Abstract

Electromagnetic force actuated plasmonic nonlinear metamaterials have attracted a great deal of interest from the scientific community over the past several years, owing to the abundant interactions between the electromagnetically induced Ampère's force and the stored mechanical force within the meta-atoms. Despite this interest, a comprehensive study of such metamaterials is still lacking, especially for the nonlinear coupling states analysis. Here we fill this gap by extensively studying the physics of electromagnetic force actuated plasmonic nonlinear metamaterials and presenting a number of new significant findings. Our study will help physicists and engineers to better understand this hot topic and stimulate rapid developments of this promising nonlinear metamaterials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear magnetic metamaterials

Ilya V. Shadrivov, Alexander B. Kozyrev, DanielW. van der Weide, and Yuri S. Kivshar
Opt. Express 16(25) 20266-20271 (2008)

Electromagnetic dipole coupling mechanism in layered terahertz metamaterials

Jeongmook Choi, Hyunseung Jung, Hojin Lee, and Hyunyong Choi
Opt. Express 21(14) 16975-16979 (2013)

Subwavelength electromagnetic switch: Bistable wave transmission of side-coupling nonlinear meta-atom

Yaqiong Ding, Chunhua Xue, Yong Sun, Haitao Jiang, Yunhui Li, Hongqiang Li, and Hong Chen
Opt. Express 20(22) 24813-24818 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  3. Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
    [Crossref]
  4. J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
    [Crossref]
  5. J. Liu, K. Zhang, X. Liu, Z. Zhang, Z. Jin, X. He, and G. Ma, “Switchable metamaterial for enhancing and localizing electromagnetic field at terahertz band,” Opt. Express 25(13), 13944–13952 (2017).
    [Crossref] [PubMed]
  6. M. Giloan and R. Gutt, “Optical negative index metamaterial based on hexagonal arrays of metallic meta-atoms with threefold rotational symmetry,” J. Opt. Soc. Am. B 33(1), 27–34 (2016).
    [Crossref]
  7. Z. Su, J. Yin, K. Song, Q. Lei, and X. Zhao, “Electrically controllable soft optical cloak based on gold nanorod fluids with epsilon-near-zero characteristic,” Opt. Express 24(6), 6021–6033 (2016).
    [Crossref] [PubMed]
  8. Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
    [Crossref] [PubMed]
  9. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [Crossref] [PubMed]
  10. H. X. Xu, G. M. Wang, M. Q. Qi, L. Li, and T. J. Cui, “Three-dimensional super lens composed of fractal left-handed materials,” Adv. Opt. Mater. 1(7), 495–502 (2013).
    [Crossref]
  11. H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
    [Crossref]
  12. H. X. Xu, G. M. Wang, M. Q. Qi, Y. Y. Lv, and X. Gao, “Metamaterial lens made of fully printed resonant-type negative-refractive index transmission lines,” Appl. Phys. Lett. 102(19), 193502 (2013).
    [Crossref]
  13. E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater. 10(3), 216–222 (2011).
    [Crossref] [PubMed]
  14. Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
    [Crossref]
  15. H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett. 101(17), 173501 (2012).
    [Crossref]
  16. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  17. G. Deng, J. Yang, and Z. Yin, “Broadband terahertz metamaterial absorber based on tantalum nitride,” Appl. Opt. 56(9), 2449–2454 (2017).
    [Crossref] [PubMed]
  18. Y. Zhao, B. Li, C. Lan, K. Bi, and Z. Qu, “Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range,” Opt. Express 25(18), 22158–22163 (2017).
    [Crossref] [PubMed]
  19. M. Lapine, I. Shadrivov, and Y. Kivshar, “Wide-band negative permeability of nonlinear metamaterials,” Sci. Rep. 2(1), 1–4 (2012).
    [Crossref] [PubMed]
  20. M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
    [Crossref]
  21. W. Wu, L. Fan, W. Zang, X. Yang, P. Zhan, Z. Chen, and Z. Wang, “Second harmonic generation enhancement from a nonlinear nanocrystal integrated hyperbolic metamaterial cavity,” Opt. Express 25(18), 21342–21348 (2017).
    [Crossref] [PubMed]
  22. S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2012).
    [Crossref] [PubMed]
  23. K. Kim, “Enhanced optical phase conjugation in nonlinear metamaterials,” Opt. Express 22(S7), A1744–A1752 (2014).
    [Crossref] [PubMed]
  24. M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, “Amplification and squeezing of quantum noise with a tunable josephson metamaterial,” Nat. Phys. 4(12), 929–931 (2008).
    [Crossref]
  25. D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear electric metamaterials,” Appl. Phys. Lett. 95(8), 084102 (2009).
    [Crossref]
  26. J. P. Barrett, A. R. Katko, and S. A. Cummer, “Transistor-based metamaterials with dynamically tunable nonlinear susceptibility,” Appl. Phys. Lett. 109(6), 061901 (2016).
    [Crossref]
  27. A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
    [Crossref]
  28. A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
    [Crossref]
  29. C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100(12), 121906 (2012).
    [Crossref]
  30. A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
    [Crossref]
  31. M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 1(1), 138 (2011).
    [Crossref] [PubMed]
  32. M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11(1), 30–33 (2012).
    [Crossref] [PubMed]
  33. M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Nonlinear response via intrinsic rotation in metamaterials,” Phys. Rev. B 87(23), 235126 (2013).
    [Crossref]
  34. A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
    [Crossref] [PubMed]
  35. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant nonlinearity of an optically reconfigurable plasmonic metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
    [Crossref] [PubMed]
  36. N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
    [Crossref] [PubMed]
  37. M. Liu, D. A. Powell, R. Guo, I. V. Shadrivov, and Y. S. Kivshar, “Polarization-induced chirality in metamaterials via optomechanical interaction,” Adv. Opt. Mater. 5(16), 1600760 (2017).
    [Crossref]
  38. Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15(5), 055104 (2013).
    [Crossref]
  39. R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (New Jersey: Wiley, 2007).

