Abstract

The mismatching between permittivities of guided mode and air limits the operation of accurately monitoring the change in the refractive index of the surrounding air. To solve it, we propose a platform using a hollow core fiber with the integration of graphene coating. Experimental results demonstrate that the anti-resonant reflecting guidance has been enhanced while it induces sharply and periodically lossy dips in the transmission spectrum. We conclude a sensitivity of −365.9 dB/RIU and a high detection limit of 2.73 × 10−6 RIU by means of interrogating the intensity of the lossy dips. We believe that this configuration opens a direction for highly sensitive sensing in researches of chemistry, medicine, and biology.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

31 January 2018: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing

Maoxiang Hou, Feng Zhu, Ying Wang, Yiping Wang, Changrui Liao, Shen Liu, and Peixiang Lu
Opt. Express 24(24) 27890-27898 (2016)

Optimization of long-period grating-based refractive index sensor by bent-fiber interference

Xinpu Zhang, Lingxiao Xie, Yang Zhang, and Wei Peng
Appl. Opt. 54(31) 9152-9156 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
    [Crossref]
  2. C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
    [Crossref] [PubMed]
  3. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
    [Crossref]
  4. Y. Tan, W. Ji, V. Mamidala, K. Chow, and S. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196(3), 260–264 (2014).
    [Crossref]
  5. C. Liu, Q. Cai, B. Xu, W. Zhu, L. Zhang, J. Zhao, and X. Chen, “Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing,” Biosens. Bioelectron. 94(15), 200–206 (2017).
    [Crossref] [PubMed]
  6. Z. Yan, Q. Sun, C. Wang, Z. Sun, C. Mou, K. Zhou, D. Liu, and L. Zhang, “Refractive index and temperature sensitivity characterization of excessively tilted fiber grating,” Opt. Express 25(4), 3336–3346 (2017).
    [Crossref] [PubMed]
  7. Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett. 38(3), 269–271 (2013).
    [Crossref] [PubMed]
  8. Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(4), 31–35 (2014).
    [Crossref]
  9. B. Xu, Y. Liu, D. Wang, D. Jia, and C. Jiang, “Optical Fiber Fabry-Pérot Interferometer Based on an Air Cavity for Gas Pressure Sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
    [Crossref]
  10. Y. Zhao, F. Xia, and J. Li, Sensitivity-Enhanced “Photonic Crystal Fiber Refractive Index Sensor with Two Waist-Broadened Tapers,” J. Lightwave Technol. 34(4), 1373–1379 (2016).
    [Crossref]
  11. T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly Sensitive Temperature-Independent Strain Sensor Based on a Long-Period Fiber Grating With a CO2-Laser Engraved Rotary Structure,” IEEE Photonics Technol. Lett. 21(8), 543–545 (2009).
    [Crossref]
  12. Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Temperature-Compensated Refractive-Index Sensing Using a Single Bragg Grating in an Abrupt Fiber Taper,” IEEE Photonics J. 5(2), 7100208 (2013).
    [Crossref]
  13. J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators B Chem. 198(4), 384–387 (2014).
    [Crossref]
  14. J. Sadeghi, A. H. Ghasemi, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip 16(20), 3957–3968 (2016).
    [Crossref] [PubMed]
  15. W. Qian, C. Chan, C. Zhao, Y. Liu, T. Li, L. Hu, K. Ni, and X. Dong, “Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation,” Sens. Actuators B Chem. 166–167(6), 761–765 (2012).
    [Crossref]
  16. B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
    [Crossref] [PubMed]
  17. J. Villatoro, V. P. Minkovich, and J. Zubia, “Locally pressed photonic crystal fiber interferometer for multiparameter sensing,” Opt. Lett. 39(9), 2580–2583 (2014).
    [Crossref] [PubMed]
  18. D. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
    [Crossref] [PubMed]
  19. X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
    [Crossref]
  20. C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
    [Crossref] [PubMed]
  21. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  22. Y. Zhao, X. Li, X. Zhou, and Y. Zhang, “Review on the graphene based optical fiber chemical and biological sensors,” Sens. Actuators B Chem. 231, 324–340 (2016).
    [Crossref]
  23. Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sens. Actuators B Chem. 234, 503–509 (2016).
    [Crossref]
  24. T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
    [Crossref] [PubMed]
  25. R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
    [Crossref]
  26. Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
    [Crossref] [PubMed]
  27. B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
    [Crossref] [PubMed]
  28. B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194(4), 142–148 (2014).
    [Crossref]
  29. C. Guan, S. Li, Y. Shen, T. Yuan, J. Yang, and L. Yuan, “Graphene-Coated Surface Core Fiber Polarizer,” J. Lightwave Technol. 33(2), 349–353 (2015).
    [Crossref]
  30. L. Yang, T. Hu, A. Shen, C. Pei, B. Yang, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Ultracompact optical modulator based on graphene-silica metamaterial,” Opt. Lett. 39(7), 1909–1912 (2014).
    [Crossref] [PubMed]
  31. S. Chugh, R. Mehta, N. Lu, F. D. Dios, M. J. Kim, and Z. Chen, “Comparison of Graphene Growth on Arbitrary Non-Catalytic Substrates using Low-Temperature PECVD,” Carbon 93, 393–399 (2015).
    [Crossref]
  32. C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
    [Crossref]
  33. Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9, 1–9 (2017).
  34. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  35. S. Zhu, S. Yuan, and G. Janssen, “Optical transmittance of multilayer graphene,” Europhys. Lett. 108(1), 17007–17010 (2014).
    [Crossref]
  36. M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
    [Crossref] [PubMed]
  37. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35(9), 1566–1573 (1996).
    [Crossref] [PubMed]
  38. B. Jiang, X. Lu, X. Gan, M. Qi, Y. Wang, L. Han, D. Mao, W. Zhang, Z. Ren, and J. Zhao, “Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region,” Opt. Lett. 40(17), 3994–3997 (2015).
    [Crossref] [PubMed]
  39. B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
    [Crossref] [PubMed]
  40. P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano Lett. 11(12), 5240–5246 (2011).
    [Crossref] [PubMed]
  41. B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
    [Crossref] [PubMed]

