Abstract

Whispering-gallery mode (WGM) microdisk lasers show great potential for highly sensitive label-free detection in large-scale sensor arrays. However, when used in practical applications under normal ambient conditions, these devices suffer from temperature fluctuations and photobleaching. Here we demonstrate that these challenges can be overcome by a novel referencing scheme that allows for simultaneous compensation of temperature drift and photobleaching. The technique relies on reference structures protected by locally dispensed passivation materials, and can be scaled to extended arrays of hundreds of devices. We prove the viability of the concept in a series of experiments, demonstrating robust and sensitive label-free detection over a wide range of constant or continuously varying temperatures. To the best of our knowledge, these measurements represent the first demonstration of biosensing in active WGM devices with simultaneous compensation of both photobleaching and temperature drift.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Label-free optical biosensing using a horizontal air-slot SiNx microdisk resonator

Shinyoung Lee, Seok Chan Eom, Jee Soo Chang, Chul Huh, Gun Yong Sung, and Jung H. Shin
Opt. Express 18(20) 20638-20644 (2010)

Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

Silicon photonic micro-disk resonators for label-free biosensing

Samantha M. Grist, Shon A. Schmidt, Jonas Flueckiger, Valentina Donzella, Wei Shi, Sahba Talebi Fard, James T. Kirk, Daniel M. Ratner, Karen C. Cheung, and Lukas Chrostowski
Opt. Express 21(7) 7994-8006 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  2. M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13(2), 427–436 (2012).
    [Crossref] [PubMed]
  3. M. A. Cooper, “Label-free screening of bio-molecular interactions,” Anal. Bioanal. Chem. 377(5), 834–842 (2003).
    [Crossref] [PubMed]
  4. S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
    [Crossref] [PubMed]
  5. T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
    [Crossref] [PubMed]
  6. U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. Köber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10(19), 3863–3868 (2014).
    [Crossref] [PubMed]
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  8. H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
    [Crossref]
  9. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  10. L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
    [Crossref]
  11. J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photonics 2(9), 1241–1245 (2015).
    [Crossref]
  12. O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
    [Crossref] [PubMed]
  13. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref] [PubMed]
  14. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
    [Crossref] [PubMed]
  15. J. T. Gohring, P. S. Dale, and X. Fan, “Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor,” Sens. Actuators B Chem. 146(1), 226–230 (2010).
    [Crossref]
  16. A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, “Photobleaching,” in Handbook of biological confocal microscopy (Springer, 2006), pp. 690–702.
  17. L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy,” Biophys. J. 68(6), 2588–2600 (1995).
    [Crossref] [PubMed]
  18. G. D. Peng, Z. Xiong, and P. L. Chu, “Fluorescence decay and recovery in organic dye-doped polymer optical fibers,” J. Lightwave Technol. 16(12), 2365–2372 (1998).
    [Crossref]
  19. G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
    [Crossref]
  20. Y. Huang, J. K. S. Poon, W. Liang, A. Yariv, C. Zhang, and L. R. Dalton, “Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators,” Appl. Phys. Lett. 87(7), 071108 (2005).
    [Crossref]
  21. J. K. Poon, Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores,” Opt. Lett. 29(22), 2584–2586 (2004).
    [Crossref] [PubMed]
  22. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  23. J. T. Kirk, G. E. Fridley, J. W. Chamberlain, E. D. Christensen, M. Hochberg, and D. M. Ratner, “Multiplexed inkjet functionalization of silicon photonic biosensors,” Lab Chip 11(7), 1372–1377 (2011).
    [Crossref] [PubMed]
  24. C. Lerma Arce, D. Witters, R. Puers, J. Lammertyn, and P. Bienstman, “Silicon photonic sensors incorporated in a digital microfluidic system,” Anal. Bioanal. Chem. 404(10), 2887–2894 (2012).
    [Crossref] [PubMed]
  25. U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
    [Crossref] [PubMed]
  26. L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
    [Crossref]
  27. N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt. 50(7), 992–998 (2011).
    [Crossref] [PubMed]
  28. H. K. Hunt and A. M. Armani, “Bioconjugation strategies for label-free optical microcavity sensors,” IEEE J. Sel. Top. Quantum Electron. 20(2), 121–133 (2014).
    [Crossref]
  29. H. Y. Chen and J. Lahann, “Designable biointerfaces using vapor-based reactive polymers,” Langmuir 27(1), 34–48 (2011).
    [Crossref] [PubMed]
  30. J. Lahann, I. S. Choi, J. Lee, K. F. Jensen, and R. Langer, “A new method toward microengineered surfaces based on reactive coating,” Angew. Chem. Int. Ed. 40(17), 3166–3169 (2001).
    [Crossref]
  31. X. Deng, C. Friedmann, and J. Lahann, “Bio-orthogonal “double-click” chemistry based on multifunctional coatings,” Angew. Chem. Int. Ed. Engl. 50(29), 6522–6526 (2011).
    [Crossref] [PubMed]
  32. U. R. Bog, “Optische Flüster-Galerie-Resonatoren und deren Funktionalisierung für die Biosensorik,” Ph. D. (Karlsruhe Institute of Technology, Karlsruhe, 2015), pp. 79–110.
  33. D. Doug, “Time pressure dispensing,” White Papers, (Universal Instruments, 2009), http://www4.uic.com/wcms/WCMS2.nsf/index/Resources_58.html .
  34. N. Tanaka and W. N. Sisk, “The photodegradation of pyrromethene 567 and pyrromethene 597 by pyrromethene 546,” J. Photochem. Photobiol. Chem. 172(2), 109–114 (2005).
    [Crossref]
  35. C. E. Soteropulos, K. M. Zurick, M. T. Bernards, and H. K. Hunt, “Tailoring the protein adsorption properties of whispering gallery mode optical biosensors,” Langmuir 28(44), 15743–15750 (2012).
    [Crossref] [PubMed]
  36. C. D. Heyes, J. Groll, M. Möller, and G. U. Nienhaus, “Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces,” Mol. Biosyst. 3(6), 419–430 (2007).
    [Crossref] [PubMed]
  37. H.-M. Haake, A. Schütz, and G. Gauglitz, “Label-free detection of biomolecular interaction by optical sensors,” Fresenius J. Anal. Chem. 366(6-7), 576–585 (2000).
    [Crossref] [PubMed]
  38. P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 541–566 (1997).
    [Crossref] [PubMed]
  39. M. A. Koussa, K. Halvorsen, A. Ward, and W. P. Wong, “DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis,” Nat. Methods 12(2), 123–126 (2014).
    [Crossref] [PubMed]
  40. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  41. S. F. Wondimu, S. von der Ecken, R. Ahrens, W. Freude, A. E. Guber, and C. Koos, “Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules,” Lab Chip 17(10), 1740–1748 (2017).
    [Crossref] [PubMed]
  42. E. Hallynck and P. Bienstman, “Digital microfluidics with pressure-based actuation,” IEEE Photonics Technol. Lett. 25(17), 1656–1659 (2013).
    [Crossref]
  43. I. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5(86), 70156–70162 (2015).
    [Crossref]

