300–7312 (2017).
[Crossref] [PubMed]

F. Laudenbach, H. Hübel, M. Hentschel, P. Walther, and A. Poppe, “Modelling parametric down-conversion yielding spectrally pure photon pairs,” Opt. Express 24(3), 2712–2727 (2016).
[Crossref] [PubMed]

P. B. Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by gaussian phase-matching for quantum photonics,” Opt. Express 21(5), 5879–5890 (2013).
[Crossref] [PubMed]

R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21(9), 10659–10666 (2013).
[Crossref] [PubMed]

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22(14), 17246–17253 (2014).
[Crossref] [PubMed]

M. M. Weston, H. M. Chrzanowski, S. Wollmann, A. Boston, J. Ho, L. K. Shalm, V. B. Verma, M. S. Allman, S. W. Nam, R. B. Patel, S. Slussarenko, and G. J. Pryde, “Efficient and pure femtosecond-pulse-length source of polarization-entangled photons,” Opt. Express 24(10), 10869–10879 (2016).
[Crossref] [PubMed]

F. Kaneda, K. Garay-Palmett, A.B. U’Ren, and P. G. Kwiat, “Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion,” Opt. Express 24(10), 10733–10747 (2016).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. A (5)

F. Laudenbach, R.-B. Jin, C. Greganti, M. Hentschel, P. Walther, and H. Huebel, “Numerical investigation of photon-pair generation in periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As) crystals,” Phys. Rev. A 8(2), 024035 (2017).
[Crossref]

T. Gerrits, F. Marsili, V. B. Verma, L. K. Shalm, M. Shaw, R. P. Mirin, and S. W. Nam, “Spectral correlation measurements at the Hong-Ou-Mandel interference dip,” Phys. Rev. A 91(1), 013830 (2015).
[Crossref]

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
[Crossref]

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

Phys. Rev. Lett. (3)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, and J.-W. Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117(21), 210502 (2016).
[Crossref] [PubMed]

D.C. Burnham and D.L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Sci. Rep. (1)

R. B. Jin, R. Shimizu, I. Morohashi, K. Wakui, M. Takeoka, S. Izumi, T. Sakamoto, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Whang, and M. Sasaki, “Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser,” Sci. Rep. 4, 7468 (2014).
[Crossref] [PubMed]

Z. Phys. (1)

W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik / The actual content of quantum theoretical kinematics and mechanics,” Z. Phys. 43(3–4), 172 (1927).
[Crossref]

Other (4)

F. Laudenbach, H. Huebel, M. Hentschel, and A. Poppe, “QPMoptics: a novel tool to simulate and optimise photon pair creation,” in Proceedings of SPIE Photonics Europe 2016 (International Society for Optics and Photonics, Brussels, 2016), pp. 98940V.

E. A. B. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed., Chap. 21 (Wiley, 2007).

We remind that the HOM visibility of two photons from independent sources is given by the heralded coincidences (equivalent to the four-fold coincidence events) as V = 1−CCmin/CCmax, with CCmin the average coincidences when the two photons are indistinguishable (zero time delay, quantum case) and CCmax the average coincidences when they are fully distinguishable (far apart in time, classical case).

