Abstract

Typical integrated optical phase tuners alter the effective index. In this paper, we explore tuning by geometric deformation. We show that tuning efficiency, Vπ L, improves as the device size shrinks down to the optimal bend radius, contrary to conventional index-shift based approaches where Vπ L remains constant. We demonstrate that this approach is capable of ultra-low power tuning across a full FSR in a low-confinement silicon nitride based ring resonator of 580 μm radius. We demonstrate record performance with VFSR = 16 V, Vπ L = 3.6 V dB, Vπ = 1.1 V dB, tuning current below 10 nA, and unattenuated tuning response up to 1 MHz. We also present optimized designs for high confinement silicon nitride and silicon based platforms with radius down to 80 μm and 45 μm, respectively, with performance well beyond current state-of-the-art. Applications include narrow-linewidth tunable diode lasers for spectroscopy and non-linear optics, optical phased array beamforming networks for RF antennas and LIDAR, and optical filters for WDM telecommunication links.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Overcoming Si3N4 film stress limitations for high quality factor ring resonators

Kevin Luke, Avik Dutt, Carl B. Poitras, and Michal Lipson
Opt. Express 21(19) 22829-22833 (2013)

Thermally tunable silicon racetrack resonators with ultralow tuning power

Po Dong, Wei Qian, Hong Liang, Roshanak Shafiiha, Dazeng Feng, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari
Opt. Express 18(19) 20298-20304 (2010)

High quality factor and high confinement silicon resonators using etchless process

Austin Griffith, Jaime Cardenas, Carl B. Poitras, and Michal Lipson
Opt. Express 20(19) 21341-21345 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
    [Crossref] [PubMed]
  2. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
    [Crossref] [PubMed]
  3. C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
    [Crossref] [PubMed]
  4. N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23, 14018–14026 (2015).
    [Crossref] [PubMed]
  5. J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
  6. L. Zhuang, C. Roeloffzen, R. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1×8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19, 1130–1132 (2007).
    [Crossref]
  7. P. A. Morton, J. B. Khurgin, Z. Mizrahi, and S. J. Morton, “Commercially packaged optical true-time-delay devices with record delays of wide bandwidth signals,” in CLEO: Applications and Technology (Optical Society of America, 2014), paper AW3P.6.
  8. W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” in 2017 IEEE Photonics Conference (IEEE2017), pp. 117–118.
  9. B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).
  10. D. A. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and piezomagnetic materials and their function in transducers,” in Physical Acoustics: Principles and Methods, vol. 1A, W. P. Mason, ed. (Academic Press, 1964).
    [Crossref]
  11. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
    [Crossref] [PubMed]
  12. T. Huffman, D. Baney, and D. J. Blumenthal, “High extinction ratio widely tunable low-loss integrated Si3N4 third-order filter,” arXiv preprint arXiv:1708.06344 (2017).
  13. S. Trolier-McKinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” J. Electroceram. 12, 7–17 (2004).
    [Crossref]
  14. R. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38, 5149–5153 (1967).
    [Crossref]
  15. W. Cook, D. Nelson, and K. Vedam, Piezooptic and Electrooptic Constants, vol. 30 (Springer, 1996).
  16. B. Melnick, C. P. de Araujo, L. McMillan, D. Carver, and J. Scott, “Recent results on switching, fatigue and electrical characterization of sol-gel based PZT capacitors,” Ferroelectrics 116, 79–93 (1991).
    [Crossref]
  17. H. D. Chen, K. Udayakumar, K. K. Li, C. J. Gaskey, and L. E. Cross, “Dielectric breakdown strength in sol-gel derived PZT thick films,” Integr. Ferroelectr. 15, 89–98 (1997).
    [Crossref]
  18. R. Moazzami, C. Hu, and W. H. Shepherd, “Electrical characteristics of ferroelectric PZT thin films for DRAM applications,” IEEE Trans. Electron Devices 39, 2044–2049 (1992).
    [Crossref]
  19. T. Chen, H. Lee, and K. J. Vahala, “Thermal stress in silica-on-silicon disk resonators,” Appl. Phys. Lett. 102, 031113 (2013).
    [Crossref]
  20. S. S. Azadeh, F. Merget, S. Romero-García, A. Moscoso-Mártir, N. von den Driesch, J. Müller, S. Mantl, D. Buca, and J. Witzens, “Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters,” Opt. Express 23, 23526–23550 (2015).
    [Crossref] [PubMed]
  21. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
    [Crossref]
  22. M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4H.3.
  23. L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low-voltage high-speed travelling wave InGaAsP-InP phase modulator,” IEEE Photon. Technol. Lett. 16, 1831–1833 (2004).
    [Crossref]
  24. T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
    [Crossref]
  25. J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
    [Crossref]
  26. R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
    [Crossref]
  27. R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
    [Crossref]
  28. A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
    [Crossref] [PubMed]
  29. P. Tang, D. Towner, T. Hamano, A. Meier, and B. Wessels, “Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator,” Opt. Express 12, 5962–5967 (2004).
    [Crossref] [PubMed]
  30. C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
    [Crossref] [PubMed]
  31. G. Jin, Y. Zou, V. Fuflyigin, S. Liu, Y. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightw. Technol. 18, 807 (2000).
    [Crossref]
  32. K. Alexander, J. P. George, B. Kuyken, J. Beeckman, and D. Van Thourhout, “Broadband electro-optic modulation using low-loss PZT-on-silicon nitride integrated waveguides,” in CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.7.
  33. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
    [Crossref] [PubMed]
  34. B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, and H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21, 25324–25332 (2013).
    [Crossref] [PubMed]
  35. C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
    [Crossref]
  36. S. Zhu and G.-Q. Lo, “Aluminum nitride electro-optic phase shifter for backend integration on silicon,” Opt. Express 24, 12501–12506 (2016).
    [Crossref] [PubMed]
  37. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
    [Crossref]
  38. S. C. Abdulla, L. Kauppinen, M. Dijkstra, M. J. de Boer, E. Berenschot, H. V. Jansen, R. De Ridder, and G. J. Krijnen, “Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever,” Opt. Express 19, 15864–15878 (2011).
    [Crossref] [PubMed]
  39. C. Errando-Herranz, F. Niklaus, G. Stemme, and K. B. Gylfason, “A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks,” in Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 53–56.
  40. H. Du, F. S. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines 7, 69 (2016).
    [Crossref]
  41. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
    [Crossref]
  42. T. Ikeda and K. Hane, “A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers,” Appl. Phys. Lett. 102, 221113 (2013).
    [Crossref]
  43. M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon. 2, 180–184 (2008).
    [Crossref]
  44. V. Jayaraman, G. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48, 1331–1333 (2012).
    [Crossref]
  45. X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
    [Crossref]
  46. M. Datta, M. Pruessner, K. Amarnath, J. McGee, S. Kanakaraju, and R. Ghodssi, “Wavelength-selective integrated optical MEMS filter in InP,” in Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE2005), pp. 88–91.
  47. K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92, 061109 (2008).
    [Crossref]
  48. Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
    [Crossref]
  49. S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10, 1428–1430 (1998).
    [Crossref]
  50. B. Dong, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: a piezoelectric optical resonance tuner,” 31st IEEE International Conference on Micro Electro Mechanical Systems, Belfast, Northern Ireland, 21–25 Jan. 2018.
  51. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
    [Crossref]
  52. K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Integrated ultra-high-Q optical resonator,” arXiv preprint arXiv:1702.05076 (2017).
  53. J.-F. Veyan, M. Halls, S. Rangan, D. Aureau, X.-M. Yan, and Y. Chabal, “XeF2-induced removal of SiO2 near Si surfaces at 300 K: An unexpected proximity effect,” J. Appl. Phys. 108, 114914 (2010).
    [Crossref]
  54. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010).
    [Crossref] [PubMed]
  55. G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J.-H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20, 12035–12039 (2012).
    [Crossref] [PubMed]
  56. S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).
  57. X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
    [Crossref]
  58. L. M. Sanchez, D. M. Potrepka, G. R. Fox, I. Takeuchi, K. Wang, L. A. Bendersky, and R. G. Polcawich, “Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators,” J. Mater. Res. 28, 1920–1931 (2013).
    [Crossref]
  59. G. R. Fox, D. M. Potrepka, and R. G. Polcawich, “Dependence of {111}-textured Pt electrode properties on TiO2 seed layers formed by thermal oxidation,” J. Mater. Sci. Mater. Electron. pp. 1–15 (2017).
  60. K. Budd, S. Dey, and D. Payne, “Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films,” in British Ceramic Proceedings, B. Steele, ed. (Inst of Ceramics, 1985), pp. 107–121.
  61. S. K. Dey, K. D. Budd, and D. A. Payne, “Thin-film ferroelectrics of PZT of sol-gel processing,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 35, 80–81 (1988).
    [Crossref]