2017 (2)

S. F. Wondimu, S. von der Ecken, R. Ahrens, W. Freude, A. E. Guber, and C. Koos, “Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules,” Lab Chip 17(10), 1740–1748 (2017).
[Crossref] [PubMed]

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

2015 (4)

I. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5(86), 70156–70162 (2015).
[Crossref]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photonics 2(9), 1241–1245 (2015).
[Crossref]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

2014 (4)

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. Köber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10(19), 3863–3868 (2014).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

M. A. Koussa, K. Halvorsen, A. Ward, and W. P. Wong, “DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis,” Nat. Methods 12(2), 123–126 (2014).
[Crossref] [PubMed]

H. K. Hunt and A. M. Armani, “Bioconjugation strategies for label-free optical microcavity sensors,” IEEE J. Sel. Top. Quantum Electron. 20(2), 121–133 (2014).
[Crossref]

2013 (2)

E. Hallynck and P. Bienstman, “Digital microfluidics with pressure-based actuation,” IEEE Photonics Technol. Lett. 25(17), 1656–1659 (2013).
[Crossref]

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

2012 (4)

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13(2), 427–436 (2012).
[Crossref] [PubMed]

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

C. Lerma Arce, D. Witters, R. Puers, J. Lammertyn, and P. Bienstman, “Silicon photonic sensors incorporated in a digital microfluidic system,” Anal. Bioanal. Chem. 404(10), 2887–2894 (2012).
[Crossref] [PubMed]

C. E. Soteropulos, K. M. Zurick, M. T. Bernards, and H. K. Hunt, “Tailoring the protein adsorption properties of whispering gallery mode optical biosensors,” Langmuir 28(44), 15743–15750 (2012).
[Crossref] [PubMed]

2011 (4)

H. Y. Chen and J. Lahann, “Designable biointerfaces using vapor-based reactive polymers,” Langmuir 27(1), 34–48 (2011).
[Crossref] [PubMed]

X. Deng, C. Friedmann, and J. Lahann, “Bio-orthogonal “double-click” chemistry based on multifunctional coatings,” Angew. Chem. Int. Ed. Engl. 50(29), 6522–6526 (2011).
[Crossref] [PubMed]

J. T. Kirk, G. E. Fridley, J. W. Chamberlain, E. D. Christensen, M. Hochberg, and D. M. Ratner, “Multiplexed inkjet functionalization of silicon photonic biosensors,” Lab Chip 11(7), 1372–1377 (2011).
[Crossref] [PubMed]

N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt. 50(7), 992–998 (2011).
[Crossref] [PubMed]

2010 (3)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

J. T. Gohring, P. S. Dale, and X. Fan, “Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor,” Sens. Actuators B Chem. 146(1), 226–230 (2010).
[Crossref]

2009 (1)

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

2008 (4)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

2007 (2)

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

C. D. Heyes, J. Groll, M. Möller, and G. U. Nienhaus, “Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces,” Mol. Biosyst. 3(6), 419–430 (2007).
[Crossref] [PubMed]