2017 (5)

2016 (6)

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant nonlinearity of an optically reconfigurable plasmonic metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref] [PubMed]

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

J. P. Barrett, A. R. Katko, and S. A. Cummer, “Transistor-based metamaterials with dynamically tunable nonlinear susceptibility,” Appl. Phys. Lett. 109(6), 061901 (2016).
[Crossref]

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

M. Giloan and R. Gutt, “Optical negative index metamaterial based on hexagonal arrays of metallic meta-atoms with threefold rotational symmetry,” J. Opt. Soc. Am. B 33(1), 27–34 (2016).
[Crossref]

Z. Su, J. Yin, K. Song, Q. Lei, and X. Zhao, “Electrically controllable soft optical cloak based on gold nanorod fluids with epsilon-near-zero characteristic,” Opt. Express 24(6), 6021–6033 (2016).
[Crossref] [PubMed]

2014 (5)

Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

K. Kim, “Enhanced optical phase conjugation in nonlinear metamaterials,” Opt. Express 22(S7), A1744–A1752 (2014).
[Crossref] [PubMed]

2013 (5)

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15(5), 055104 (2013).
[Crossref]

M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Nonlinear response via intrinsic rotation in metamaterials,” Phys. Rev. B 87(23), 235126 (2013).
[Crossref]

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

H. X. Xu, G. M. Wang, M. Q. Qi, L. Li, and T. J. Cui, “Three-dimensional super lens composed of fractal left-handed materials,” Adv. Opt. Mater. 1(7), 495–502 (2013).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, Y. Y. Lv, and X. Gao, “Metamaterial lens made of fully printed resonant-type negative-refractive index transmission lines,” Appl. Phys. Lett. 102(19), 193502 (2013).
[Crossref]

2012 (8)

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett. 101(17), 173501 (2012).
[Crossref]