2017 (3)

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
[Crossref]

X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

2016 (2)

H. Du, F. S. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines 7, 69 (2016).
[Crossref]

S. Zhu and G.-Q. Lo, “Aluminum nitride electro-optic phase shifter for backend integration on silicon,” Opt. Express 24, 12501–12506 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (4)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref] [PubMed]

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

2013 (5)

L. M. Sanchez, D. M. Potrepka, G. R. Fox, I. Takeuchi, K. Wang, L. A. Bendersky, and R. G. Polcawich, “Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators,” J. Mater. Res. 28, 1920–1931 (2013).
[Crossref]

B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, and H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21, 25324–25332 (2013).
[Crossref] [PubMed]

T. Ikeda and K. Hane, “A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers,” Appl. Phys. Lett. 102, 221113 (2013).
[Crossref]

T. Chen, H. Lee, and K. J. Vahala, “Thermal stress in silica-on-silicon disk resonators,” Appl. Phys. Lett. 102, 031113 (2013).
[Crossref]

C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref] [PubMed]

2012 (5)

V. Jayaraman, G. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48, 1331–1333 (2012).
[Crossref]

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J.-H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20, 12035–12039 (2012).
[Crossref] [PubMed]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

2011 (4)

2010 (3)

2008 (2)

K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92, 061109 (2008).
[Crossref]

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon. 2, 180–184 (2008).
[Crossref]

2007 (1)

L. Zhuang, C. Roeloffzen, R. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1×8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

2006 (1)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

2005 (1)

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

2004 (3)

P. Tang, D. Towner, T. Hamano, A. Meier, and B. Wessels, “Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator,” Opt. Express 12, 5962–5967 (2004).
[Crossref] [PubMed]

S. Trolier-McKinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” J. Electroceram. 12, 7–17 (2004).
[Crossref]

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low-voltage high-speed travelling wave InGaAsP-InP phase modulator,” IEEE Photon. Technol. Lett. 16, 1831–1833 (2004).
[Crossref]

2003 (1)

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

2000 (1)

G. Jin, Y. Zou, V. Fuflyigin, S. Liu, Y. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightw. Technol. 18, 807 (2000).
[Crossref]

1998 (1)

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10, 1428–1430 (1998).
[Crossref]

1997 (1)

H. D. Chen, K. Udayakumar, K. K. Li, C. J. Gaskey, and L. E. Cross, “Dielectric breakdown strength in sol-gel derived PZT thick films,” Integr. Ferroelectr. 15, 89–98 (1997).
[Crossref]

1992 (1)

R. Moazzami, C. Hu, and W. H. Shepherd, “Electrical characteristics of ferroelectric PZT thin films for DRAM applications,” IEEE Trans. Electron Devices 39, 2044–2049 (1992).
[Crossref]

1991 (1)

B. Melnick, C. P. de Araujo, L. McMillan, D. Carver, and J. Scott, “Recent results on switching, fatigue and electrical characterization of sol-gel based PZT capacitors,” Ferroelectrics 116, 79–93 (1991).
[Crossref]

1988 (1)

S. K. Dey, K. D. Budd, and D. A. Payne, “Thin-film ferroelectrics of PZT of sol-gel processing,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 35, 80–81 (1988).
[Crossref]

1967 (1)

R. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38, 5149–5153 (1967).
[Crossref]

Abdulla, S. C.

Absil, P.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Adamiecki, A.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low-voltage high-speed travelling wave InGaAsP-InP phase modulator,” IEEE Photon. Technol. Lett. 16, 1831–1833 (2004).
[Crossref]

Ahn, C. H.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref] [PubMed]

Aihara, T.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
[Crossref]

Alexander, K.

K. Alexander, J. P. George, B. Kuyken, J. Beeckman, and D. Van Thourhout, “Broadband electro-optic modulation using low-loss PZT-on-silicon nitride integrated waveguides,” in CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.7.

Amarnath, K.

M. Datta, M. Pruessner, K. Amarnath, J. McGee, S. Kanakaraju, and R. Ghodssi, “Wavelength-selective integrated optical MEMS filter in InP,” in Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE2005), pp. 88–91.

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Anderson, R. C.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

Appel, C.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4H.3.

Asghari, M.

Auld, B. A.

B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).

Aureau, D.

