Abstract

The lasing behaviors of dye-doped cholesteric liquid crystal (DDCLC) microshells fabricated with silica-glass-microsphere coated DDCLCs were examined. Lasing characteristics were studied in a carrier medium with different refractive indices. The lasing in spherical cholesteric liquid crystals (CLCs) was attributed to two mechanisms, photonic band-gap (PBG) lasing and whispering-gallery modes (WGMs), which can independently exist by varying the chiral agent concentration and pumping energy. It was also found that DDCLC microshells can function as highly sensitive thermal sensors, with a temperature sensitivity of 0.982 nm °C−1 in PBG modes and 0.156 nm °C−1 in WGMs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D microlasers from self-assembled cholesteric liquid-crystal microdroplets

M. Humar and I. Muševič
Opt. Express 18(26) 26995-27003 (2010)

Lasing properties of polymerized chiral nematic Bragg onion microlasers

Matjaž Humar, Fumito Araoka, Hideo Takezoe, and Igor Muševič
Opt. Express 24(17) 19237-19244 (2016)

Single-mode laser tuning from cholesteric elastomers using a “notch” band-gap configuration

Francesca Serra, Mario Ariosto Matranga, Yan Ji, and Eugene M. Terentjev
Opt. Express 18(2) 575-581 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. Uchida, “40 years reseach and development on liquid crystal displays,” Jpn. J. Appl. Phys. 53, 03CA02 (2014).
    [Crossref]
  2. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  3. J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21(13), 15765–15776 (2013).
    [Crossref] [PubMed]
  4. M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets,” Opt. Express 19(21), 19836–19844 (2011).
    [Crossref] [PubMed]
  5. V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity,” Opt. Express 21(18), 20506–20516 (2013).
    [Crossref] [PubMed]
  6. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [Crossref] [PubMed]
  7. C. R. Lee, J. D. Lin, B. Y. Huang, S. H. Lin, T. S. Mo, S. Y. Huang, C. T. Kuo, and H. C. Yeh, “Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold,” Opt. Express 19(3), 2391–2400 (2011).
    [Crossref] [PubMed]
  8. S. Furumi, S. Yokoyam, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
    [Crossref]
  9. M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Elactro-Tunable Liuquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
    [Crossref]
  10. T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
    [Crossref]
  11. M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
    [Crossref]
  12. M. Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions with tuning resolution less than 1 nm in a wedge cell of dye-doped cholesteric liquid crystals,” Opt. Express 18(23), 24221–24228 (2010).
    [Crossref] [PubMed]
  13. Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
    [Crossref]
  14. Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
    [Crossref] [PubMed]
  15. Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
    [Crossref]
  16. A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
    [Crossref] [PubMed]
  17. J. G. Kim and S. Y. Park, “Photonic Spring-Like Shell Templated from Cholesteric Liquid Crystal Prepared by Microfluidics,” Adv. Opt. Mater. 5(13), 1700243 (2017).
    [Crossref]
  18. R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
    [Crossref]
  19. V. Duong Ta, S. Caixeiro, F. M. Fernandes, R. Sapienza, and F. M. Fernandes, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5(8), 1601022 (2017).
    [Crossref]
  20. L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
    [Crossref] [PubMed]
  21. J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
    [Crossref]
  22. J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
    [Crossref] [PubMed]
  23. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 1033 (2005).
    [Crossref]
  24. Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
    [Crossref]
  25. I. P. Il’chishin and A. Yu. Vakhnin, “detecting of the structure distortion of cholesteric liquid crystal using the generation characteristics of the distributed feedback laser based on it,” Mol. Cryst. Liq. Cryst. 265(1), 687–697 (1995).
    [Crossref]
  26. M. F. Moreira, I. C. S. Carvalhoa, W. Cao, C. Bailey, B. Taheri, and P. P. Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85(14), 2691–2693 (2004).
    [Crossref]
  27. J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
    [Crossref]

2017 (5)

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

J. G. Kim and S. Y. Park, “Photonic Spring-Like Shell Templated from Cholesteric Liquid Crystal Prepared by Microfluidics,” Adv. Opt. Mater. 5(13), 1700243 (2017).
[Crossref]

V. Duong Ta, S. Caixeiro, F. M. Fernandes, R. Sapienza, and F. M. Fernandes, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5(8), 1601022 (2017).
[Crossref]

L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

2016 (1)

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

2015 (1)

A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
[Crossref] [PubMed]

2014 (3)

T. Uchida, “40 years reseach and development on liquid crystal displays,” Jpn. J. Appl. Phys. 53, 03CA02 (2014).
[Crossref]