2017 (7)

C. Liu, Q. Cai, B. Xu, W. Zhu, L. Zhang, J. Zhao, and X. Chen, “Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing,” Biosens. Bioelectron. 94(15), 200–206 (2017).
[Crossref] [PubMed]

Z. Yan, Q. Sun, C. Wang, Z. Sun, C. Mou, K. Zhou, D. Liu, and L. Zhang, “Refractive index and temperature sensitivity characterization of excessively tilted fiber grating,” Opt. Express 25(4), 3336–3346 (2017).
[Crossref] [PubMed]

B. Xu, Y. Liu, D. Wang, D. Jia, and C. Jiang, “Optical Fiber Fabry-Pérot Interferometer Based on an Air Cavity for Gas Pressure Sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref] [PubMed]

C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
[Crossref]

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9, 1–9 (2017).

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

2016 (7)

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Y. Zhao, X. Li, X. Zhou, and Y. Zhang, “Review on the graphene based optical fiber chemical and biological sensors,” Sens. Actuators B Chem. 231, 324–340 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sens. Actuators B Chem. 234, 503–509 (2016).
[Crossref]

Y. Zhao, F. Xia, and J. Li, Sensitivity-Enhanced “Photonic Crystal Fiber Refractive Index Sensor with Two Waist-Broadened Tapers,” J. Lightwave Technol. 34(4), 1373–1379 (2016).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

J. Sadeghi, A. H. Ghasemi, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip 16(20), 3957–3968 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (11)

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators B Chem. 198(4), 384–387 (2014).
[Crossref]

L. Yang, T. Hu, A. Shen, C. Pei, B. Yang, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Ultracompact optical modulator based on graphene-silica metamaterial,” Opt. Lett. 39(7), 1909–1912 (2014).
[Crossref] [PubMed]

Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194(4), 142–148 (2014).
[Crossref]

J. Villatoro, V. P. Minkovich, and J. Zubia, “Locally pressed photonic crystal fiber interferometer for multiparameter sensing,” Opt. Lett. 39(9), 2580–2583 (2014).
[Crossref] [PubMed]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(4), 31–35 (2014).
[Crossref]

Y. Tan, W. Ji, V. Mamidala, K. Chow, and S. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196(3), 260–264 (2014).
[Crossref]

S. Zhu, S. Yuan, and G. Janssen, “Optical transmittance of multilayer graphene,” Europhys. Lett. 108(1), 17007–17010 (2014).
[Crossref]

2013 (2)

Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett. 38(3), 269–271 (2013).
[Crossref] [PubMed]

Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Temperature-Compensated Refractive-Index Sensing Using a Single Bragg Grating in an Abrupt Fiber Taper,” IEEE Photonics J. 5(2), 7100208 (2013).
[Crossref]

2012 (3)

2011 (1)

P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano Lett. 11(12), 5240–5246 (2011).
[Crossref] [PubMed]

2010 (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[Crossref]

2009 (1)

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly Sensitive Temperature-Independent Strain Sensor Based on a Long-Period Fiber Grating With a CO2-Laser Engraved Rotary Structure,” IEEE Photonics Technol. Lett. 21(8), 543–545 (2009).
[Crossref]

2008 (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

2006 (1)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

1996 (1)

Albert, J.

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Ang, P. K.

P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano Lett. 11(12), 5240–5246 (2011).
[Crossref] [PubMed]

Bai, Z.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9, 1–9 (2017).

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Cai, Q.

C. Liu, Q. Cai, B. Xu, W. Zhu, L. Zhang, J. Zhao, and X. Chen, “Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing,” Biosens. Bioelectron. 94(15), 200–206 (2017).
[Crossref] [PubMed]

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Cao, S.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9, 1–9 (2017).

Cao, X. L.

Caucheteur, C.

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Chan, C.

W. Qian, C. Chan, C. Zhao, Y. Liu, T. Li, L. Hu, K. Ni, and X. Dong, “Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation,” Sens. Actuators B Chem. 166–167(6), 761–765 (2012).
[Crossref]

Chen, C.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, G.

Chen, Q.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, X.

C. Liu, Q. Cai, B. Xu, W. Zhu, L. Zhang, J. Zhao, and X. Chen, “Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing,” Biosens. Bioelectron. 94(15), 200–206 (2017).
[Crossref] [PubMed]

Chen, Y.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194(4), 142–148 (2014).
[Crossref]

Chen, Y. F.

Chen, Z.

Cheng, J.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Cheng, Y.

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194(4), 142–148 (2014).
[Crossref]

Chiang, K. S.

Chow, K.

Y. Tan, W. Ji, V. Mamidala, K. Chow, and S. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196(3), 260–264 (2014).
[Crossref]

Chugh, S.

S. Chugh, R. Mehta, N. Lu, F. D. Dios, M. J. Kim, and Z. Chen, “Comparison of Graphene Growth on Arbitrary Non-Catalytic Substrates using Low-Temperature PECVD,” Carbon 93, 393–399 (2015).
[Crossref]

Ciddor, P. E.

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Dai, H.

C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
[Crossref]

Dai, T.

Deng, M.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9, 1–9 (2017).

Dios, F. D.

S. Chugh, R. Mehta, N. Lu, F. D. Dios, M. J. Kim, and Z. Chen, “Comparison of Graphene Growth on Arbitrary Non-Catalytic Substrates using Low-Temperature PECVD,” Carbon 93, 393–399 (2015).
[Crossref]

Dong, J.

Dong, X.

W. Qian, C. Chan, C. Zhao, Y. Liu, T. Li, L. Hu, K. Ni, and X. Dong, “Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation,” Sens. Actuators B Chem. 166–167(6), 761–765 (2012).
[Crossref]

Fan, X.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Gan, X.

Gao, R.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Ghasemi, A. H.

J. Sadeghi, A. H. Ghasemi, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip 16(20), 3957–3968 (2016).
[Crossref] [PubMed]

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Gong, Y.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194(4), 142–148 (2014).
[Crossref]

Granqvist, N.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[Crossref]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Guan, B. O.

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Temperature-Compensated Refractive-Index Sensing Using a Single Bragg Grating in an Abrupt Fiber Taper,” IEEE Photonics J. 5(2), 7100208 (2013).
[Crossref]

Guan, C.

Guan, H.

Guo, J.

Guo, K.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9, 1–9 (2017).

Guo, T.

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Han, L.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, J.

Hou, H. W.

P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano Lett. 11(12), 5240–5246 (2011).
[Crossref] [PubMed]

Hou, M.

Hu, D. J.

Hu, L.

W. Qian, C. Chan, C. Zhao, Y. Liu, T. Li, L. Hu, K. Ni, and X. Dong, “Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation,” Sens. Actuators B Chem. 166–167(6), 761–765 (2012).
[Crossref]

Hu, T.