J.-F. Veyan, M. Halls, S. Rangan, D. Aureau, X.-M. Yan, and Y. Chabal, “XeF2-induced removal of SiO2 near Si surfaces at 300 K: An unexpected proximity effect,” J. Appl. Phys. 108, 114914 (2010).
[Crossref]

Avrahami, Y.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Azadeh, S. S.

Baehr-Jones, T.

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

Baney, D.

T. Huffman, D. Baney, and D. J. Blumenthal, “High extinction ratio widely tunable low-loss integrated Si3N4 third-order filter,” arXiv preprint arXiv:1708.06344 (2017).

Barbastathis, G.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Barbieri, L.

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10, 1428–1430 (1998).
[Crossref]

Barbosa, F. A.

Beeckman, J.

K. Alexander, J. P. George, B. Kuyken, J. Beeckman, and D. Van Thourhout, “Broadband electro-optic modulation using low-loss PZT-on-silicon nitride integrated waveguides,” in CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.7.

Beeker, W.

Bendersky, L. A.

L. M. Sanchez, D. M. Potrepka, G. R. Fox, I. Takeuchi, K. Wang, L. A. Bendersky, and R. G. Polcawich, “Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators,” J. Mater. Res. 28, 1920–1931 (2013).
[Crossref]

Berenschot, E.

Berlincourt, D. A.

D. A. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and piezomagnetic materials and their function in transducers,” in Physical Acoustics: Principles and Methods, vol. 1A, W. P. Mason, ed. (Academic Press, 1964).
[Crossref]

Bhave, S. A.

B. Dong, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: a piezoelectric optical resonance tuner,” 31st IEEE International Conference on Micro Electro Mechanical Systems, Belfast, Northern Ireland, 21–25 Jan. 2018.

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Blumenthal, D. J.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

T. Huffman, D. Baney, and D. J. Blumenthal, “High extinction ratio widely tunable low-loss integrated Si3N4 third-order filter,” arXiv preprint arXiv:1708.06344 (2017).

Bogaerts, W.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Boller, K.-J.

Bolten, J.

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Borreman, A.

L. Zhuang, C. Roeloffzen, R. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1×8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

Bos, J.

Bowers, J. E.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” in 2017 IEEE Photonics Conference (IEEE2017), pp. 117–118.

Bryant, A.

Buca, D.

Budd, K.

K. Budd, S. Dey, and D. Payne, “Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films,” in British Ceramic Proceedings, B. Steele, ed. (Inst of Ceramics, 1985), pp. 107–121.

Budd, K. D.

S. K. Dey, K. D. Budd, and D. A. Payne, “Thin-film ferroelectrics of PZT of sol-gel processing,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 35, 80–81 (1988).
[Crossref]

Burgner, C.

V. Jayaraman, G. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48, 1331–1333 (2012).
[Crossref]

Burla, M.

Cable, A.

V. Jayaraman, G. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48, 1331–1333 (2012).
[Crossref]

Campenhout, J. V.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Cardenas, J.

Carver, D.

B. Melnick, C. P. de Araujo, L. McMillan, D. Carver, and J. Scott, “Recent results on switching, fatigue and electrical characterization of sol-gel based PZT capacitors,” Ferroelectrics 116, 79–93 (1991).
[Crossref]

Chabal, Y.

J.-F. Veyan, M. Halls, S. Rangan, D. Aureau, X.-M. Yan, and Y. Chabal, “XeF2-induced removal of SiO2 near Si surfaces at 300 K: An unexpected proximity effect,” J. Appl. Phys. 108, 114914 (2010).
[Crossref]

Chandrasekhar, S.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low-voltage high-speed travelling wave InGaAsP-InP phase modulator,” IEEE Photon. Technol. Lett. 16, 1831–1833 (2004).
[Crossref]

Chang-Hasnain, C. J.

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon. 2, 180–184 (2008).
[Crossref]

Chau, F. S.

H. Du, F. S. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines 7, 69 (2016).
[Crossref]

Chen, H. D.

H. D. Chen, K. Udayakumar, K. K. Li, C. J. Gaskey, and L. E. Cross, “Dielectric breakdown strength in sol-gel derived PZT thick films,” Integr. Ferroelectr. 15, 89–98 (1997).
[Crossref]

Chen, S.-W.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Chen, T.

T. Chen, H. Lee, and K. J. Vahala, “Thermal stress in silica-on-silicon disk resonators,” Appl. Phys. Lett. 102, 031113 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Chiles, J.

Chmielak, B.

Cole, G.

V. Jayaraman, G. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48, 1331–1333 (2012).
[Crossref]

Cook, W.

W. Cook, D. Nelson, and K. Vedam, Piezooptic and Electrooptic Constants, vol. 30 (Springer, 1996).

Cronin-Golomb, M.

G. Jin, Y. Zou, V. Fuflyigin, S. Liu, Y. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightw. Technol. 18, 807 (2000).
[Crossref]

Cross, L. E.

H. D. Chen, K. Udayakumar, K. K. Li, C. J. Gaskey, and L. E. Cross, “Dielectric breakdown strength in sol-gel derived PZT thick films,” Integr. Ferroelectr. 15, 89–98 (1997).
[Crossref]

Cunningham, J. E.

Curran, D. R.

D. A. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and piezomagnetic materials and their function in transducers,” in Physical Acoustics: Principles and Methods, vol. 1A, W. P. Mason, ed. (Academic Press, 1964).
[Crossref]

Dalton, L.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

Dama, B.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4H.3.

Datta, M.

M. Datta, M. Pruessner, K. Amarnath, J. McGee, S. Kanakaraju, and R. Ghodssi, “Wavelength-selective integrated optical MEMS filter in InP,” in Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE2005), pp. 88–91.

de Araujo, C. P.

B. Melnick, C. P. de Araujo, L. McMillan, D. Carver, and J. Scott, “Recent results on switching, fatigue and electrical characterization of sol-gel based PZT capacitors,” Ferroelectrics 116, 79–93 (1991).
[Crossref]

de Boer, M. J.

De Ridder, R.

Dekker, R.

Dekkers, M.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23, 14018–14026 (2015).
[Crossref] [PubMed]

Delvaux, C.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Desiatov, B.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Dey, S.

K. Budd, S. Dey, and D. Payne, “Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films,” in British Ceramic Proceedings, B. Steele, ed. (Inst of Ceramics, 1985), pp. 107–121.

Dey, S. K.

S. K. Dey, K. D. Budd, and D. A. Payne, “Thin-film ferroelectrics of PZT of sol-gel processing,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 35, 80–81 (1988).
[Crossref]

Dijkstra, M.

Ding, R.

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

Dixon, R.

R. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38, 5149–5153 (1967).
[Crossref]

Donati, S.

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10, 1428–1430 (1998).
[Crossref]

Dong, B.