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
[Crossref]

2013 (2)

2011 (2)

2010 (1)

2008 (1)

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[Crossref]

2005 (2)

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 1033 (2005).
[Crossref]

2004 (4)

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[Crossref] [PubMed]

M. F. Moreira, I. C. S. Carvalhoa, W. Cao, C. Bailey, B. Taheri, and P. P. Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85(14), 2691–2693 (2004).
[Crossref]

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

2003 (3)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

S. Furumi, S. Yokoyam, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Elactro-Tunable Liuquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

1998 (1)

1995 (1)

I. P. Il’chishin and A. Yu. Vakhnin, “detecting of the structure distortion of cholesteric liquid crystal using the generation characteristics of the distributed feedback laser based on it,” Mol. Cryst. Liq. Cryst. 265(1), 687–697 (1995).
[Crossref]

Bailey, C.

M. F. Moreira, I. C. S. Carvalhoa, W. Cao, C. Bailey, B. Taheri, and P. P. Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85(14), 2691–2693 (2004).
[Crossref]

Bisoyi, H. K.

L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
[Crossref] [PubMed]

Brugioni, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 1033 (2005).
[Crossref]

Bunning, T. J.

L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
[Crossref] [PubMed]

Cai, Z. P.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Caixeiro, S.

V. Duong Ta, S. Caixeiro, F. M. Fernandes, R. Sapienza, and F. M. Fernandes, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5(8), 1601022 (2017).
[Crossref]

Cao, B. H.

A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
[Crossref] [PubMed]

Cao, W.

M. F. Moreira, I. C. S. Carvalhoa, W. Cao, C. Bailey, B. Taheri, and P. P. Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85(14), 2691–2693 (2004).
[Crossref]

Carvalhoa, I. C. S.

M. F. Moreira, I. C. S. Carvalhoa, W. Cao, C. Bailey, B. Taheri, and P. P. Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85(14), 2691–2693 (2004).
[Crossref]

Che, K. J.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Chen, L. J.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Chen, R.

R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
[Crossref]

Chen, Y.-J.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Choi, H.

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[Crossref]

Chu, C. X.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Duong Ta, V.

V. Duong Ta, S. Caixeiro, F. M. Fernandes, R. Sapienza, and F. M. Fernandes, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5(8), 1601022 (2017).
[Crossref]

Edwards, L.

A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
[Crossref] [PubMed]

Faetti, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 1033 (2005).
[Crossref]

Fan, B.

Fernandes, F. M.

V. Duong Ta, S. Caixeiro, F. M. Fernandes, R. Sapienza, and F. M. Fernandes, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5(8), 1601022 (2017).
[Crossref]

V. Duong Ta, S. Caixeiro, F. M. Fernandes, R. Sapienza, and F. M. Fernandes, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5(8), 1601022 (2017).
[Crossref]

Fuh, A. Y. G.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Furumi, S.

S. Furumi, S. Yokoyam, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Ganzke, D.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Elactro-Tunable Liuquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Gauza, S.

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

Gauzia, S.

Genack, A. Z.

Ghosh, S.

A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
[Crossref] [PubMed]

Gong, L. L.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Haase, W.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Elactro-Tunable Liuquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Hein, J. E.

A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
[Crossref] [PubMed]

Hiremath, U. S.

L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
[Crossref] [PubMed]

Hirst, L. S.

A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
[Crossref] [PubMed]

Hsieh, M.-H.

Huang, B. Y.

Huang, S. Y.

Huang, S.-Y.

Humar, M.

Il’chishin, I. P.

I. P. Il’chishin and A. Yu. Vakhnin, “detecting of the structure distortion of cholesteric liquid crystal using the generation characteristics of the distributed feedback laser based on it,” Mol. Cryst. Liq. Cryst. 265(1), 687–697 (1995).
[Crossref]

Jampani, V. S. R.

Jeong, M. Y.

M. Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions with tuning resolution less than 1 nm in a wedge cell of dye-doped cholesteric liquid crystals,” Opt. Express 18(23), 24221–24228 (2010).
[Crossref] [PubMed]

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[Crossref]

Kasano, M.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Elactro-Tunable Liuquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Kim, J. G.

J. G. Kim and S. Y. Park, “Photonic Spring-Like Shell Templated from Cholesteric Liquid Crystal Prepared by Microfluidics,” Adv. Opt. Mater. 5(13), 1700243 (2017).
[Crossref]

Kitasho, T.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Elactro-Tunable Liuquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Kopp, V. I.

Kuo, C. T.