Huang, J.

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators B Chem. 198(4), 384–387 (2014).
[Crossref]

Huang, S. W.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Huang, Y.

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Jaiswal, M.

P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano Lett. 11(12), 5240–5246 (2011).
[Crossref] [PubMed]

Janssen, G.

S. Zhu, S. Yuan, and G. Janssen, “Optical transmittance of multilayer graphene,” Europhys. Lett. 108(1), 17007–17010 (2014).
[Crossref]

Ji, W.

Y. Tan, W. Ji, V. Mamidala, K. Chow, and S. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196(3), 260–264 (2014).
[Crossref]

Jia, D.

B. Xu, Y. Liu, D. Wang, D. Jia, and C. Jiang, “Optical Fiber Fabry-Pérot Interferometer Based on an Air Cavity for Gas Pressure Sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Jiang, B.

Jiang, C.

B. Xu, Y. Liu, D. Wang, D. Jia, and C. Jiang, “Optical Fiber Fabry-Pérot Interferometer Based on an Air Cavity for Gas Pressure Sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Jiang, L.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Jiang, M.

Jiang, X.

Jiang, Y.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Jin, L.

Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Temperature-Compensated Refractive-Index Sensing Using a Single Bragg Grating in an Abrupt Fiber Taper,” IEEE Photonics J. 5(2), 7100208 (2013).
[Crossref]

Kaur, A.

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators B Chem. 198(4), 384–387 (2014).
[Crossref]

Kim, M. J.

S. Chugh, R. Mehta, N. Lu, F. D. Dios, M. J. Kim, and Z. Chen, “Comparison of Graphene Growth on Arbitrary Non-Catalytic Substrates using Low-Temperature PECVD,” Carbon 93, 393–399 (2015).
[Crossref]

Lan, X.

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators B Chem. 198(4), 384–387 (2014).
[Crossref]

Lang, Y.

Latifi, H.

J. Sadeghi, A. H. Ghasemi, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip 16(20), 3957–3968 (2016).
[Crossref] [PubMed]

Li, A.

P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano Lett. 11(12), 5240–5246 (2011).
[Crossref] [PubMed]

Li, D.

Li, J.

Y. Zhao, F. Xia, and J. Li, Sensitivity-Enhanced “Photonic Crystal Fiber Refractive Index Sensor with Two Waist-Broadened Tapers,” J. Lightwave Technol. 34(4), 1373–1379 (2016).
[Crossref]

Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Temperature-Compensated Refractive-Index Sensing Using a Single Bragg Grating in an Abrupt Fiber Taper,” IEEE Photonics J. 5(2), 7100208 (2013).
[Crossref]

Li, S.

Li, T.

W. Qian, C. Chan, C. Zhao, Y. Liu, T. Li, L. Hu, K. Ni, and X. Dong, “Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation,” Sens. Actuators B Chem. 166–167(6), 761–765 (2012).
[Crossref]

Li, X.

Y. Zhao, X. Li, X. Zhou, and Y. Zhang, “Review on the graphene based optical fiber chemical and biological sensors,” Sens. Actuators B Chem. 231, 324–340 (2016).
[Crossref]

Li, Y.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

L. Yang, T. Hu, A. Shen, C. Pei, B. Yang, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Ultracompact optical modulator based on graphene-silica metamaterial,” Opt. Lett. 39(7), 1909–1912 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9, 1–9 (2017).

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(4), 31–35 (2014).
[Crossref]

Liang, H.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[Crossref]

Liao, C.

Liao, C. R.

Lim, C. T.

P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano Lett. 11(12), 5240–5246 (2011).
[Crossref] [PubMed]

Lim, J. L.

Lin, L.

Liu, C.

C. Liu, Q. Cai, B. Xu, W. Zhu, L. Zhang, J. Zhao, and X. Chen, “Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing,” Biosens. Bioelectron. 94(15), 200–206 (2017).
[Crossref] [PubMed]

Liu, D.

Liu, F.

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Liu, M.

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly Sensitive Temperature-Independent Strain Sensor Based on a Long-Period Fiber Grating With a CO2-Laser Engraved Rotary Structure,” IEEE Photonics Technol. Lett. 21(8), 543–545 (2009).
[Crossref]

Liu, S.

Liu, Y.