M. Lapine, I. Shadrivov, and Y. Kivshar, “Wide-band negative permeability of nonlinear metamaterials,” Sci. Rep. 2(1), 1–4 (2012).
[Crossref] [PubMed]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11(1), 30–33 (2012).
[Crossref] [PubMed]

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2012).
[Crossref] [PubMed]

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100(12), 121906 (2012).
[Crossref]

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

2011 (4)

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 1(1), 138 (2011).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater. 10(3), 216–222 (2011).
[Crossref] [PubMed]

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

2009 (1)

D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear electric metamaterials,” Appl. Phys. Lett. 95(8), 084102 (2009).
[Crossref]

2008 (2)

M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, “Amplification and squeezing of quantum noise with a tunable josephson metamaterial,” Nat. Phys. 4(12), 929–931 (2008).
[Crossref]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Anlage, S. M.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100(12), 121906 (2012).
[Crossref]

Atmatzakis, E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Barrett, J. P.

J. P. Barrett, A. R. Katko, and S. A. Cummer, “Transistor-based metamaterials with dynamically tunable nonlinear susceptibility,” Appl. Phys. Lett. 109(6), 061901 (2016).
[Crossref]

Bartal, G.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2012).
[Crossref] [PubMed]

Belov, P. A.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

Bi, K.

Boden, S. A.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Bossard, J. A.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater. 10(3), 216–222 (2011).
[Crossref] [PubMed]

Castellanos-Beltran, M. A.

M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, “Amplification and squeezing of quantum noise with a tunable josephson metamaterial,” Nat. Phys. 4(12), 929–931 (2008).
[Crossref]

Chen, Z.

Cheong, H.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Cui, T. J.

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, L. Li, and T. J. Cui, “Three-dimensional super lens composed of fractal left-handed materials,” Adv. Opt. Mater. 1(7), 495–502 (2013).
[Crossref]

Cummer, S. A.

J. P. Barrett, A. R. Katko, and S. A. Cummer, “Transistor-based metamaterials with dynamically tunable nonlinear susceptibility,” Appl. Phys. Lett. 109(6), 061901 (2016).
[Crossref]

De Angelis, F.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Deng, G.

Di Fabrizio, E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Fan, L.

Farnell, J.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Gao, X.

H. X. Xu, G. M. Wang, M. Q. Qi, Y. Y. Lv, and X. Gao, “Metamaterial lens made of fully printed resonant-type negative-refractive index transmission lines,” Appl. Phys. Lett. 102(19), 193502 (2013).
[Crossref]

Giloan, M.

Guo, R.

M. Liu, D. A. Powell, R. Guo, I. V. Shadrivov, and Y. S. Kivshar, “Polarization-induced chirality in metamaterials via optomechanical interaction,” Adv. Opt. Mater. 5(16), 1600760 (2017).
[Crossref]

Gutt, R.

He, X.

Hilton, G. C.

M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, “Amplification and squeezing of quantum noise with a tunable josephson metamaterial,” Nat. Phys. 4(12), 929–931 (2008).
[Crossref]

Huang, Y.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15(5), 055104 (2013).
[Crossref]

Irwin, K. D.

M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, “Amplification and squeezing of quantum noise with a tunable josephson metamaterial,” Nat. Phys. 4(12), 929–931 (2008).
[Crossref]

Jagadish, C.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Jin, Z.

Kang, J.-H.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Karouta, F.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Katko, A. R.

J. P. Barrett, A. R. Katko, and S. A. Cummer, “Transistor-based metamaterials with dynamically tunable nonlinear susceptibility,” Appl. Phys. Lett. 109(6), 061901 (2016).
[Crossref]

Kim, K.

Kim, K. W.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Kim, Y. H.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Kim, Y. J.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Kivshar, Y.

M. Lapine, I. Shadrivov, and Y. Kivshar, “Wide-band negative permeability of nonlinear metamaterials,” Sci. Rep. 2(1), 1–4 (2012).
[Crossref] [PubMed]

Kivshar, Y. S.