B. Dong, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: a piezoelectric optical resonance tuner,” 31st IEEE International Conference on Micro Electro Mechanical Systems, Belfast, Northern Ireland, 21–25 Jan. 2018.

Dong, P.

Du, H.

H. Du, F. S. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines 7, 69 (2016).
[Crossref]

Dutt, A.

Elder, D. L.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

Epping, J. P.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Errando-Herranz, C.

C. Errando-Herranz, F. Niklaus, G. Stemme, and K. B. Gylfason, “A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks,” in Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 53–56.

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Fathpour, S.

Fedeli, J.-M.

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

Feng, D.

Feng, N.-N.

Fong, J.

Fong, K. Y.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Fournier, M.

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

Fox, G. R.

L. M. Sanchez, D. M. Potrepka, G. R. Fox, I. Takeuchi, K. Wang, L. A. Bendersky, and R. G. Polcawich, “Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators,” J. Mater. Res. 28, 1920–1931 (2013).
[Crossref]

G. R. Fox, D. M. Potrepka, and R. G. Polcawich, “Dependence of {111}-textured Pt electrode properties on TiO2 seed layers formed by thermal oxidation,” J. Mater. Sci. Mater. Electron. pp. 1–15 (2017).

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Freude, W.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

Fuflyigin, V.

G. Jin, Y. Zou, V. Fuflyigin, S. Liu, Y. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightw. Technol. 18, 807 (2000).
[Crossref]

Fujii, T.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
[Crossref]

Fukuda, H.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
[Crossref]

Gaeta, A. L.

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Gaskey, C. J.

H. D. Chen, K. Udayakumar, K. K. Li, C. J. Gaskey, and L. E. Cross, “Dielectric breakdown strength in sol-gel derived PZT thick films,” Integr. Ferroelectr. 15, 89–98 (1997).
[Crossref]

George, J. P.

K. Alexander, J. P. George, B. Kuyken, J. Beeckman, and D. Van Thourhout, “Broadband electro-optic modulation using low-loss PZT-on-silicon nitride integrated waveguides,” in CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.7.

Ghodssi, R.

M. Datta, M. Pruessner, K. Amarnath, J. McGee, S. Kanakaraju, and R. Ghodssi, “Wavelength-selective integrated optical MEMS filter in InP,” in Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE2005), pp. 88–91.

Goykhman, I.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Gylfason, K. B.

C. Errando-Herranz, F. Niklaus, G. Stemme, and K. B. Gylfason, “A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks,” in Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 53–56.

Halls, M.

J.-F. Veyan, M. Halls, S. Rangan, D. Aureau, X.-M. Yan, and Y. Chabal, “XeF2-induced removal of SiO2 near Si surfaces at 300 K: An unexpected proximity effect,” J. Appl. Phys. 108, 114914 (2010).
[Crossref]

Hamano, T.

Han, S.

Hane, K.

T. Ikeda and K. Hane, “A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers,” Appl. Phys. Lett. 102, 221113 (2013).
[Crossref]

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Hasebe, K.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
[Crossref]

Haus, H. A.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Heideman, R.

N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23, 14018–14026 (2015).
[Crossref] [PubMed]

L. Zhuang, C. Roeloffzen, R. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1×8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

Heideman, R. G.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref] [PubMed]

Helkey, R.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

Heni, W.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

Hiraki, T.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
[Crossref]

Hochberg, M.

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

Hoekman, M.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23, 14018–14026 (2015).
[Crossref] [PubMed]

Hosseini, N.

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Hu, C.

R. Moazzami, C. Hu, and W. H. Shepherd, “Electrical characteristics of ferroelectric PZT thin films for DRAM applications,” IEEE Trans. Electron Devices 39, 2044–2049 (1992).
[Crossref]

Hu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Huang, M. C.

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon. 2, 180–184 (2008).
[Crossref]

Huang, S.

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

Huffman, T.

T. Huffman, D. Baney, and D. J. Blumenthal, “High extinction ratio widely tunable low-loss integrated Si3N4 third-order filter,” arXiv preprint arXiv:1708.06344 (2017).

Ikeda, T.

T. Ikeda and K. Hane, “A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers,” Appl. Phys. Lett. 102, 221113 (2013).
[Crossref]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Jaffe, H.

D. A. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and piezomagnetic materials and their function in transducers,” in Physical Acoustics: Principles and Methods, vol. 1A, W. P. Mason, ed. (Academic Press, 1964).
[Crossref]

Jalali, B.

K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92, 061109 (2008).
[Crossref]

Jansen, H. V.

Jayaraman, V.

V. Jayaraman, G. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48, 1331–1333 (2012).
[Crossref]

Jen, A. K.-Y.

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Jerphagnon, O.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

Ji, X.

Jin, G.

G. Jin, Y. Zou, V. Fuflyigin, S. Liu, Y. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightw. Technol. 18, 807 (2000).
[Crossref]

Jin, W.

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” in 2017 IEEE Photonics Conference (IEEE2017), pp. 117–118.

John, D.

V. Jayaraman, G. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48, 1331–1333 (2012).
[Crossref]

Kabla, M.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Kakitsuka, T.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
[Crossref]

Kaman, V.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

Kanakaraju, S.

M. Datta, M. Pruessner, K. Amarnath, J. McGee, S. Kanakaraju, and R. Ghodssi, “Wavelength-selective integrated optical MEMS filter in InP,” in Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE2005), pp. 88–91.

Kauppinen, L.

Keating, A.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

Khurgin, J. B.

P. A. Morton, J. B. Khurgin, Z. Mizrahi, and S. J. Morton, “Commercially packaged optical true-time-delay devices with record delays of wide bandwidth signals,” in CLEO: Applications and Technology (Optical Society of America, 2014), paper AW3P.6.

Kim, W.-J.

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

Kippenberg, T. J.

B. Dong, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: a piezoelectric optical resonance tuner,” 31st IEEE International Conference on Micro Electro Mechanical Systems, Belfast, Northern Ireland, 21–25 Jan. 2018.

Kityk, I.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Klein, E. J.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Koeber, S.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

Koos, C.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

Korn, D.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

Krijnen, G. J.

Krishnamoorthy, A. V.

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Kumah, D.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref] [PubMed]

Kung, C.-C.

Kurz, H.

Kuyken, B.

K. Alexander, J. P. George, B. Kuyken, J. Beeckman, and D. Van Thourhout, “Broadband electro-optic modulation using low-loss PZT-on-silicon nitride integrated waveguides,” in CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.7.

Lakshmikumar, K.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4H.3.

Lauermann, M.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Lee, H.