B. Xu, Y. Liu, D. Wang, D. Jia, and C. Jiang, “Optical Fiber Fabry-Pérot Interferometer Based on an Air Cavity for Gas Pressure Sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(4), 31–35 (2014).
[Crossref]

W. Qian, C. Chan, C. Zhao, Y. Liu, T. Li, L. Hu, K. Ni, and X. Dong, “Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation,” Sens. Actuators B Chem. 166–167(6), 761–765 (2012).
[Crossref]

Loh, K. P.

P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano Lett. 11(12), 5240–5246 (2011).
[Crossref] [PubMed]

Lou, W.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sens. Actuators B Chem. 234, 503–509 (2016).
[Crossref]

Lu, D.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Lu, H.

Lu, N.

S. Chugh, R. Mehta, N. Lu, F. D. Dios, M. J. Kim, and Z. Chen, “Comparison of Graphene Growth on Arbitrary Non-Catalytic Substrates using Low-Temperature PECVD,” Carbon 93, 393–399 (2015).
[Crossref]

Lu, P.

Lu, X.

Luan, F.

Luo, Y.

Mamidala, V.

Y. Tan, W. Ji, V. Mamidala, K. Chow, and S. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196(3), 260–264 (2014).
[Crossref]

Mao, D.

Mehta, R.

S. Chugh, R. Mehta, N. Lu, F. D. Dios, M. J. Kim, and Z. Chen, “Comparison of Graphene Growth on Arbitrary Non-Catalytic Substrates using Low-Temperature PECVD,” Carbon 93, 393–399 (2015).
[Crossref]

Minkovich, V. P.

Miranto, H.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[Crossref]

Mou, C.

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Ni, K.

W. Qian, C. Chan, C. Zhao, Y. Liu, T. Li, L. Hu, K. Ni, and X. Dong, “Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation,” Sens. Actuators B Chem. 166–167(6), 761–765 (2012).
[Crossref]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Ouyang, T.

Pei, C.

Peres, N. M.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Qi, M.

Qi, Z.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Qian, W.

W. Qian, C. Chan, C. Zhao, Y. Liu, T. Li, L. Hu, K. Ni, and X. Dong, “Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation,” Sens. Actuators B Chem. 166–167(6), 761–765 (2012).
[Crossref]

Qiu, Y.

C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
[Crossref]

Ran, Y.

Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Temperature-Compensated Refractive-Index Sensing Using a Single Bragg Grating in an Abrupt Fiber Taper,” IEEE Photonics J. 5(2), 7100208 (2013).
[Crossref]

Rao, Y.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194(4), 142–148 (2014).
[Crossref]

Rao, Y. J.

Ren, Z.

Sadeghi, J.

J. Sadeghi, A. H. Ghasemi, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip 16(20), 3957–3968 (2016).
[Crossref] [PubMed]

Sadowski, J. W.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[Crossref]

Shen, A.

Shen, C.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sens. Actuators B Chem. 234, 503–509 (2016).
[Crossref]

Shen, Y.

Shentu, F.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sens. Actuators B Chem. 234, 503–509 (2016).
[Crossref]

Shuai, B.

Shum, P. P.

Song, Y.

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly Sensitive Temperature-Independent Strain Sensor Based on a Long-Period Fiber Grating With a CO2-Laser Engraved Rotary Structure,” IEEE Photonics Technol. Lett. 21(8), 543–545 (2009).
[Crossref]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Sun, B.

Sun, H.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Sun, L. P.

Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Temperature-Compensated Refractive-Index Sensing Using a Single Bragg Grating in an Abrupt Fiber Taper,” IEEE Photonics J. 5(2), 7100208 (2013).
[Crossref]

Sun, Q.

Sun, Z.

Tan, Y.

Y. Tan, W. Ji, V. Mamidala, K. Chow, and S. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196(3), 260–264 (2014).
[Crossref]

Tang, J.

Thong, J. T. L.

P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano Lett. 11(12), 5240–5246 (2011).
[Crossref] [PubMed]

Tjin, S.

Y. Tan, W. Ji, V. Mamidala, K. Chow, and S. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196(3), 260–264 (2014).
[Crossref]

Tong, W.

Viitala, T.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[Crossref]

Villatoro, J.

Wang, B.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[Crossref]

Wang, C.

Wang, D.