M. Liu, D. A. Powell, R. Guo, I. V. Shadrivov, and Y. S. Kivshar, “Polarization-induced chirality in metamaterials via optomechanical interaction,” Adv. Opt. Mater. 5(16), 1600760 (2017).
[Crossref]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Nonlinear response via intrinsic rotation in metamaterials,” Phys. Rev. B 87(23), 235126 (2013).
[Crossref]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11(1), 30–33 (2012).
[Crossref] [PubMed]

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 1(1), 138 (2011).
[Crossref] [PubMed]

D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear electric metamaterials,” Appl. Phys. Lett. 95(8), 084102 (2009).
[Crossref]

Koschny, T.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100(12), 121906 (2012).
[Crossref]

Kurter, C.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100(12), 121906 (2012).
[Crossref]

Lan, C.

Lapine, M.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Nonlinear response via intrinsic rotation in metamaterials,” Phys. Rev. B 87(23), 235126 (2013).
[Crossref]

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11(1), 30–33 (2012).
[Crossref] [PubMed]

M. Lapine, I. Shadrivov, and Y. Kivshar, “Wide-band negative permeability of nonlinear metamaterials,” Sci. Rep. 2(1), 1–4 (2012).
[Crossref] [PubMed]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 1(1), 138 (2011).
[Crossref] [PubMed]

Lee, Y. P.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Lehnert, K. W.

M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, “Amplification and squeezing of quantum noise with a tunable josephson metamaterial,” Nat. Phys. 4(12), 929–931 (2008).
[Crossref]

Lei, Q.

Li, B.

Li, J.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

Li, L.

H. X. Xu, G. M. Wang, M. Q. Qi, L. Li, and T. J. Cui, “Three-dimensional super lens composed of fractal left-handed materials,” Adv. Opt. Mater. 1(7), 495–502 (2013).
[Crossref]

Lier, E.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater. 10(3), 216–222 (2011).
[Crossref] [PubMed]

Liu, A. Q.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Liu, J.

Liu, M.

M. Liu, D. A. Powell, R. Guo, I. V. Shadrivov, and Y. S. Kivshar, “Polarization-induced chirality in metamaterials via optomechanical interaction,” Adv. Opt. Mater. 5(16), 1600760 (2017).
[Crossref]

M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Nonlinear response via intrinsic rotation in metamaterials,” Phys. Rev. B 87(23), 235126 (2013).
[Crossref]

Liu, X.

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Luo, Z.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Lv, Y. Y.

H. X. Xu, G. M. Wang, M. Q. Qi, Y. Y. Lv, and X. Gao, “Metamaterial lens made of fully printed resonant-type negative-refractive index transmission lines,” Appl. Phys. Lett. 102(19), 193502 (2013).
[Crossref]

Ma, G.

Ma, K.

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

McKerracher, I.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

McPhedran, R. C.

M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Nonlinear response via intrinsic rotation in metamaterials,” Phys. Rev. B 87(23), 235126 (2013).
[Crossref]

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

Minovich, A.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Neshev, D. N.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Nikolaenko, A. E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant nonlinearity of an optically reconfigurable plasmonic metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Palomba, S.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2012).
[Crossref] [PubMed]

Papasimakis, N.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Park, Y.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2012).
[Crossref] [PubMed]

Plum, E.

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant nonlinearity of an optically reconfigurable plasmonic metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref] [PubMed]

Powell, D. A.

M. Liu, D. A. Powell, R. Guo, I. V. Shadrivov, and Y. S. Kivshar, “Polarization-induced chirality in metamaterials via optomechanical interaction,” Adv. Opt. Mater. 5(16), 1600760 (2017).
[Crossref]

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Nonlinear response via intrinsic rotation in metamaterials,” Phys. Rev. B 87(23), 235126 (2013).
[Crossref]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11(1), 30–33 (2012).
[Crossref] [PubMed]

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 1(1), 138 (2011).
[Crossref] [PubMed]

D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear electric metamaterials,” Appl. Phys. Lett. 95(8), 084102 (2009).
[Crossref]

Premaratne, M.