T. Chen, H. Lee, and K. J. Vahala, “Thermal stress in silica-on-silicon disk resonators,” Appl. Phys. Lett. 102, 031113 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Lee, J.-H.

Lee, S. H.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Integrated ultra-high-Q optical resonator,” arXiv preprint arXiv:1702.05076 (2017).

Leinse, A.

Lepage, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Leuthold, J.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

Levy, U.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Li, G.

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Li, K. K.

H. D. Chen, K. Udayakumar, K. K. Li, C. J. Gaskey, and L. E. Cross, “Dielectric breakdown strength in sol-gel derived PZT thick films,” Integr. Ferroelectr. 15, 89–98 (1997).
[Crossref]

Liang, H.

Liao, S.

Lipson, M.

Liu, B.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

Liu, F.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Liu, J.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Liu, S.

G. Jin, Y. Zou, V. Fuflyigin, S. Liu, Y. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightw. Technol. 18, 807 (2000).
[Crossref]

Liu, X.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Lo, G.-Q.

Locorotondo, S.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Lopez-Royo, F.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Lu, Y.

G. Jin, Y. Zou, V. Fuflyigin, S. Liu, Y. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightw. Technol. 18, 807 (2000).
[Crossref]

Luo, J.

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

Luo, Y.

Malinowski, M.

Mantl, S.

Marchenko, D.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Marpaung, D.

Marpaung, D. A.

Martini, G.

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10, 1428–1430 (1998).
[Crossref]

Mashanovich, G. Z.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Mateman, R.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Matheisen, C.

Matsuo, S.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
[Crossref]

McGee, J.

M. Datta, M. Pruessner, K. Amarnath, J. McGee, S. Kanakaraju, and R. Ghodssi, “Wavelength-selective integrated optical MEMS filter in InP,” in Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE2005), pp. 88–91.

McMillan, L.

B. Melnick, C. P. de Araujo, L. McMillan, D. Carver, and J. Scott, “Recent results on switching, fatigue and electrical characterization of sol-gel based PZT capacitors,” Ferroelectrics 116, 79–93 (1991).
[Crossref]

Meier, A.

Meijerink, A.

L. Zhuang, C. Roeloffzen, R. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1×8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

Mekis, A.

Melnick, B.

B. Melnick, C. P. de Araujo, L. McMillan, D. Carver, and J. Scott, “Recent results on switching, fatigue and electrical characterization of sol-gel based PZT capacitors,” Ferroelectrics 116, 79–93 (1991).
[Crossref]

Meltzer, S.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Merget, F.

Milenin, A.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Mizrahi, Z.

P. A. Morton, J. B. Khurgin, Z. Mizrahi, and S. J. Morton, “Commercially packaged optical true-time-delay devices with record delays of wide bandwidth signals,” in CLEO: Applications and Technology (Optical Society of America, 2014), paper AW3P.6.

Moazzami, R.

R. Moazzami, C. Hu, and W. H. Shepherd, “Electrical characteristics of ferroelectric PZT thin films for DRAM applications,” IEEE Trans. Electron Devices 39, 2044–2049 (1992).
[Crossref]

Morton, P. A.

P. A. Morton, J. B. Khurgin, Z. Mizrahi, and S. J. Morton, “Commercially packaged optical true-time-delay devices with record delays of wide bandwidth signals,” in CLEO: Applications and Technology (Optical Society of America, 2014), paper AW3P.6.

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” in 2017 IEEE Photonics Conference (IEEE2017), pp. 117–118.

Morton, S. J.

P. A. Morton, J. B. Khurgin, Z. Mizrahi, and S. J. Morton, “Commercially packaged optical true-time-delay devices with record delays of wide bandwidth signals,” in CLEO: Applications and Technology (Optical Society of America, 2014), paper AW3P.6.

Moscoso-Mártir, A.

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Müller, J.

Muralt, P.

S. Trolier-McKinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” J. Electroceram. 12, 7–17 (2004).
[Crossref]

Murdoch, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Muzio, C.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4H.3.

Nachmias, T.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Nedeljkovic, M.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Nelson, D.

W. Cook, D. Nelson, and K. Vedam, Piezooptic and Electrooptic Constants, vol. 30 (Springer, 1996).

Ngai, J. H.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref] [PubMed]

Nielson, G. N.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Niklaus, F.

C. Errando-Herranz, F. Niklaus, G. Stemme, and K. B. Gylfason, “A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks,” in Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 53–56.

Novak, S.

Oh, D. Y.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Integrated ultra-high-Q optical resonator,” arXiv preprint arXiv:1702.05076 (2017).

Okawachi, Y.

Oldenbeuving, R. M.

Ong, P.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Palmer, R.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

Pathak, S.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Patil, A.

Payne, D.

K. Budd, S. Dey, and D. Payne, “Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films,” in British Ceramic Proceedings, B. Steele, ed. (Inst of Ceramics, 1985), pp. 107–121.

Payne, D. A.

S. K. Dey, K. D. Budd, and D. A. Payne, “Thin-film ferroelectrics of PZT of sol-gel processing,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 35, 80–81 (1988).
[Crossref]

Pernice, W. H.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref] [PubMed]

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Polcawich, R. G.

L. M. Sanchez, D. M. Potrepka, G. R. Fox, I. Takeuchi, K. Wang, L. A. Bendersky, and R. G. Polcawich, “Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators,” J. Mater. Res. 28, 1920–1931 (2013).
[Crossref]

G. R. Fox, D. M. Potrepka, and R. G. Polcawich, “Dependence of {111}-textured Pt electrode properties on TiO2 seed layers formed by thermal oxidation,” J. Mater. Sci. Mater. Electron. pp. 1–15 (2017).

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” in 2017 IEEE Photonics Conference (IEEE2017), pp. 117–118.

Potrepka, D. M.

L. M. Sanchez, D. M. Potrepka, G. R. Fox, I. Takeuchi, K. Wang, L. A. Bendersky, and R. G. Polcawich, “Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators,” J. Mater. Res. 28, 1920–1931 (2013).
[Crossref]

G. R. Fox, D. M. Potrepka, and R. G. Polcawich, “Dependence of {111}-textured Pt electrode properties on TiO2 seed layers formed by thermal oxidation,” J. Mater. Sci. Mater. Electron. pp. 1–15 (2017).

Poulsen, H. N.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

Pruessner, M.

M. Datta, M. Pruessner, K. Amarnath, J. McGee, S. Kanakaraju, and R. Ghodssi, “Wavelength-selective integrated optical MEMS filter in InP,” in Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE2005), pp. 88–91.

Pusarla, C.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

Qian, W.

Quack, N.

Rabiei, P.

Raj, K.

Rakich, P. T.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Rangan, S.