B. Xu, Y. Liu, D. Wang, D. Jia, and C. Jiang, “Optical Fiber Fabry-Pérot Interferometer Based on an Air Cavity for Gas Pressure Sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Wang, D. N.

Wang, H.

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators B Chem. 198(4), 384–387 (2014).
[Crossref]

Wang, Q.

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(4), 31–35 (2014).
[Crossref]

Wang, Y.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9, 1–9 (2017).

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9, 1–9 (2017).

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sens. Actuators B Chem. 234, 503–509 (2016).
[Crossref]

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

B. Jiang, X. Lu, X. Gan, M. Qi, Y. Wang, L. Han, D. Mao, W. Zhang, Z. Ren, and J. Zhao, “Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region,” Opt. Lett. 40(17), 3994–3997 (2015).
[Crossref] [PubMed]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(4), 31–35 (2014).
[Crossref]

Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett. 38(3), 269–271 (2013).
[Crossref] [PubMed]

D. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
[Crossref] [PubMed]

P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano Lett. 11(12), 5240–5246 (2011).
[Crossref] [PubMed]

Wang, Z.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194(4), 142–148 (2014).
[Crossref]

Wang, Z. G.

Wei, H.

Wei, W.

C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
[Crossref]

Wong, C. W.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Wu, H.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Wu, Y.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194(4), 142–148 (2014).
[Crossref]

Xia, F.

Xia, K.

Xia, L.

Xiao, H.

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators B Chem. 198(4), 384–387 (2014).
[Crossref]

Xu, B.

B. Xu, Y. Liu, D. Wang, D. Jia, and C. Jiang, “Optical Fiber Fabry-Pérot Interferometer Based on an Air Cavity for Gas Pressure Sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

C. Liu, Q. Cai, B. Xu, W. Zhu, L. Zhang, J. Zhao, and X. Chen, “Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing,” Biosens. Bioelectron. 94(15), 200–206 (2017).
[Crossref] [PubMed]

Xu, L.

Xue, Y.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yan, Z.

Yang, B.

Yang, C.

C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
[Crossref]

Yang, J.

Yang, K.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(4), 31–35 (2014).
[Crossref]

Yang, L.

Yang, R.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yao, B.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194(4), 142–148 (2014).
[Crossref]

Yao, B. C.

Yin, G.

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(4), 31–35 (2014).
[Crossref]

Yliperttula, M.

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[Crossref]

Yu, C.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Yu, H.

Yu, J.

Yu, K.

C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
[Crossref]

Yu, Y.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yuan, L.

C. Guan, S. Li, Y. Shen, T. Yuan, J. Yang, and L. Yuan, “Graphene-Coated Surface Core Fiber Polarizer,” J. Lightwave Technol. 33(2), 349–353 (2015).
[Crossref]

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators B Chem. 198(4), 384–387 (2014).
[Crossref]

Yuan, S.

S. Zhu, S. Yuan, and G. Janssen, “Optical transmittance of multilayer graphene,” Europhys. Lett. 108(1), 17007–17010 (2014).
[Crossref]

Yuan, T.

Yun, L.

C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
[Crossref]

Zhang, A.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194(4), 142–148 (2014).
[Crossref]

Zhang, A. Q.

Zhang, J.

Zhang, L.

Z. Yan, Q. Sun, C. Wang, Z. Sun, C. Mou, K. Zhou, D. Liu, and L. Zhang, “Refractive index and temperature sensitivity characterization of excessively tilted fiber grating,” Opt. Express 25(4), 3336–3346 (2017).
[Crossref] [PubMed]

C. Liu, Q. Cai, B. Xu, W. Zhu, L. Zhang, J. Zhao, and X. Chen, “Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing,” Biosens. Bioelectron. 94(15), 200–206 (2017).
[Crossref] [PubMed]

Zhang, W.

Zhang, W. L.

Zhang, X.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhang, Y.

Y. Zhao, X. Li, X. Zhou, and Y. Zhang, “Review on the graphene based optical fiber chemical and biological sensors,” Sens. Actuators B Chem. 231, 324–340 (2016).
[Crossref]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9, 1–9 (2017).

C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
[Crossref]

Zhao, C.

W. Qian, C. Chan, C. Zhao, Y. Liu, T. Li, L. Hu, K. Ni, and X. Dong, “Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation,” Sens. Actuators B Chem. 166–167(6), 761–765 (2012).
[Crossref]

Zhao, J.