Lee, C. R.

Lee, C.-R.

Lee, W.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Li, H.

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Li, J.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 1033 (2005).
[Crossref]

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[Crossref] [PubMed]

Li, Q.

L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
[Crossref] [PubMed]

Li, S. S.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Lin, J. D.

Lin, J.-D.

Lin, S. H.

Lin, T.-H.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Lin, Y. L.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Liu, J. H.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Liu, S.

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Liu, Y.

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Liu, Y.-J.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Mashiko, S.

S. Furumi, S. Yokoyam, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Meucci, R.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 1033 (2005).
[Crossref]

Mo, T. S.

Mo, T.-S.

Moreira, M. F.

M. F. Moreira, I. C. S. Carvalhoa, W. Cao, C. Bailey, B. Taheri, and P. P. Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85(14), 2691–2693 (2004).
[Crossref]

Muhoray, P. P.

M. F. Moreira, I. C. S. Carvalhoa, W. Cao, C. Bailey, B. Taheri, and P. P. Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85(14), 2691–2693 (2004).
[Crossref]

Muševic, I.

Nair, G. G.

L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
[Crossref] [PubMed]

Otomo, A.

S. Furumi, S. Yokoyam, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Ozaki, M.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Elactro-Tunable Liuquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Pandolfi, R. J.

A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
[Crossref] [PubMed]

Panesar, H.

A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
[Crossref] [PubMed]

Park, S. Y.

J. G. Kim and S. Y. Park, “Photonic Spring-Like Shell Templated from Cholesteric Liquid Crystal Prepared by Microfluidics,” Adv. Opt. Mater. 5(13), 1700243 (2017).
[Crossref]

Quint, M.

A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
[Crossref] [PubMed]

Rodarte, A. L.

A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
[Crossref] [PubMed]

Sapienza, R.

V. Duong Ta, S. Caixeiro, F. M. Fernandes, R. Sapienza, and F. M. Fernandes, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5(8), 1601022 (2017).
[Crossref]

Sun, H.

R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
[Crossref]

Ta, V. D.

R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
[Crossref]

Taheri, B.

M. F. Moreira, I. C. S. Carvalhoa, W. Cao, C. Bailey, B. Taheri, and P. P. Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85(14), 2691–2693 (2004).
[Crossref]

Uchida, T.

T. Uchida, “40 years reseach and development on liquid crystal displays,” Jpn. J. Appl. Phys. 53, 03CA02 (2014).
[Crossref]

Urbas, A. M.

L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Vakhnin, A. Yu.

I. P. Il’chishin and A. Yu. Vakhnin, “detecting of the structure distortion of cholesteric liquid crystal using the generation characteristics of the distributed feedback laser based on it,” Mol. Cryst. Liq. Cryst. 265(1), 687–697 (1995).
[Crossref]

Vithana, H. K. M.

Wang, L.

L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Wei, G.-J.

Wu, C.-H.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Wu, J. W.

M. Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions with tuning resolution less than 1 nm in a wedge cell of dye-doped cholesteric liquid crystals,” Opt. Express 18(23), 24221–24228 (2010).
[Crossref] [PubMed]

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[Crossref]

Wu, P.-C.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Wu, S. T.

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

Wu, S.-T.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 1033 (2005).
[Crossref]

J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[Crossref] [PubMed]

Yang, C. J.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Yang, J.

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Yang, P. C.

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

Yeh, H. C.

Yelamaggad, C. V.

L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
[Crossref] [PubMed]

Yokoyam, S.

S. Furumi, S. Yokoyam, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Yoshino, K.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Elactro-Tunable Liuquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

Zhang, L.

L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
[Crossref] [PubMed]

Zhao, L.

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

ACS Photonics (1)

R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
[Crossref]

Adv. Mater. (2)

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Elactro-Tunable Liuquid-Crystal Laser,” Adv. Mater. 15(12), 974–977 (2003).
[Crossref]

L. Zhang, L. Wang, U. S. Hiremath, H. K. Bisoyi, G. G. Nair, C. V. Yelamaggad, A. M. Urbas, T. J. Bunning, and Q. Li, “Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure,” Adv. Mater. 29(24), 1700676 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

J. G. Kim and S. Y. Park, “Photonic Spring-Like Shell Templated from Cholesteric Liquid Crystal Prepared by Microfluidics,” Adv. Opt. Mater. 5(13), 1700243 (2017).
[Crossref]

V. Duong Ta, S. Caixeiro, F. M. Fernandes, R. Sapienza, and F. M. Fernandes, “Microsphere solid-state biolasers,” Adv. Opt. Mater. 5(8), 1601022 (2017).
[Crossref]