2005 (2)

N. Tanaka and W. N. Sisk, “The photodegradation of pyrromethene 567 and pyrromethene 597 by pyrromethene 546,” J. Photochem. Photobiol. Chem. 172(2), 109–114 (2005).
[Crossref]

Y. Huang, J. K. S. Poon, W. Liang, A. Yariv, C. Zhang, and L. R. Dalton, “Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators,” Appl. Phys. Lett. 87(7), 071108 (2005).
[Crossref]

2004 (1)

2003 (2)

M. A. Cooper, “Label-free screening of bio-molecular interactions,” Anal. Bioanal. Chem. 377(5), 834–842 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

2001 (1)

J. Lahann, I. S. Choi, J. Lee, K. F. Jensen, and R. Langer, “A new method toward microengineered surfaces based on reactive coating,” Angew. Chem. Int. Ed. 40(17), 3166–3169 (2001).
[Crossref]

2000 (1)

H.-M. Haake, A. Schütz, and G. Gauglitz, “Label-free detection of biomolecular interaction by optical sensors,” Fresenius J. Anal. Chem. 366(6-7), 576–585 (2000).
[Crossref] [PubMed]

1998 (1)

1997 (1)

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 541–566 (1997).
[Crossref] [PubMed]

1995 (1)

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy,” Biophys. J. 68(6), 2588–2600 (1995).
[Crossref] [PubMed]

Ahrens, R.

S. F. Wondimu, S. von der Ecken, R. Ahrens, W. Freude, A. E. Guber, and C. Koos, “Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules,” Lab Chip 17(10), 1740–1748 (2017).
[Crossref] [PubMed]

Armani, A. M.

H. K. Hunt and A. M. Armani, “Bioconjugation strategies for label-free optical microcavity sensors,” IEEE J. Sel. Top. Quantum Electron. 20(2), 121–133 (2014).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Baaske, M.

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13(2), 427–436 (2012).
[Crossref] [PubMed]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Baets, R.

Bailey, R. C.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Barry, T.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Bartolozzi, I.

Becker, H.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Bernards, M. T.

C. E. Soteropulos, K. M. Zurick, M. T. Bernards, and H. K. Hunt, “Tailoring the protein adsorption properties of whispering gallery mode optical biosensors,” Langmuir 28(44), 15743–15750 (2012).
[Crossref] [PubMed]

Bernini, R.

I. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5(86), 70156–70162 (2015).
[Crossref]

Bienstman, P.

E. Hallynck and P. Bienstman, “Digital microfluidics with pressure-based actuation,” IEEE Photonics Technol. Lett. 25(17), 1656–1659 (2013).
[Crossref]

C. Lerma Arce, D. Witters, R. Puers, J. Lammertyn, and P. Bienstman, “Silicon photonic sensors incorporated in a digital microfluidic system,” Anal. Bioanal. Chem. 404(10), 2887–2894 (2012).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

Bog, U.

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. Köber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10(19), 3863–3868 (2014).
[Crossref] [PubMed]

Brinkmann, F.

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. Köber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10(19), 3863–3868 (2014).
[Crossref] [PubMed]

Chamberlain, J. W.

J. T. Kirk, G. E. Fridley, J. W. Chamberlain, E. D. Christensen, M. Hochberg, and D. M. Ratner, “Multiplexed inkjet functionalization of silicon photonic biosensors,” Lab Chip 11(7), 1372–1377 (2011).
[Crossref] [PubMed]

Chen, H. Y.

H. Y. Chen and J. Lahann, “Designable biointerfaces using vapor-based reactive polymers,” Langmuir 27(1), 34–48 (2011).
[Crossref] [PubMed]

Choi, I. S.

J. Lahann, I. S. Choi, J. Lee, K. F. Jensen, and R. Langer, “A new method toward microengineered surfaces based on reactive coating,” Angew. Chem. Int. Ed. 40(17), 3166–3169 (2001).
[Crossref]

Christensen, E. D.

J. T. Kirk, G. E. Fridley, J. W. Chamberlain, E. D. Christensen, M. Hochberg, and D. M. Ratner, “Multiplexed inkjet functionalization of silicon photonic biosensors,” Lab Chip 11(7), 1372–1377 (2011).
[Crossref] [PubMed]

Chu, P. L.

Cooper, M. A.

M. A. Cooper, “Label-free screening of bio-molecular interactions,” Anal. Bioanal. Chem. 377(5), 834–842 (2003).
[Crossref] [PubMed]

Dale, P. S.

J. T. Gohring, P. S. Dale, and X. Fan, “Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor,” Sens. Actuators B Chem. 146(1), 226–230 (2010).
[Crossref]

Dalton, L. R.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Y. Huang, J. K. S. Poon, W. Liang, A. Yariv, C. Zhang, and L. R. Dalton, “Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators,” Appl. Phys. Lett. 87(7), 071108 (2005).
[Crossref]

J. K. Poon, Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores,” Opt. Lett. 29(22), 2584–2586 (2004).
[Crossref] [PubMed]

De Vos, K.