Zhao, Y.

Y. Zhao, X. Li, X. Zhou, and Y. Zhang, “Review on the graphene based optical fiber chemical and biological sensors,” Sens. Actuators B Chem. 231, 324–340 (2016).
[Crossref]

Y. Zhao, F. Xia, and J. Li, Sensitivity-Enhanced “Photonic Crystal Fiber Refractive Index Sensor with Two Waist-Broadened Tapers,” J. Lightwave Technol. 34(4), 1373–1379 (2016).
[Crossref]

Zhong, X.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(4), 31–35 (2014).
[Crossref]

Zhong, Y.

Zhou, J.

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(4), 31–35 (2014).
[Crossref]

Zhou, K.

Zhou, X.

Y. Zhao, X. Li, X. Zhou, and Y. Zhang, “Review on the graphene based optical fiber chemical and biological sensors,” Sens. Actuators B Chem. 231, 324–340 (2016).
[Crossref]

Zhu, C.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhu, D.

C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
[Crossref]

Zhu, F.

Zhu, S.

S. Zhu, S. Yuan, and G. Janssen, “Optical transmittance of multilayer graphene,” Europhys. Lett. 108(1), 17007–17010 (2014).
[Crossref]

Zhu, T.

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly Sensitive Temperature-Independent Strain Sensor Based on a Long-Period Fiber Grating With a CO2-Laser Engraved Rotary Structure,” IEEE Photonics Technol. Lett. 21(8), 543–545 (2009).
[Crossref]

Zhu, W.

Zhu, Z.

C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
[Crossref]

Zubia, J.

Appl. Opt. (1)

Biosens. Bioelectron. (1)

C. Liu, Q. Cai, B. Xu, W. Zhu, L. Zhang, J. Zhao, and X. Chen, “Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing,” Biosens. Bioelectron. 94(15), 200–206 (2017).
[Crossref] [PubMed]

Carbon (1)

S. Chugh, R. Mehta, N. Lu, F. D. Dios, M. J. Kim, and Z. Chen, “Comparison of Graphene Growth on Arbitrary Non-Catalytic Substrates using Low-Temperature PECVD,” Carbon 93, 393–399 (2015).
[Crossref]

Europhys. Lett. (1)

S. Zhu, S. Yuan, and G. Janssen, “Optical transmittance of multilayer graphene,” Europhys. Lett. 108(1), 17007–17010 (2014).
[Crossref]

IEEE Photonics J. (3)

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9, 1–9 (2017).

B. Xu, Y. Liu, D. Wang, D. Jia, and C. Jiang, “Optical Fiber Fabry-Pérot Interferometer Based on an Air Cavity for Gas Pressure Sensing,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Temperature-Compensated Refractive-Index Sensing Using a Single Bragg Grating in an Abrupt Fiber Taper,” IEEE Photonics J. 5(2), 7100208 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, “Highly Sensitive Temperature-Independent Strain Sensor Based on a Long-Period Fiber Grating With a CO2-Laser Engraved Rotary Structure,” IEEE Photonics Technol. Lett. 21(8), 543–545 (2009).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

J. Lightwave Technol. (2)

Lab Chip (1)

J. Sadeghi, A. H. Ghasemi, and H. Latifi, “A label-free infrared opto-fluidic method for real-time determination of flow rate and concentration with temperature cross-sensitivity compensation,” Lab Chip 16(20), 3957–3968 (2016).
[Crossref] [PubMed]

Nano Lett. (2)

P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano Lett. 11(12), 5240–5246 (2011).
[Crossref] [PubMed]

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Caucheteur, T. Guo, F. Liu, B. O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Express (6)

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

Z. Yan, Q. Sun, C. Wang, Z. Sun, C. Mou, K. Zhou, D. Liu, and L. Zhang, “Refractive index and temperature sensitivity characterization of excessively tilted fiber grating,” Opt. Express 25(4), 3336–3346 (2017).
[Crossref] [PubMed]

T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref] [PubMed]

Opt. Lett. (7)

D. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
[Crossref] [PubMed]

Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett. 38(3), 269–271 (2013).
[Crossref] [PubMed]

L. Yang, T. Hu, A. Shen, C. Pei, B. Yang, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Ultracompact optical modulator based on graphene-silica metamaterial,” Opt. Lett. 39(7), 1909–1912 (2014).
[Crossref] [PubMed]