J.-F. Veyan, M. Halls, S. Rangan, D. Aureau, X.-M. Yan, and Y. Chabal, “XeF2-induced removal of SiO2 near Si surfaces at 300 K: An unexpected proximity effect,” J. Appl. Phys. 108, 114914 (2010).
[Crossref]

Rao, A.

Reed, G. T.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Reiner, J. W.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref] [PubMed]

Richardson, K.

Ripperda, C.

Roberts, S. P.

Robertson, M.

V. Jayaraman, G. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48, 1331–1333 (2012).
[Crossref]

Roeloffzen, C.

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
[Crossref] [PubMed]

L. Zhuang, C. Roeloffzen, R. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1×8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

Roeloffzen, C. G.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref] [PubMed]

Romero-García, S.

Sanchez, L. M.

L. M. Sanchez, D. M. Potrepka, G. R. Fox, I. Takeuchi, K. Wang, L. A. Bendersky, and R. G. Polcawich, “Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators,” J. Mater. Res. 28, 1920–1931 (2013).
[Crossref]

Sauer, N.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low-voltage high-speed travelling wave InGaAsP-InP phase modulator,” IEEE Photon. Technol. Lett. 16, 1831–1833 (2004).
[Crossref]

Schuck, C.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Scott, J.

B. Melnick, C. P. de Araujo, L. McMillan, D. Carver, and J. Scott, “Recent results on switching, fatigue and electrical characterization of sol-gel based PZT capacitors,” Ferroelectrics 116, 79–93 (1991).
[Crossref]

Sebbag, Y.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Sechrist, J. R.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

Selvaraja, S. K.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Seneviratne, D.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Seok, T. J.

Shafiiha, R.

Shastri, K.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4H.3.

Shepherd, W. H.

R. Moazzami, C. Hu, and W. H. Shepherd, “Electrical characteristics of ferroelectric PZT thin films for DRAM applications,” IEEE Trans. Electron Devices 39, 2044–2049 (1992).
[Crossref]

Shubin, I.

Sinsky, J.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low-voltage high-speed travelling wave InGaAsP-InP phase modulator,” IEEE Photon. Technol. Lett. 16, 1831–1833 (2004).
[Crossref]

Spott, A.

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

Stanton, E. J.

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” in 2017 IEEE Photonics Conference (IEEE2017), pp. 117–118.

Stemme, G.

C. Errando-Herranz, F. Niklaus, G. Stemme, and K. B. Gylfason, “A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks,” in Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 53–56.

Sterckx, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Stulz, L.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low-voltage high-speed travelling wave InGaAsP-InP phase modulator,” IEEE Photon. Technol. Lett. 16, 1831–1833 (2004).
[Crossref]

Sun, X.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Taddei, C.

Takeda, K.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
[Crossref]

Takeuchi, I.

L. M. Sanchez, D. M. Potrepka, G. R. Fox, I. Takeuchi, K. Wang, L. A. Bendersky, and R. G. Polcawich, “Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators,” J. Mater. Res. 28, 1920–1931 (2013).
[Crossref]

Tang, H. X.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref] [PubMed]

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Tang, P.

Thacker, H.

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Thourhout, D. V.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Tian, H.

B. Dong, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: a piezoelectric optical resonance tuner,” 31st IEEE International Conference on Micro Electro Mechanical Systems, Belfast, Northern Ireland, 21–25 Jan. 2018.

Towner, D.

Trolier-McKinstry, S.

S. Trolier-McKinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” J. Electroceram. 12, 7–17 (2004).
[Crossref]

Tsia, K.

K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92, 061109 (2008).
[Crossref]

Tsuchizawa, T.

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
[Crossref]

Tuller, H. L.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Udayakumar, K.

H. D. Chen, K. Udayakumar, K. K. Li, C. J. Gaskey, and L. E. Cross, “Dielectric breakdown strength in sol-gel derived PZT thick films,” Integr. Ferroelectr. 15, 89–98 (1997).
[Crossref]

Uddin, A.

V. Jayaraman, G. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48, 1331–1333 (2012).
[Crossref]

Vahala, K.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Integrated ultra-high-Q optical resonator,” arXiv preprint arXiv:1702.05076 (2017).

Vahala, K. J.

T. Chen, H. Lee, and K. J. Vahala, “Thermal stress in silica-on-silicon disk resonators,” Appl. Phys. Lett. 102, 031113 (2013).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

van Dijk, P. W.

van Etten, W.

L. Zhuang, C. Roeloffzen, R. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1×8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

Van Thourhout, D.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low-voltage high-speed travelling wave InGaAsP-InP phase modulator,” IEEE Photon. Technol. Lett. 16, 1831–1833 (2004).
[Crossref]

K. Alexander, J. P. George, B. Kuyken, J. Beeckman, and D. Van Thourhout, “Broadband electro-optic modulation using low-loss PZT-on-silicon nitride integrated waveguides,” in CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.7.

Vedam, K.

W. Cook, D. Nelson, and K. Vedam, Piezooptic and Electrooptic Constants, vol. 30 (Springer, 1996).

Veyan, J.-F.

J.-F. Veyan, M. Halls, S. Rangan, D. Aureau, X.-M. Yan, and Y. Chabal, “XeF2-induced removal of SiO2 near Si surfaces at 300 K: An unexpected proximity effect,” J. Appl. Phys. 108, 114914 (2010).
[Crossref]

Volet, N.

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” in 2017 IEEE Photonics Conference (IEEE2017), pp. 117–118.

von den Driesch, N.

Wahlbrink, T.

Waldow, M.

Walker, F. J.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref] [PubMed]

Wang, K.

L. M. Sanchez, D. M. Potrepka, G. R. Fox, I. Takeuchi, K. Wang, L. A. Bendersky, and R. G. Polcawich, “Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators,” J. Mater. Res. 28, 1920–1931 (2013).
[Crossref]

Watts, M. R.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Webster, M. A.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4H.3.

Wessels, B.

Wevers, L.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Winroth, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Witzens, J.

Woessner, M.

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

Wu, M. C.

Xie, W.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

Xiong, C.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref] [PubMed]

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Xu, G.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Xu, Y.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

Yan, X.-M.

J.-F. Veyan, M. Halls, S. Rangan, D. Aureau, X.-M. Yan, and Y. Chabal, “XeF2-induced removal of SiO2 near Si surfaces at 300 K: An unexpected proximity effect,” J. Appl. Phys. 108, 114914 (2010).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Integrated ultra-high-Q optical resonator,” arXiv preprint arXiv:1702.05076 (2017).

Yang, Q.-F.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Integrated ultra-high-Q optical resonator,” arXiv preprint arXiv:1702.05076 (2017).