Qi, M. Q.

H. X. Xu, G. M. Wang, M. Q. Qi, Y. Y. Lv, and X. Gao, “Metamaterial lens made of fully printed resonant-type negative-refractive index transmission lines,” Appl. Phys. Lett. 102(19), 193502 (2013).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, L. Li, and T. J. Cui, “Three-dimensional super lens composed of fractal left-handed materials,” Adv. Opt. Mater. 1(7), 495–502 (2013).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett. 101(17), 173501 (2012).
[Crossref]

Qu, S.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Qu, Z.

Rhee, J. Y.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Scarborough, C. P.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater. 10(3), 216–222 (2011).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Shadrivov, I.

M. Lapine, I. Shadrivov, and Y. Kivshar, “Wide-band negative permeability of nonlinear metamaterials,” Sci. Rep. 2(1), 1–4 (2012).
[Crossref] [PubMed]

Shadrivov, I. V.

M. Liu, D. A. Powell, R. Guo, I. V. Shadrivov, and Y. S. Kivshar, “Polarization-induced chirality in metamaterials via optomechanical interaction,” Adv. Opt. Mater. 5(16), 1600760 (2017).
[Crossref]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Nonlinear response via intrinsic rotation in metamaterials,” Phys. Rev. B 87(23), 235126 (2013).
[Crossref]

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11(1), 30–33 (2012).
[Crossref] [PubMed]

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 1(1), 138 (2011).
[Crossref] [PubMed]

D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear electric metamaterials,” Appl. Phys. Lett. 95(8), 084102 (2009).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, Z. X.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Si, L.-M.

Slobozhanyuk, A. P.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Song, K.

Soukoulis, C. M.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100(12), 121906 (2012).
[Crossref]

Su, Z.

Sun, Y.

M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Nonlinear response via intrinsic rotation in metamaterials,” Phys. Rev. B 87(23), 235126 (2013).
[Crossref]

Tan, H. H.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Tassin, P.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100(12), 121906 (2012).
[Crossref]

Tian, J.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Tian, Y.

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15(5), 055104 (2013).
[Crossref]

Tsai, D. P.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Ustinov, A. V.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100(12), 121906 (2012).
[Crossref]

Vale, L. R.

M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, “Amplification and squeezing of quantum noise with a tunable josephson metamaterial,” Nat. Phys. 4(12), 929–931 (2008).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, G. M.

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, Y. Y. Lv, and X. Gao, “Metamaterial lens made of fully printed resonant-type negative-refractive index transmission lines,” Appl. Phys. Lett. 102(19), 193502 (2013).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, L. Li, and T. J. Cui, “Three-dimensional super lens composed of fractal left-handed materials,” Adv. Opt. Mater. 1(7), 495–502 (2013).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett. 101(17), 173501 (2012).
[Crossref]

Wang, J.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Wang, Y.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Wang, Z.

Wei, X.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Wen, G.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15(5), 055104 (2013).
[Crossref]

Werner, D. H.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater. 10(3), 216–222 (2011).
[Crossref] [PubMed]

Wu, Q.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater. 10(3), 216–222 (2011).
[Crossref] [PubMed]

Wu, W.

Xu, H. X.

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, L. Li, and T. J. Cui, “Three-dimensional super lens composed of fractal left-handed materials,” Adv. Opt. Mater. 1(7), 495–502 (2013).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, Y. Y. Lv, and X. Gao, “Metamaterial lens made of fully printed resonant-type negative-refractive index transmission lines,” Appl. Phys. Lett. 102(19), 193502 (2013).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett. 101(17), 173501 (2012).
[Crossref]

Xu, Z.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Xu, Z. M.

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett. 101(17), 173501 (2012).
[Crossref]

Yang, J.

Yang, L.

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

Yang, X.

Yang, Y.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Yin, J.

Yin, X.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2012).
[Crossref] [PubMed]

Yin, Z.