J. Villatoro, V. P. Minkovich, and J. Zubia, “Locally pressed photonic crystal fiber interferometer for multiparameter sensing,” Opt. Lett. 39(9), 2580–2583 (2014).
[Crossref] [PubMed]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
[Crossref] [PubMed]

B. Jiang, X. Lu, X. Gan, M. Qi, Y. Wang, L. Han, D. Mao, W. Zhang, Z. Ren, and J. Zhao, “Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region,” Opt. Lett. 40(17), 3994–3997 (2015).
[Crossref] [PubMed]

RSC Advances (1)

C. Yang, L. Yun, Y. Qiu, H. Dai, D. Zhu, Z. Zhu, Z. Zhang, K. Yu, and W. Wei, “Direct growth of a graphitic nano-layer on optical fibers for ultra-fast laser application,” RSC Advances 7(82), 52261–52265 (2017).
[Crossref]

Science (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Sens. Actuators B Chem. (10)

H. Liang, H. Miranto, N. Granqvist, J. W. Sadowski, T. Viitala, B. Wang, and M. Yliperttula, “Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films,” Sens. Actuators B Chem. 149(1), 212–220 (2010).
[Crossref]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194(4), 142–148 (2014).
[Crossref]

Y. Zhao, X. Li, X. Zhou, and Y. Zhang, “Review on the graphene based optical fiber chemical and biological sensors,” Sens. Actuators B Chem. 231, 324–340 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sens. Actuators B Chem. 234, 503–509 (2016).
[Crossref]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B Chem. 120(1), 231–237 (2006).
[Crossref]

Y. Tan, W. Ji, V. Mamidala, K. Chow, and S. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196(3), 260–264 (2014).
[Crossref]

W. Qian, C. Chan, C. Zhao, Y. Liu, T. Li, L. Hu, K. Ni, and X. Dong, “Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation,” Sens. Actuators B Chem. 166–167(6), 761–765 (2012).
[Crossref]

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(4), 31–35 (2014).
[Crossref]

J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sens. Actuators B Chem. 198(4), 384–387 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The optical image for the cross section of the hollow silica tube. The insets show the fiber splicing and the optical image for the cross section of the HCF. (b) Beam propagation simulation for the naked HCF sandwiched between SMFs at the wavelength of 1526.3 nm and 1516.4 nm, respectively.
Fig. 2
Fig. 2 (a) Schematic diagram for the cross section of the naked HCF. (b) Guiding mechanism of the naked HCF.
Fig. 3
Fig. 3 The operation system of the employed PECVD.
Fig. 4
Fig. 4 (a) Raman scattering spectrum and (b) Optical transmittance of graphene coated fused quartz substrate.
Fig. 5
Fig. 5 Transmission spectra of the naked HCF and graphene coated HCF for L = 3 mm, N = 10.
Fig. 6
Fig. 6 (a-d) Transmission spectra of the naked HCF and graphene-coated HCF with different parameters.
Fig. 7
Fig. 7 (a) Transmission spectra of the sensor at different pressure. (b) Intensity and (c) wavelength shift correspond to the applied pressure.
Fig. 8
Fig. 8 (a) Transmission spectra of the sensor at different temperature. (b) Intensity and (c) wavelength shift correspond to temperature.

Tables (1)

Tables Icon

Table 1 Optimized splicing parameters for a commercial fusion splicer (S183PM, Fitel)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 d 2 m n 1 2 n 0 2
n e f f = ( 1 + i × σ ω Δ ε 0 ) 1 / 2 = 1 σ i ω Δ ε 0 i × σ r ω Δ ε 0  
σ ( ω ,   μ c , Γ , Τ ) = σ i n t r a + σ i n t e r = i e 2 π 2 ( ω + i 2 Γ ) [ 0 ε ( f d ( ε ) ε f d ( ε ) ε ) d ε ] + i e 2 ( ω + i 2 Γ ) π 2 [ 0 f d ( ε ) f d ( ε ) ( ω + i 2 Γ ) 2 4 ( ε / h ) 2 d ε
T r e s o n a n t = ( 1 r r ) 2 ( r + r ) 2 1 + r 4 2 r 2 I r e s o n a n t i
T = 1 π α N
n = 1 + ( n s 1 ) p p s T s T

Metrics