Appl. Phys. Lett. (6)

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

S. Furumi, S. Yokoyam, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

T.-H. Lin, Y.-J. Chen, C.-H. Wu, A. Y. G. Fuh, J. H. Liu, and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86(16), 161120 (2005).
[Crossref]

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
[Crossref]

M. F. Moreira, I. C. S. Carvalhoa, W. Cao, C. Bailey, B. Taheri, and P. P. Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett. 85(14), 2691–2693 (2004).
[Crossref]

J. Appl. Phys. (3)

J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[Crossref]

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 1033 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Uchida, “40 years reseach and development on liquid crystal displays,” Jpn. J. Appl. Phys. 53, 03CA02 (2014).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

I. P. Il’chishin and A. Yu. Vakhnin, “detecting of the structure distortion of cholesteric liquid crystal using the generation characteristics of the distributed feedback laser based on it,” Mol. Cryst. Liq. Cryst. 265(1), 687–697 (1995).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Express (7)

J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21(13), 15765–15776 (2013).
[Crossref] [PubMed]

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets,” Opt. Express 19(21), 19836–19844 (2011).
[Crossref] [PubMed]

V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity,” Opt. Express 21(18), 20506–20516 (2013).
[Crossref] [PubMed]

M. Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions with tuning resolution less than 1 nm in a wedge cell of dye-doped cholesteric liquid crystals,” Opt. Express 18(23), 24221–24228 (2010).
[Crossref] [PubMed]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref] [PubMed]

C. R. Lee, J. D. Lin, B. Y. Huang, S. H. Lin, T. S. Mo, S. Y. Huang, C. T. Kuo, and H. C. Yeh, “Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold,” Opt. Express 19(3), 2391–2400 (2011).
[Crossref] [PubMed]

J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[Crossref] [PubMed]

Opt. Lett. (1)

Soft Matter (1)

A. L. Rodarte, B. H. Cao, H. Panesar, R. J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J. E. Hein, and L. S. Hirst, “Self-assembled nanoparticle micro-shells templated by liquid crystal sorting,” Soft Matter 11(9), 1701–1707 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical images of the (a) silica-glass-microsphere (b) incompletely coated DDCLC microshells, and (c) completely coated DDCLC microshells. (d) Experimental laser characterization setup.
Fig. 2
Fig. 2 Electric field distributions on the (a) y-z, (b) x-z planes of the tapered-fiber-coupled microdroplet system. (c) Normalized electric field intensity distribution in direction of the y-z plane. (d) The 3D schematic configuration of the helicoidal structures occuring redient in an equatorial region. (e) Schematic drawing of direction for TM modes.
Fig. 3
Fig. 3 (a) Lasing emission spectra from a ~51-µm-diameter DDCLC microshell. The inset shows microscopy image of the ~51-µm-diameter DDCLCs microshell; the equally spaced spectral peaks correspond to WGM lasing and the highest peak corresponds to PBG mode lasing. Normalized intensity of the peaks as a function of PPE of (b) PBG and (c) WGM mode lasing. The inset of (b) shows the lasing emission spectra of the PBG mode within a relatively low range of PPEs.
Fig. 4
Fig. 4 WGM lasing emission spectra from DDCLC microshells with diameters of (a) 65, (b) 85, and (c) 125 µm, respectively. (d) PBG lasing emission spectra from DDCLC microshells with diameters of 90, 95, and 100 µm.
Fig. 5
Fig. 5 (a) PBG mode lasing emission spectra and (c) peak of the PBG mode as a function of temperature from 28.5 to 38.5 °C, respectively. (b) WGM lasing emission spectra and (d) peak of the WGM as a function of temperature from 27 to 36 °C, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ -1 ( D, n cav , n r ,q,l )= 1 πD n cav [ l+ 1 2 + 2 1/3 α( q ) ( l+ 1 2 ) 1/3 L ( n r 2 1 ) 1/2 + 3 10 2 2/3 α 2 ( q ) ( l+ 1 2 ) 1/3 2 1/3 L( n r 2 2 3 L 2 ) ( n r 2 1 ) 3/2 α( q ) ( l+ 1 2 ) 2/3 ]
d n e dT =B 2β (Δn) o 3 T c (1 T T c ) 1β
n eff = n e 2 n o 2 n o 2 sin 2 θ+ n e 2 cos 2 θ
dλ dT = BπD l 2πDβ (Δn) 0 3l T c (1 T T c ) 1β

Metrics