Deng, X.

X. Deng, C. Friedmann, and J. Lahann, “Bio-orthogonal “double-click” chemistry based on multifunctional coatings,” Angew. Chem. Int. Ed. Engl. 50(29), 6522–6526 (2011).
[Crossref] [PubMed]

Dong, C.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Fan, X.

J. T. Gohring, P. S. Dale, and X. Fan, “Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor,” Sens. Actuators B Chem. 146(1), 226–230 (2010).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Freude, W.

S. F. Wondimu, S. von der Ecken, R. Ahrens, W. Freude, A. E. Guber, and C. Koos, “Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules,” Lab Chip 17(10), 1740–1748 (2017).
[Crossref] [PubMed]

Fridley, G. E.

J. T. Kirk, G. E. Fridley, J. W. Chamberlain, E. D. Christensen, M. Hochberg, and D. M. Ratner, “Multiplexed inkjet functionalization of silicon photonic biosensors,” Lab Chip 11(7), 1372–1377 (2011).
[Crossref] [PubMed]

Friedmann, C.

X. Deng, C. Friedmann, and J. Lahann, “Bio-orthogonal “double-click” chemistry based on multifunctional coatings,” Angew. Chem. Int. Ed. Engl. 50(29), 6522–6526 (2011).
[Crossref] [PubMed]

Fuchs, H.

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. Köber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10(19), 3863–3868 (2014).
[Crossref] [PubMed]

Gaddam, V.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Gauglitz, G.

H.-M. Haake, A. Schütz, and G. Gauglitz, “Label-free detection of biomolecular interaction by optical sensors,” Fresenius J. Anal. Chem. 366(6-7), 576–585 (2000).
[Crossref] [PubMed]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Glynn, B.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Gohring, J. T.

J. T. Gohring, P. S. Dale, and X. Fan, “Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor,” Sens. Actuators B Chem. 146(1), 226–230 (2010).
[Crossref]

Grimaldi, I.

I. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5(86), 70156–70162 (2015).
[Crossref]

Groll, J.

C. D. Heyes, J. Groll, M. Möller, and G. U. Nienhaus, “Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces,” Mol. Biosyst. 3(6), 419–430 (2007).
[Crossref] [PubMed]

Guber, A. E.

S. F. Wondimu, S. von der Ecken, R. Ahrens, W. Freude, A. E. Guber, and C. Koos, “Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules,” Lab Chip 17(10), 1740–1748 (2017).
[Crossref] [PubMed]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gupta, G.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Haake, H.-M.

H.-M. Haake, A. Schütz, and G. Gauglitz, “Label-free detection of biomolecular interaction by optical sensors,” Fresenius J. Anal. Chem. 366(6-7), 576–585 (2000).
[Crossref] [PubMed]

Hallynck, E.

E. Hallynck and P. Bienstman, “Digital microfluidics with pressure-based actuation,” IEEE Photonics Technol. Lett. 25(17), 1656–1659 (2013).
[Crossref]

Halvorsen, K.

M. A. Koussa, K. Halvorsen, A. Ward, and W. P. Wong, “DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis,” Nat. Methods 12(2), 123–126 (2014).
[Crossref] [PubMed]

He, L.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Hennink, E. J.

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy,” Biophys. J. 68(6), 2588–2600 (1995).
[Crossref] [PubMed]

Heyes, C. D.

C. D. Heyes, J. Groll, M. Möller, and G. U. Nienhaus, “Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces,” Mol. Biosyst. 3(6), 419–430 (2007).
[Crossref] [PubMed]

Hirtz, M.

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. Köber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10(19), 3863–3868 (2014).
[Crossref] [PubMed]

Hochberg, M.

J. T. Kirk, G. E. Fridley, J. W. Chamberlain, E. D. Christensen, M. Hochberg, and D. M. Ratner, “Multiplexed inkjet functionalization of silicon photonic biosensors,” Lab Chip 11(7), 1372–1377 (2011).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Huang, Y.

Y. Huang, J. K. S. Poon, W. Liang, A. Yariv, C. Zhang, and L. R. Dalton, “Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators,” Appl. Phys. Lett. 87(7), 071108 (2005).
[Crossref]

J. K. Poon, Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores,” Opt. Lett. 29(22), 2584–2586 (2004).
[Crossref] [PubMed]

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Bioconjugation strategies for label-free optical microcavity sensors,” IEEE J. Sel. Top. Quantum Electron. 20(2), 121–133 (2014).
[Crossref]

C. E. Soteropulos, K. M. Zurick, M. T. Bernards, and H. K. Hunt, “Tailoring the protein adsorption properties of whispering gallery mode optical biosensors,” Langmuir 28(44), 15743–15750 (2012).
[Crossref] [PubMed]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Jen, A. K.-Y.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Jensen, K. F.

J. Lahann, I. S. Choi, J. Lee, K. F. Jensen, and R. Langer, “A new method toward microengineered surfaces based on reactive coating,” Angew. Chem. Int. Ed. 40(17), 3166–3169 (2001).
[Crossref]

Jiang, L.