Yao, J.

Yi, X.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Integrated ultra-high-Q optical resonator,” arXiv preprint arXiv:1702.05076 (2017).

Yoo, B.-W.

Yoshaei, O.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Yuan, S.

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

Zervas, M.

B. Dong, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: a piezoelectric optical resonance tuner,” 31st IEEE International Conference on Micro Electro Mechanical Systems, Belfast, Northern Ireland, 21–25 Jan. 2018.

Zhang, L.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low-voltage high-speed travelling wave InGaAsP-InP phase modulator,” IEEE Photon. Technol. Lett. 16, 1831–1833 (2004).
[Crossref]

Zhao, J.

G. Jin, Y. Zou, V. Fuflyigin, S. Liu, Y. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightw. Technol. 18, 807 (2000).
[Crossref]

Zhen, Z.

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Zheng, X.

Zhou, G.

H. Du, F. S. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines 7, 69 (2016).
[Crossref]

Zhou, Y.

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon. 2, 180–184 (2008).
[Crossref]

Zhu, S.

Zhuang, L.

Zou, Y.

G. Jin, Y. Zou, V. Fuflyigin, S. Liu, Y. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightw. Technol. 18, 807 (2000).
[Crossref]

Zsgiri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

T. Chen, H. Lee, and K. J. Vahala, “Thermal stress in silica-on-silicon disk resonators,” Appl. Phys. Lett. 102, 031113 (2013).
[Crossref]

T. Ikeda and K. Hane, “A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers,” Appl. Phys. Lett. 102, 221113 (2013).
[Crossref]

K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92, 061109 (2008).
[Crossref]

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Electron. Lett. (1)

V. Jayaraman, G. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48, 1331–1333 (2012).
[Crossref]

Ferroelectrics (1)

B. Melnick, C. P. de Araujo, L. McMillan, D. Carver, and J. Scott, “Recent results on switching, fatigue and electrical characterization of sol-gel based PZT capacitors,” Ferroelectrics 116, 79–93 (1991).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

X. Zheng, V. Kaman, S. Yuan, Y. Xu, O. Jerphagnon, A. Keating, R. C. Anderson, H. N. Poulsen, B. Liu, J. R. Sechrist, C. Pusarla, R. Helkey, D. J. Blumenthal, and J. E. Bowers, “Three-dimensional MEMS photonic cross-connect switch design and performance,” IEEE J. Sel. Topics Quantum Electron. 9, 571–578 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (4)

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10, 1428–1430 (1998).
[Crossref]

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low-voltage high-speed travelling wave InGaAsP-InP phase modulator,” IEEE Photon. Technol. Lett. 16, 1831–1833 (2004).
[Crossref]

L. Zhuang, C. Roeloffzen, R. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1×8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett. 19, 1130–1132 (2007).
[Crossref]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

IEEE Trans. Electron Devices (1)

R. Moazzami, C. Hu, and W. H. Shepherd, “Electrical characteristics of ferroelectric PZT thin films for DRAM applications,” IEEE Trans. Electron Devices 39, 2044–2049 (1992).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Control (1)

S. K. Dey, K. D. Budd, and D. A. Payne, “Thin-film ferroelectrics of PZT of sol-gel processing,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 35, 80–81 (1988).
[Crossref]

Integr. Ferroelectr. (1)

H. D. Chen, K. Udayakumar, K. K. Li, C. J. Gaskey, and L. E. Cross, “Dielectric breakdown strength in sol-gel derived PZT thick films,” Integr. Ferroelectr. 15, 89–98 (1997).
[Crossref]

J. Appl. Phys. (2)

R. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38, 5149–5153 (1967).
[Crossref]

J.-F. Veyan, M. Halls, S. Rangan, D. Aureau, X.-M. Yan, and Y. Chabal, “XeF2-induced removal of SiO2 near Si surfaces at 300 K: An unexpected proximity effect,” J. Appl. Phys. 108, 114914 (2010).
[Crossref]

J. Electroceram. (1)

S. Trolier-McKinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” J. Electroceram. 12, 7–17 (2004).
[Crossref]

J. Lightw. Technol. (3)

R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth,” J. Lightw. Technol. 29, 1112–1117 (2011).
[Crossref]

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightw. Technol. 32, 2726–2734 (2014).
[Crossref]

G. Jin, Y. Zou, V. Fuflyigin, S. Liu, Y. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightw. Technol. 18, 807 (2000).
[Crossref]

J. Mater. Res. (1)

L. M. Sanchez, D. M. Potrepka, G. R. Fox, I. Takeuchi, K. Wang, L. A. Bendersky, and R. G. Polcawich, “Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators,” J. Mater. Res. 28, 1920–1931 (2013).
[Crossref]

Micromachines (1)

H. Du, F. S. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines 7, 69 (2016).
[Crossref]

Nano Lett. (1)

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref] [PubMed]

Nanophotonics (1)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Nat. Photon. (3)

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photon. 11, 482–485 (2017).
[Crossref]

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon. 2, 180–184 (2008).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Nature (1)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsgiri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

New J. Phys. (1)

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Opt. Express (13)

N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23, 14018–14026 (2015).
[Crossref] [PubMed]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
[Crossref] [PubMed]

S. S. Azadeh, F. Merget, S. Romero-García, A. Moscoso-Mártir, N. von den Driesch, J. Müller, S. Mantl, D. Buca, and J. Witzens, “Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters,” Opt. Express 23, 23526–23550 (2015).
[Crossref] [PubMed]

S. Zhu and G.-Q. Lo, “Aluminum nitride electro-optic phase shifter for backend integration on silicon,” Opt. Express 24, 12501–12506 (2016).
[Crossref] [PubMed]

P. Tang, D. Towner, T. Hamano, A. Meier, and B. Wessels, “Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator,” Opt. Express 12, 5962–5967 (2004).
[Crossref] [PubMed]

P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref] [PubMed]

S. C. Abdulla, L. Kauppinen, M. Dijkstra, M. J. de Boer, E. Berenschot, H. V. Jansen, R. De Ridder, and G. J. Krijnen, “Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever,” Opt. Express 19, 15864–15878 (2011).
[Crossref] [PubMed]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref] [PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011).
[Crossref] [PubMed]

G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J.-H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20, 12035–12039 (2012).
[Crossref] [PubMed]

C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref] [PubMed]

B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, and H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21, 25324–25332 (2013).
[Crossref] [PubMed]

Optica (2)

Proc. SPIE (2)

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high performance silicon photonic circuits,” Proc. SPIE 9052, 90520F1 (2014).