R. H. Hadfield and G. Johansson, Superconducting Devices in Quantum Optics (Springer Verlag, 2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 (a) Two ppKTP single-photon sources are pumped by a ps-pulsed laser with a repetition rate of 76 MHz. A multiplexing scheme, which splits and recombines the pump beam via beam splitters (BS), increases the repetition rate to a maximum of 608 MHz. The down-converted signal and idler photons are separated by polarizing beamsplitters (PBS) and coupled into single-mode fibers, which can be directed to one of our various detection apparatus. (b) A cartoon of the doubling of the repetiton rate of the laser.
Fig. 2
Fig. 2 Count rates of 2-fold coincidences (a) and 4-fold coincidences (b) from one and two independent sources, respectively, at different repetition rates. The purple dots correspond to renormalized data points at 608 MHz (for more details see main text). The error bars, based on Poissonian statistics, in (a) are smaller than the dots size.
Fig. 3
Fig. 3 Marginal spectra (red: signal and blue: idler) and pump envelope (PE) (green), recorded at 24 °C and with a pump wavelength of 773.1 nm. The pump-pulse width is set to (2.14 ± 0.02) ps. The FWHM of the signal, idler and PE spectra are 1.06 nm, 1.08 nm, and 0.70 nm, respectively. The central wavelengths of the spectra are shifted for an easy comparison of the shape and width of the spectral distributions.
Fig. 4
Fig. 4 FWHM of the marginal spectra in dependence of the pump-pulse width for Source 1. Solid lines are simulated values for signal (red) and idler (blue). The dashed lines represent the measurement uncertainty of the autocorrelator, ±0.03 ps. The error bars of the data points show the uncertainty of the autocorrelator (in pulse-duration direction) and one standard error of the spectral distribution fit (in FWHM direction).
Fig. 5
Fig. 5 Simulation (a) and experimental data of Source 1 (b) and Source 2 (c) of the joint spectral intensity. The measurements have been collected via two single-photon spectrometers. The Schmidt numbers calculated from these data are (a) 1.012, (b) 1.014, and (c) 1.017.
Fig. 6
Fig. 6 HOM interference between signal and signal photons of the two independent sources without (a) and with narrow-bandpass filters (b). The 4-fold accidental coincidences are shown with the grey triangles at the bottom and have been subtracted to calculate the shown visibilities. The error bars are calculated from Poissonian counting statistics.
Fig. 7
Fig. 7 Experimentally measured HOM visibility (which is, ideally, the same as the spectral purity) for different pump-pulse widths. (a) Data collected at a laser RR = 76 MHz and constant pump power of 60 mW. The solid blue curve is the simulated visibility. The dashed curve is the same simulation including a noise factor (to explain technical imperfections), which fits the experimental data well. (b) Data collected for different repetition rates and increasing pump powers. The dashed curve is normalized simulated purity, including the same noise factor. In both figures the background from accidental counts was not subtracted.
Fig. 8
Fig. 8 Simulation of 4-fold HOM visibility and different losses when using no filters (dashed curve), 2 filters (dotted curves), and 4 filters (solid curves). Blue: 4-fold HOM visibility. Orange: total loss of 4-fold coincidences caused by the filters. Red: Loss of 4-fold coincidences originating from the central peak of the JSI. Green: Residual contributions of the side lobes of the JSI to the 4-fold coincidence events.
Fig. 9
Fig. 9 Simulation and measurement data for of the HOM visibility (a) and total filter losses (b). The subfigures show the effect of 2 filters on the JSI at the corresponding wavelength. Note that all the curves here refer to the 4-fold coincidence events.
Fig. 10
Fig. 10 Phase matching curves for two down-converted photons, idler and signal, generated in a ppKTP crystal of 30 mm length. The green lines represent the simulated curves for a periodic poling of 46.25 μm.
Fig. 11
Fig. 11 FWHM of the marginal spectra in dependence of the pump-pulse width for Source 2. Solid lines are simulated values for signal (red) and idler (blue). The dashed lines consider the measurement uncertainty of the autocorrelator, ±0.03 ps. The error bars of the data points show the uncertainty of the autocorrelator (in pulse-duration direction) and one standard error of the spectral distribution fit (in FWHM direction).
Fig. 12
Fig. 12 FWHM of signal and idler photons at different steps of the passive temporal multiplexing scheme. The error bars show one standard error of the spectral distribution fit. The uncertainty band of the simulation accounts for the uncertainty of the pulse width measurement using the autocorrelator.
Fig. 13
Fig. 13 HOM dip between signal and idler from the same source.
Fig. 14
Fig. 14 HOM interference for different crystal temperatures, corresponding to a wavelength detuning of the down-converted interfering photons. Only raw data are reported.
Fig. 15
Fig. 15 Simulation of 4-fold HOM visibility and different losses when using no (dashed curve), 2 (dotted curves), and 4 filters (solid curves). (A): 4-fold HOM visibility. (B): total loss of 4-fold coincidences caused by the filters. (C): Loss of 4-fold coincidences originating from the central peak of the JSI. (D): Residual contributions of the side lobes of the JSI to the 4-fold coincidence events. For (B–D), the second column holds sketches visualizing the effect of two filters on the JSI. The dashed area corresponds to the plotted curve.
Fig. 16
Fig. 16 Loss of single-event rate introduced by narrow-bandpass filters, both measured (dots) and simulated (curve). Filter F102 exhibits a higher loss than the other filters because its central wavelength is shifted by 0.2 nm with respect to the others. The simulation is underestimating the losses due to the chosen rectangular function as filter transmission profile and unity-transmittivity.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ω p = ω s + ω i , ω p n p ( ω p , T ) = ω s n s ( ω s , T ) + ω i n i ( ω i , T ) + 2 π c m Λ ( T ) ,
| Ψ = N χ eff ( 2 ) L d ω s d ω i f ( ω s , ω i ) a s ( ω s ) a i ( ω i ) | 0 ,
α ( ω s , ω i ) = sech ( ( ω s + ω i ω p ) 2 arccos 2 Δ ω p )
ϕ ( ω s , ω i ) = exp ( i Δ k L 2 ) sinc ( Δ k L 2 )
V = P A + P B D ( ρ A , ρ B ) 2 .

Metrics