Yoo, Y. J.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Yu, Z.

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

Zang, W.

Zhan, P.

Zhang, J.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant nonlinearity of an optically reconfigurable plasmonic metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref] [PubMed]

Zhang, K.

Zhang, L.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100(12), 121906 (2012).
[Crossref]

Zhang, S.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2012).
[Crossref] [PubMed]

Zhang, X.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2012).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Zhang, Z.

Zhao, X.

Zhao, Y.

Zheludev, N. I.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant nonlinearity of an optically reconfigurable plasmonic metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref] [PubMed]

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Zheng, H. Y.

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

Zhu, W.

Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
[Crossref] [PubMed]

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15(5), 055104 (2013).
[Crossref]

Zhu, W. M.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Zhuravel, A. P.

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100(12), 121906 (2012).
[Crossref]

Adv. Mater. (2)

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25(25), 3409–3412 (2013).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant nonlinearity of an optically reconfigurable plasmonic metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

M. Liu, D. A. Powell, R. Guo, I. V. Shadrivov, and Y. S. Kivshar, “Polarization-induced chirality in metamaterials via optomechanical interaction,” Adv. Opt. Mater. 5(16), 1600760 (2017).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, L. Li, and T. J. Cui, “Three-dimensional super lens composed of fractal left-handed materials,” Adv. Opt. Mater. 1(7), 495–502 (2013).
[Crossref]

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (9)

Y. Huang, L. Yang, J. Li, Y. Wang, and G. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109(5), 054101 (2016).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett. 101(17), 173501 (2012).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, Y. Y. Lv, and X. Gao, “Metamaterial lens made of fully printed resonant-type negative-refractive index transmission lines,” Appl. Phys. Lett. 102(19), 193502 (2013).
[Crossref]

Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105(4), 041902 (2014).
[Crossref]

D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear electric metamaterials,” Appl. Phys. Lett. 95(8), 084102 (2009).
[Crossref]

J. P. Barrett, A. R. Katko, and S. A. Cummer, “Transistor-based metamaterials with dynamically tunable nonlinear susceptibility,” Appl. Phys. Lett. 109(6), 061901 (2016).
[Crossref]

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100(12), 121906 (2012).
[Crossref]

J. Appl. Phys. (1)

J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial,” J. Appl. Phys. 109(8), 084918 (2011).
[Crossref]

J. Opt. (2)

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Y. Huang, Y. Tian, G. Wen, and W. Zhu, “Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration,” J. Opt. 15(5), 055104 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Mater. (4)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater. 10(3), 216–222 (2011).
[Crossref] [PubMed]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11(1), 30–33 (2012).
[Crossref] [PubMed]

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

Nat. Phys. (1)

M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, “Amplification and squeezing of quantum noise with a tunable josephson metamaterial,” Nat. Phys. 4(12), 929–931 (2008).
[Crossref]

Opt. Express (6)

Phys. Rev. B (1)

M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Nonlinear response via intrinsic rotation in metamaterials,” Phys. Rev. B 87(23), 235126 (2013).
[Crossref]

Phys. Rev. Lett. (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

Sci. Rep. (2)

M. Lapine, I. Shadrivov, and Y. Kivshar, “Wide-band negative permeability of nonlinear metamaterials,” Sci. Rep. 2(1), 1–4 (2012).
[Crossref] [PubMed]

M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 1(1), 138 (2011).
[Crossref] [PubMed]

Science (2)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Other (1)