Kalt, H.

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. Köber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10(19), 3863–3868 (2014).
[Crossref] [PubMed]

Kaplinski, L.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Kindt, J. T.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Kirk, J. T.

J. T. Kirk, G. E. Fridley, J. W. Chamberlain, E. D. Christensen, M. Hochberg, and D. M. Ratner, “Multiplexed inkjet functionalization of silicon photonic biosensors,” Lab Chip 11(7), 1372–1377 (2011).
[Crossref] [PubMed]

Klusmann, C.

Köber, S.

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. Köber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10(19), 3863–3868 (2014).
[Crossref] [PubMed]

Koeber, S.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

Koos, C.

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

S. F. Wondimu, S. von der Ecken, R. Ahrens, W. Freude, A. E. Guber, and C. Koos, “Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules,” Lab Chip 17(10), 1740–1748 (2017).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. Köber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10(19), 3863–3868 (2014).
[Crossref] [PubMed]

Koussa, M. A.

M. A. Koussa, K. Halvorsen, A. Ward, and W. P. Wong, “DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis,” Nat. Methods 12(2), 123–126 (2014).
[Crossref] [PubMed]

Kraemmer, S.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

Krämmer, S.

Kurg, A.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Lahann, J.

H. Y. Chen and J. Lahann, “Designable biointerfaces using vapor-based reactive polymers,” Langmuir 27(1), 34–48 (2011).
[Crossref] [PubMed]

X. Deng, C. Friedmann, and J. Lahann, “Bio-orthogonal “double-click” chemistry based on multifunctional coatings,” Angew. Chem. Int. Ed. Engl. 50(29), 6522–6526 (2011).
[Crossref] [PubMed]

J. Lahann, I. S. Choi, J. Lee, K. F. Jensen, and R. Langer, “A new method toward microengineered surfaces based on reactive coating,” Angew. Chem. Int. Ed. 40(17), 3166–3169 (2001).
[Crossref]

Lammertyn, J.

C. Lerma Arce, D. Witters, R. Puers, J. Lammertyn, and P. Bienstman, “Silicon photonic sensors incorporated in a digital microfluidic system,” Anal. Bioanal. Chem. 404(10), 2887–2894 (2012).
[Crossref] [PubMed]

Langer, R.

J. Lahann, I. S. Choi, J. Lee, K. F. Jensen, and R. Langer, “A new method toward microengineered surfaces based on reactive coating,” Angew. Chem. Int. Ed. 40(17), 3166–3169 (2001).
[Crossref]

Lee, J.

J. Lahann, I. S. Choi, J. Lee, K. F. Jensen, and R. Langer, “A new method toward microengineered surfaces based on reactive coating,” Angew. Chem. Int. Ed. 40(17), 3166–3169 (2001).
[Crossref]

Lerma Arce, C.

C. Lerma Arce, D. Witters, R. Puers, J. Lammertyn, and P. Bienstman, “Silicon photonic sensors incorporated in a digital microfluidic system,” Anal. Bioanal. Chem. 404(10), 2887–2894 (2012).
[Crossref] [PubMed]

Li, H.

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

Liang, W.

Y. Huang, J. K. S. Poon, W. Liang, A. Yariv, C. Zhang, and L. R. Dalton, “Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators,” Appl. Phys. Lett. 87(7), 071108 (2005).
[Crossref]

Liao, Y.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Lin, N.

Lu, Y.

Luo, J.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Mappes, T.

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. Köber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10(19), 3863–3868 (2014).
[Crossref] [PubMed]

Möller, M.

C. D. Heyes, J. Groll, M. Möller, and G. U. Nienhaus, “Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces,” Mol. Biosyst. 3(6), 419–430 (2007).
[Crossref] [PubMed]

Nienhaus, G. U.

C. D. Heyes, J. Groll, M. Möller, and G. U. Nienhaus, “Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces,” Mol. Biosyst. 3(6), 419–430 (2007).
[Crossref] [PubMed]

Özdemir, S. K.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Paloczi, G. T.

Peng, G. D.

Poon, J. K.

Poon, J. K. S.

Y. Huang, J. K. S. Poon, W. Liang, A. Yariv, C. Zhang, and L. R. Dalton, “Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators,” Appl. Phys. Lett. 87(7), 071108 (2005).
[Crossref]

Puers, R.

C. Lerma Arce, D. Witters, R. Puers, J. Lammertyn, and P. Bienstman, “Silicon photonic sensors incorporated in a digital microfluidic system,” Anal. Bioanal. Chem. 404(10), 2887–2894 (2012).
[Crossref] [PubMed]

Qavi, A. J.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Rastjoo, S.

Ratner, D. M.

J. T. Kirk, G. E. Fridley, J. W. Chamberlain, E. D. Christensen, M. Hochberg, and D. M. Ratner, “Multiplexed inkjet functionalization of silicon photonic biosensors,” Lab Chip 11(7), 1372–1377 (2011).
[Crossref] [PubMed]

Schacht, E.