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

RSC Adv. (1)

J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, and Z. Zhen, “Recent advances in polymer electro-optic modulators,” RSC Adv. 5, 15784–15794 (2015).
[Crossref]

Other (14)

P. A. Morton, J. B. Khurgin, Z. Mizrahi, and S. J. Morton, “Commercially packaged optical true-time-delay devices with record delays of wide bandwidth signals,” in CLEO: Applications and Technology (Optical Society of America, 2014), paper AW3P.6.

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” in 2017 IEEE Photonics Conference (IEEE2017), pp. 117–118.

B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, 1973).

D. A. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and piezomagnetic materials and their function in transducers,” in Physical Acoustics: Principles and Methods, vol. 1A, W. P. Mason, ed. (Academic Press, 1964).
[Crossref]

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper W4H.3.

T. Huffman, D. Baney, and D. J. Blumenthal, “High extinction ratio widely tunable low-loss integrated Si3N4 third-order filter,” arXiv preprint arXiv:1708.06344 (2017).

W. Cook, D. Nelson, and K. Vedam, Piezooptic and Electrooptic Constants, vol. 30 (Springer, 1996).

K. Alexander, J. P. George, B. Kuyken, J. Beeckman, and D. Van Thourhout, “Broadband electro-optic modulation using low-loss PZT-on-silicon nitride integrated waveguides,” in CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.7.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, and K. Vahala, “Integrated ultra-high-Q optical resonator,” arXiv preprint arXiv:1702.05076 (2017).

M. Datta, M. Pruessner, K. Amarnath, J. McGee, S. Kanakaraju, and R. Ghodssi, “Wavelength-selective integrated optical MEMS filter in InP,” in Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE2005), pp. 88–91.

B. Dong, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: a piezoelectric optical resonance tuner,” 31st IEEE International Conference on Micro Electro Mechanical Systems, Belfast, Northern Ireland, 21–25 Jan. 2018.

C. Errando-Herranz, F. Niklaus, G. Stemme, and K. B. Gylfason, “A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks,” in Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 53–56.

G. R. Fox, D. M. Potrepka, and R. G. Polcawich, “Dependence of {111}-textured Pt electrode properties on TiO2 seed layers formed by thermal oxidation,” J. Mater. Sci. Mater. Electron. pp. 1–15 (2017).

K. Budd, S. Dey, and D. Payne, “Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films,” in British Ceramic Proceedings, B. Steele, ed. (Inst of Ceramics, 1985), pp. 107–121.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Geometry for fabricated devices. Undercut of the ring allows the resonator to deform, straining the waveguide and tuning the optical resonance. (a) The geometry is roughly symmetric about the dashed cross-section plane. Devices were designed with two coupled bus waveguides in the add-drop configuration. (b) Detail view of the area denoted by solid rectangle in (a). Simulated TM optical mode profile and device shape under 0V (c) and 16V (d) applied bias to PZT actuator. (e) radial displacement in nm between (c) and (d).
Fig. 2
Fig. 2 Geometry for proposed devices. (a) cross-sectional geometry based on dual strip SiN waveguide of [11]. (b) cross-sectional geometry based on deeply etched SOI waveguides. TE mode within the dual-strip nitride waveguide under 0V (c) and 30V (d) bias. TE mode within the silicon waveguide under 0V (e) and 30V (f) bias.
Fig. 3
Fig. 3 Simulated tuning range versus ring radius for fixed undercut distance and voltage for each design. Tuning range as (a) a fraction of FSR and (b) in nm for the fabricated single-stripe nitride waveguide design (100 μm undercut, 16 V bias). Tuning range as (c) a fraction of FSR and (d) in nm for the proposed dual-stripe design (67 μm undercut, 30 V bias). Tuning range as (e) a fraction of FSR and (f) in nm for the proposed Si waveguide design (37 μm undercut, 30 V bias). In each case, the tuning penalty due to photoelastic effect is between 15 to 30 % of the total tuning range. When expressed as a fraction of FSR in (a), (c), and (e), the tuning range is independent of ring radius for large radii. When expressed in absolute terms in (b), (d), and (f), the tuning range tends to improve as ring radius shrinks.
Fig. 4
Fig. 4 Fabricated device images. SEM (colorized) images have been tinted: actuator-yellow, SiO2-blue, Si3N4-magenta. (a) SEM image – oblique view. (b) Cleaved ring resonator. (c) Cleaved waveguide core. (d) Height map by confocal microscopy with image stitching. The color scale is non-linear, to emphasize vertical displacement at the actuator surface. The distances marked 1 and 2, 75 μm and 155 μm respectively, indicate the approximate undercut in those regions. (e) SEM image of cladding, left rough by PZT actuator processing, adjacent to an etched trench and diced facet. (f) AFM heightmap of rough upper surface. The rough surface impacts propagation loss, but process optimizations should remedy it.
Fig. 5
Fig. 5 Static tuning across a FSR is demonstrated. VFSR = 16 V. (a) Measured TM mode transmission spectra for the same device at various applied voltages. Adjacent notches are dashed to clarify the tuning of a single resonance in solid. (b) Simulated (lines) and measured (data points) tuning of TM mode versus voltage. Nonlinearity in tuning arises due to large mechanical deformation and hysteresis in the PZT. (c) PZT dielectric constant varies with the applied field and displays hysteresis, characteristic of ferroelectrics. Device area is 0.01 cm2. (d) This hysteresis is observed in the ring resonator tuning as the electric field is reversed.
Fig. 6
Fig. 6 (a) Measured resonator modulation response of the device in Fig. 4(d) with regions of interest indicated by A, B, and C. (b) Simulated vibrational eigenmode frequencies versus undercut. Fundamental (c) and first higher order (d) vibrational mode shapes, respectively. Redder colors indicate greater displacement from equilibrium. Simulated eigenfrequencies in (b) provide insight into the real resonances in (a). We ascribe A and C to fundamental and first order resonances of 100 to 160 μm undercut areas, respectively. We ascribe B to fundamental vibrations of 80 μm undercut areas. (e) Measurement by laser doppler vibrometry of the lowest frequency resonance. The movement is localized to the region of largest undercut.

Tables (1)

Tables Icon

Table 1 Parameters and results for the simulations shown in Fig. 3. For each design, we determine the minimum bend radius tunable by a full FSR. At this minimum bend radius, we also simulate the fundamental mechanical resonance frequency to determine the maximum tuning speed.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Ln eff = m λ
Δ λ FSR = λ 2 n g , eff L
Δ m = 1
Δ λ = 0
L Δ n eff + n eff Δ L = λ
T = e _ E + c E S
D = e S + S E
Δ L = 2 π Δ R
Δ R = λ 2 π n eff

Metrics