R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (New Jersey: Wiley, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Description and characterization of electromagnetic force induced plasmonic nonlinear metamaterial. (a) Meta-atom in the form of two SRRs, (b) Ampère’s forces (curves 1–6) acting between them for different strengths of incident electromagnetic waves, and elastic force induced in the substrate (solid line). The horizontal axis in (b) is normalized by the radius r0 of the SRRs.
Fig. 2
Fig. 2 Theoretical responses of electromagnetic force induced plasmonic nonlinear metamaterial as functions of magnetic field strength and frequency in incident electromagnetic wave. Two-D maps of distance b with (a) increasing H and f and (b) decreasing H and f. (c) The variation of distance b with increasing and decreasing H at different incident frequencies, blue: 5.4 GHz, black: 5.45 GHz, red: 5.5 GHz, and green: 5.54 GHz. (d) The variation of distance b with increasing and decreasing f at different magnetic field strengths, red: 0.6 A/m, blue: 0.2 A/m, green: 0.025 A/m, and black: 0.002 A/m.
Fig. 3
Fig. 3 Performances of SRR structure under the acting force induced by external electromagnetic field. Ampère’s force curves at excitation frequencies ranging from 4.3 to 5.5 GHz with a step of 0.2 GHz for magnetic field strengths of (a) 0.035 A/m and (b) 0.025 A/m. (c) The zoom-in plot of panel (a) with more Ampère’s force curves. (d) The schematically representation for explaining the inaccessible stable state. (e) and (f) Variations of magnetization M with increasing and decreasing excitation frequency for magnetic field strengths 0.035 A/m and 0.025 A/m.
Fig. 4
Fig. 4 Experimental demonstration of nonlinear response of electromagnetic force induced plasmonic nonlinear metamaterial. (a) Schematic view of the measurement setup. (b) Rectangular waveguide with magnetoelastic metamaterial inside it. (c) 2D plot for the metamaterial transmission spectra under different incident power levels from 10 dBm to 30 dBm. The inset of panel (c) is the corresponding numerical results. (d) The resonance frequency shift and the corresponding acting force with increasing powers ranged from 10 dBm to 30 dBm.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

φ= B t dS=π r 0 2 B t =π r 0 2 ( μ 0 H 0 ) t =π r 0 2 jω μ 0 H 0 ,
φ=( R+jωL j ωC )I(b)=π r 0 2 jω μ 0 H 0 ,
L= μ 0 π 3 4 c 2 0 dk k 2 [bA(kb)aA(ka)] 2 ,
A(x)= S 0 (x) J 1 (x) S 1 (x) J 0 (x),
C pul = 1 2 ε e ε 0 [ 2c b +1.393+0.667ln( 2c b +1.444)],
ε e = ε+ ε 0 2 ε 0 + ε ε 0 2 ε 0 (1+ 6b c ) 1 ,
R= π r 0 cδσ ,
B= μ 0 4π Idl×R |R | 3 ,
B= μ 0 I r 0 4π 0 2π d ϕ rcosθcos ϕ e x +rcosθcos ϕ e y +( r 0 rsinθcos ϕ ) e z ( r 0 2 + r 2 2 r 0 rsinθcos ϕ ) 3/2 .
B x = μ 0 I 4π 2cosθ sinθ ( r 0 2 + r 2 +2 r 0 rsinθ) 1/2 ( r 0 2 + r 2 r 0 2 + r 2 2 r 0 rsinθ εκ ),
B z = μ 0 I 4π 2 ( r 0 2 + r 2 +2 r 0 rsinθ) 1/2 ( r 0 2 r 2 r 0 2 + r 2 2 r 0 rsinθ ε+κ ),
ε= 0 π/2 1 k 2 sin 2 x dx, κ= 0 π/2 dx 1 k 2 sin 2 x ,
k 2 = 4 r 0 rsinθ r 0 2 + r 2 +2 r 0 rsinθ ,
dF=Idl×B=I r 0 d ϕ e ϕ ×B=I r 0 B ρ d ϕ e z +I r 0 B z d ϕ e ρ ,
F z =I r 0 B ρ d ϕ =2πI r 0 B ρ = μ 0 I 2 b (4 r 0 2 + b 2 ) 1/2 ( 2 r 0 2 + b 2 b 2 εκ ).
I 2 (b)= (π r 0 2 μ 0 H 0 ) 2 L 2 ( ω 0 2 / ω 2 1) 2 + R 2 / ω 2 .

Metrics