Scheler, O.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

Schmidt, S.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Schuck, P.

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 541–566 (1997).
[Crossref] [PubMed]

Schütz, A.

H.-M. Haake, A. Schütz, and G. Gauglitz, “Label-free detection of biomolecular interaction by optical sensors,” Fresenius J. Anal. Chem. 366(6-7), 576–585 (2000).
[Crossref] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Siegle, T.

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Sisk, W. N.

N. Tanaka and W. N. Sisk, “The photodegradation of pyrromethene 567 and pyrromethene 597 by pyrromethene 546,” J. Photochem. Photobiol. Chem. 172(2), 109–114 (2005).
[Crossref]

Song, L.

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy,” Biophys. J. 68(6), 2588–2600 (1995).
[Crossref] [PubMed]

Soteropulos, C. E.

C. E. Soteropulos, K. M. Zurick, M. T. Bernards, and H. K. Hunt, “Tailoring the protein adsorption properties of whispering gallery mode optical biosensors,” Langmuir 28(44), 15743–15750 (2012).
[Crossref] [PubMed]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Steier, W. H.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Su, J.

J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photonics 2(9), 1241–1245 (2015).
[Crossref]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tanaka, N.

N. Tanaka and W. N. Sisk, “The photodegradation of pyrromethene 567 and pyrromethene 597 by pyrromethene 546,” J. Photochem. Photobiol. Chem. 172(2), 109–114 (2005).
[Crossref]

Tanke, H. J.

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy,” Biophys. J. 68(6), 2588–2600 (1995).
[Crossref] [PubMed]

Testa, G.

I. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5(86), 70156–70162 (2015).
[Crossref]

Tsai, H.

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13(2), 427–436 (2012).
[Crossref] [PubMed]

von der Ecken, S.

S. F. Wondimu, S. von der Ecken, R. Ahrens, W. Freude, A. E. Guber, and C. Koos, “Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules,” Lab Chip 17(10), 1740–1748 (2017).
[Crossref] [PubMed]

Wang, S.

Ward, A.

M. A. Koussa, K. Halvorsen, A. Ward, and W. P. Wong, “DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis,” Nat. Methods 12(2), 123–126 (2014).
[Crossref] [PubMed]

Washburn, A. L.

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Weinzierl, U.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Wienhold, T.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

Witters, D.

C. Lerma Arce, D. Witters, R. Puers, J. Lammertyn, and P. Bienstman, “Silicon photonic sensors incorporated in a digital microfluidic system,” Anal. Bioanal. Chem. 404(10), 2887–2894 (2012).
[Crossref] [PubMed]

Wondimu, S. F.

S. F. Wondimu, S. von der Ecken, R. Ahrens, W. Freude, A. E. Guber, and C. Koos, “Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules,” Lab Chip 17(10), 1740–1748 (2017).
[Crossref] [PubMed]

S. Krämmer, S. Rastjoo, T. Siegle, S. F. Wondimu, C. Klusmann, C. Koos, and H. Kalt, “Size-optimized polymeric whispering gallery mode lasers with enhanced sensing performance,” Opt. Express 25(7), 7884–7894 (2017).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Wong, W. P.

M. A. Koussa, K. Halvorsen, A. Ward, and W. P. Wong, “DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis,” Nat. Methods 12(2), 123–126 (2014).
[Crossref] [PubMed]

Xiao, H.

Xiao, Y. F.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Xiong, Z.

Yang, L.

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Yariv, A.

Y. Huang, J. K. S. Poon, W. Liang, A. Yariv, C. Zhang, and L. R. Dalton, “Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators,” Appl. Phys. Lett. 87(7), 071108 (2005).
[Crossref]

J. K. Poon, Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores,” Opt. Lett. 29(22), 2584–2586 (2004).
[Crossref] [PubMed]

Young, I. T.

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy,” Biophys. J. 68(6), 2588–2600 (1995).
[Crossref] [PubMed]

Zhang, C.

Y. Huang, J. K. S. Poon, W. Liang, A. Yariv, C. Zhang, and L. R. Dalton, “Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators,” Appl. Phys. Lett. 87(7), 071108 (2005).
[Crossref]

J. K. Poon, Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R. Dalton, “Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores,” Opt. Lett. 29(22), 2584–2586 (2004).
[Crossref] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zhu, J.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Zurick, K. M.

C. E. Soteropulos, K. M. Zurick, M. T. Bernards, and H. K. Hunt, “Tailoring the protein adsorption properties of whispering gallery mode optical biosensors,” Langmuir 28(44), 15743–15750 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photonics 2(9), 1241–1245 (2015).
[Crossref]

Adv Sci (Weinh) (1)

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (2)

M. A. Cooper, “Label-free screening of bio-molecular interactions,” Anal. Bioanal. Chem. 377(5), 834–842 (2003).
[Crossref] [PubMed]

C. Lerma Arce, D. Witters, R. Puers, J. Lammertyn, and P. Bienstman, “Silicon photonic sensors incorporated in a digital microfluidic system,” Anal. Bioanal. Chem. 404(10), 2887–2894 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

J. Lahann, I. S. Choi, J. Lee, K. F. Jensen, and R. Langer, “A new method toward microengineered surfaces based on reactive coating,” Angew. Chem. Int. Ed. 40(17), 3166–3169 (2001).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

X. Deng, C. Friedmann, and J. Lahann, “Bio-orthogonal “double-click” chemistry based on multifunctional coatings,” Angew. Chem. Int. Ed. Engl. 50(29), 6522–6526 (2011).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 541–566 (1997).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Huang, J. K. S. Poon, W. Liang, A. Yariv, C. Zhang, and L. R. Dalton, “Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators,” Appl. Phys. Lett. 87(7), 071108 (2005).
[Crossref]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

Biophys. J. (1)

L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy,” Biophys. J. 68(6), 2588–2600 (1995).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36(1), 56–61 (2012).
[Crossref] [PubMed]

ChemPhysChem (1)

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13(2), 427–436 (2012).
[Crossref] [PubMed]

Fresenius J. Anal. Chem. (1)

H.-M. Haake, A. Schütz, and G. Gauglitz, “Label-free detection of biomolecular interaction by optical sensors,” Fresenius J. Anal. Chem. 366(6-7), 576–585 (2000).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

H. K. Hunt and A. M. Armani, “Bioconjugation strategies for label-free optical microcavity sensors,” IEEE J. Sel. Top. Quantum Electron. 20(2), 121–133 (2014).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. Hallynck and P. Bienstman, “Digital microfluidics with pressure-based actuation,” IEEE Photonics Technol. Lett. 25(17), 1656–1659 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Photochem. Photobiol. Chem. (1)

N. Tanaka and W. N. Sisk, “The photodegradation of pyrromethene 567 and pyrromethene 597 by pyrromethene 546,” J. Photochem. Photobiol. Chem. 172(2), 109–114 (2005).
[Crossref]

J. Phys. Chem. C (1)

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Lab Chip (3)

J. T. Kirk, G. E. Fridley, J. W. Chamberlain, E. D. Christensen, M. Hochberg, and D. M. Ratner, “Multiplexed inkjet functionalization of silicon photonic biosensors,” Lab Chip 11(7), 1372–1377 (2011).
[Crossref] [PubMed]

S. F. Wondimu, S. von der Ecken, R. Ahrens, W. Freude, A. E. Guber, and C. Koos, “Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules,” Lab Chip 17(10), 1740–1748 (2017).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Langmuir (2)

C. E. Soteropulos, K. M. Zurick, M. T. Bernards, and H. K. Hunt, “Tailoring the protein adsorption properties of whispering gallery mode optical biosensors,” Langmuir 28(44), 15743–15750 (2012).
[Crossref] [PubMed]

H. Y. Chen and J. Lahann, “Designable biointerfaces using vapor-based reactive polymers,” Langmuir 27(1), 34–48 (2011).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

L. He, Ş. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

Mol. Biosyst. (1)

C. D. Heyes, J. Groll, M. Möller, and G. U. Nienhaus, “Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces,” Mol. Biosyst. 3(6), 419–430 (2007).
[Crossref] [PubMed]

Nat. Methods (1)

M. A. Koussa, K. Halvorsen, A. Ward, and W. P. Wong, “DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis,” Nat. Methods 12(2), 123–126 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

RSC Advances (1)

I. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5(86), 70156–70162 (2015).
[Crossref]

Sens. Actuators B Chem. (1)

J. T. Gohring, P. S. Dale, and X. Fan, “Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor,” Sens. Actuators B Chem. 146(1), 226–230 (2010).
[Crossref]

Small (1)

U. Bog, F. Brinkmann, H. Kalt, C. Koos, T. Mappes, M. Hirtz, H. Fuchs, and S. Köber, “Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications,” Small 10(19), 3863–3868 (2014).
[Crossref] [PubMed]

Other (3)

U. R. Bog, “Optische Flüster-Galerie-Resonatoren und deren Funktionalisierung für die Biosensorik,” Ph. D. (Karlsruhe Institute of Technology, Karlsruhe, 2015), pp. 79–110.

D. Doug, “Time pressure dispensing,” White Papers, (Universal Instruments, 2009), http://www4.uic.com/wcms/WCMS2.nsf/index/Resources_58.html .

A. Diaspro, G. Chirico, C. Usai, P. Ramoino, and J. Dobrucki, “Photobleaching,” in Handbook of biological confocal microscopy (Springer, 2006), pp. 690–702.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Sensor principle. (a) Microdisk whispering-gallery mode resonator. The modes propagate along the convex outer contour of the disk. (b) Electric energy density distribution of the fundamental whispering-gallery mode. The electric field is predominantly oriented along the y-direction (Ey-mode). A certain part of the electric field interacts evanescently with the surrounding medium, enabling, e.g., detection of molecular binding to the resonator or surface. Profiles of the energy density along the diameters XX’ and YY’ are shown in the graphs.
Fig. 2
Fig. 2 Measurement setup. (a) The microdisk lasers are pumped from the top by a frequency-doubled pulsed Nd:YLF laser emitting at 523 nm. The beam is focused by a microscope objective (20 × , NA = 0.42). The sensor chip is fixed in a flow cell mounted on an automated sample stage, which allows for well-defined movements in a given sequence such that a specific selection of lasers can be repeatedly pumped and measured. The emission from the microdisk lasers is collected through the same objective lens and is directed to the acquisition system. The acquisition is done by a Czerny-Turner monochromator (Shamrock 500i, Andor) equipped with a CCD camera (CCD 1, iDus, Andor). Part of the emission is directed to another camera (CCD 2) to monitor the position of the microdisks. (b) Image of the sensing area from the top showing 16 microdisk lasers. The reference sensors are covered by the applied passivation layer (darker shade), which physically seals them thereby avoiding interaction with the analyte.
Fig. 3
Fig. 3 Fabrication of microdisk lasers. (a) PMGI and dye-doped PMMA are spin-coated subsequently on a silicon base wafer. (b) Disks are structured in the PMMA layer by electron-beam lithography. (c) Disks are formed by developing the exposed PMMA layer. (d) Selective etching of the PMGI layer forms pedestals, thus freeing the edges of the disks where the whispering-gallery modes can propagate.
Fig. 4
Fig. 4 Surface activation and functionalization. (a) The surface of the microdisk lasers is activated by deposition of pentafluorophenyl- ester (pfp-ester). The precursor ([2,2] paracyclophane-4-carboxylic acid pentafluorophenyl ester, (1)) is sublimated and guided through a pyrolysis chamber where it breaks into two reactive monomers (2). The monomers are then directed to the surface of the cooled sensor chips for in situ polymerization (3). (b) The resonator surface was biotinylated to allow specific binding of streptavidin. The biotin is terminated with an amine group, which reacts with the pfp-ester forming a covalent amide bond (shown in red).
Fig. 5
Fig. 5 Passivation setup. (a) The sensor chips were mounted on a high-precision positioning platform (Smarpod 110.45, SmarAct GmbH) with six degrees of freedom. Reference resonators were selectively passivated by localized dispensing of a low-refractive index adhesive through a thin glass needle which was fixed on a mount (not shown here for simplicity). The application of the adhesive was done with a time pressure dispensing (Ultimus II, Nordson EFD) workstation connected to the needle through a flexible tube. A horizontal microscope was set up to monitor the dispensing from the side. (b) Close-up image of the dispensing system showing a partially filled needle over a sensor chip. (c) Optical image acquired by the horizontal microscope, showing the needle tip close to a microdisk laser covered by dispensed passivation material.
Fig. 6
Fig. 6 Responses to bleaching and temperature change as obtained from two lasers on a common chip. The reference laser is covered by the locally dispensed passivation material. (a) Identical spectral shifts induced by photobleaching were recorded for the reference and measurement lasers. (b) Similar trends were recorded in spectral shift when the lasers were subjected to temperature changes.
Fig. 7
Fig. 7 Referenced sensing principle. The binding of streptavidin was recorded under constant temperature. The spectral shift of the measurement sensor is caused by photobleaching and binding of biomolecules to the surface, whereas the reference laser shows a shift due to photobleaching only. The corrected shift is obtained by subtracting the spectral shift of the reference from that of the measurement laser. The measurements do not show any influence of the analyte on the reference sensors, confirming that the devices are buried sufficiently deep in the passivation layer to prevent interaction of the guided light with the analyte.
Fig. 8
Fig. 8 Referencing of measurements. The binding of streptavidin to biotinylated resonator surfaces was recorded under simulated environmental condition with temperature variations. The reference sensor (red trace) was passivated and is hence only sensitive to temperature fluctuations and photobleaching. The measurement sensor (green trace) showed a wavelength shift affected by the changing environment conditions, which overlays the wavelength shift resulting from the normal binding kinetics. The measured data was corrected by subtraction of the reference data to obtain the actual molecular binding response (black trace).
Fig. 9
Fig. 9 Effects of the environmental temperature on the sensor signal. The binding of a fixed concentration of streptavidin (6 µg/ml) was measured with several chips, operated at different temperatures between 22°C and 42°C. All temperatures were kept constant during each measurement. The measured chips show nearly identical final shifts after a duration of 30 minutes, the time used for the sensing experiments. The variations for the curves after injection of the analyte at t = 0 are attributed to initial temperature differences between the streptavidin solution and the heated chips. The final spectral shift of the sensors after 30 minutes is 85.2 ± 3.8 pm – at this time, the solution has warmed up to the same temperature as the chips.
Fig. 10
Fig. 10 Biosensing demonstration and sensitivity analysis. (a) Binding curves for different concentrations of streptavidin on biotinylated lasers. (b) Accumulated wavelength shifts for the different concentrations, obtained from averaging over the grey shaded regions in (a). The data were fit by a curve obtained from the Hill model (R2 = 0.997). From the linear part of the measured data, we obtain a sensitivity of 13 pm/(µg/ml).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ=Δ λ max ( 1+ k off C k on ),

Metrics