Abstract

We show that a simplified, single-photodiode per polarization heterodyne receiver is able to directly suppress signal-signal beat interference (SSBI), without the need for cancellation in the digital domain. We characterize performance degradation due to SSBI, and show that a strong LO in the receiver can mitigate SSBI. Transmission of 400 Gb/s-class signals is shown over single fiber spans of up to 160 km, and over field-deployed metropolitan area fiber. These results indicate that a single photodiode can be used to receive complex optical signals in high speed fiber systems without the need for SSBI cancellation in the digital domain.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation

Zhe Li, M. Sezer. Erkılınç, Stephan Pachnicke, Helmut Griesser, Rachid Bouziane, Benn C. Thomsen, Polina Bayvel, and Robert I. Killey
Opt. Express 23(18) 23694-23709 (2015)

Direct detection of polarization multiplexed single sideband signals with orthogonal offset carriers

Yixiao Zhu, Mingxuan Jiang, and Fan Zhang
Opt. Express 26(12) 15887-15898 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Cisco, “Cisco Visual Networking Index,” https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html .
  2. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for linear complex optical channels,” J. Lightwave Technol. 33, 678–684 (2015).
    [Crossref]
  3. M. Chagnon, M. Morsy-Osman, and D. V. Plant, “Half-terabit single carrier direct detect transceiver, formats and DSP: Analysis and demonstration,” J. Lightwave Technol., doi: .
    [Crossref]
  4. K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL,” in “2014 The European Conference on Optical Communication (ECOC),” (2014), pp. 1–3.
  5. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17, 714–716 (2005).
    [Crossref]
  6. R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express 19, 26551–26556 (2011).
    [Crossref]
  7. J. D. Ingham, R. V. Penty, I. H. White, and D. G. Cunningham, “Carrierless amplitude and phase modulation for low-cost, high-spectral-efficiency optical datacommunication links,” in “Conference on Lasers and Electro-Optics 2010,” (Optical Society of America, 2010), p. CThC5.
  8. A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), p. PDP39.
  9. A. J. Lowery, “Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems,” Opt. Express 24, 3950–3966 (2016).
    [Crossref] [PubMed]
  10. A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25, 757–760 (2013).
    [Crossref]
  11. M. S. Erkilinç, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Performance comparison of single-sideband direct detection Nyquist-subcarrier modulation and OFDM,” J. Lightwave Technol. 33, 2038–2046 (2015).
    [Crossref]
  12. J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42, 370–372 (2006).
    [Crossref]
  13. N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for unipolar communication systems,” IEEE Trans. Comm. 60, 3726–3733 (2012).
    [Crossref]
  14. W.-R. Peng, X. Wu, K.-M. Feng, V. R. Arbab, B. Shamee, J.-Y. Yang, L. C. Christen, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express 17, 9099–9111 (2009).
    [Crossref] [PubMed]
  15. Z. Li, M. S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35, 1887–1893 (2017).
    [Crossref]
  16. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3, 1220–1227 (2016).
    [Crossref]
  17. Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “ Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in “European Conference on Optical Communications,” (2017), p. W.2.D.3.
  18. X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2017), p. Th5B.6.
  19. S. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8×256Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in “European Conference on Optical Communications Postdeadline Papers,” (2017), p. Th.PDP.B.1.
  20. X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “4 × 240 Gb/s dense WDM and PDM Kramers-Kronig detection with 125-km SSMF transmission,” in “European Conference on Optical Communications,” (2017), p. W.2.D.4.
  21. Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photonics Technol. Lett. 29, 1788–1791 (2017).
    [Crossref]
  22. X. Li, Z. Dong, J. Yu, J. Yu, and N. Chi, “Heterodyne coherent detection of WDM PDM-QPSK signals with spectral efficiency of 4b/s/Hz,” Opt. Express 21, 8808–8814 (2013).
    [Crossref] [PubMed]
  23. T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
    [Crossref]
  24. A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100GE coherent PM-QPSK,” IEEE Photonics Technol. Lett. 20, 1281–1283 (2008).
    [Crossref]
  25. T. Okoshi, K. Emura, K. Kikuchi, and R. T. Kesten, “Computation of bit-error rate of various heterodyne and coherent-type optical communication schemes,” J. Opt. Comm. 2, 89–96 (1981).
    [Crossref]
  26. B. L. Kasper, C. A. Burrus, J. R. Talman, and K. L. Hall, “Balanced dual-detector receiver for optical heterodyne communication at Gbit/s rates,” Electron. Lett. 22, 413–415 (1986).
    [Crossref]
  27. G. Nicholson, “Probability of error for optical heterodyne DPSK system with quantum phase noise,” Electron. Lett. 20, 1005–1007 (1984).
    [Crossref]
  28. T. M. F. Alves and A. V. T. Cartaxo, “Virtual carrier-assisted direct-detection MB-OFDM next-generation ultra-dense metro networks limited by laser phase noise,” J. Lightwave Technol. 33, 4093–4100 (2015).
    [Crossref]
  29. B. J. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPC3.
  30. G. R. Walker, N. G. Walker, R. C. Steele, M. J. Creaner, and M. C. Brain, “Erbium-doped fiber amplifier cascade for multichannel coherent optical transmission,” J. Lightwave Technol. 9, 182–193 (1991).
    [Crossref]
  31. S. Yamashita and T. Okoshi, “Suppression of beat noise from optical amplifiers using coherent receivers,” J. Lightwave Technol. 12, 1029–1035 (1994).
    [Crossref]
  32. C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPB2.
  33. C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multi-wavelength coherent receiver,” in “National Fiber Optic Engineers Conference,” (Optical Society of America, 2010), p. PDPB1.
  34. S. B. Estrella, L. A. Johansson, M. L. Masanovic, J. A. Thomas, and J. S. Barton, “Widely tunable compact monolithically integrated photonic coherent receiver,” IEEE Photonics Technol. Lett. 24, 365–367 (2012).
    [Crossref]

2017 (2)

2016 (3)

A. J. Lowery, “Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems,” Opt. Express 24, 3950–3966 (2016).
[Crossref] [PubMed]

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3, 1220–1227 (2016).
[Crossref]

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

2015 (3)

2013 (2)

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25, 757–760 (2013).
[Crossref]

X. Li, Z. Dong, J. Yu, J. Yu, and N. Chi, “Heterodyne coherent detection of WDM PDM-QPSK signals with spectral efficiency of 4b/s/Hz,” Opt. Express 21, 8808–8814 (2013).
[Crossref] [PubMed]

2012 (2)

S. B. Estrella, L. A. Johansson, M. L. Masanovic, J. A. Thomas, and J. S. Barton, “Widely tunable compact monolithically integrated photonic coherent receiver,” IEEE Photonics Technol. Lett. 24, 365–367 (2012).
[Crossref]

N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for unipolar communication systems,” IEEE Trans. Comm. 60, 3726–3733 (2012).
[Crossref]

2011 (1)

2009 (1)

2008 (1)

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100GE coherent PM-QPSK,” IEEE Photonics Technol. Lett. 20, 1281–1283 (2008).
[Crossref]

2006 (1)

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42, 370–372 (2006).
[Crossref]

2005 (1)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17, 714–716 (2005).
[Crossref]

1994 (1)

S. Yamashita and T. Okoshi, “Suppression of beat noise from optical amplifiers using coherent receivers,” J. Lightwave Technol. 12, 1029–1035 (1994).
[Crossref]

1991 (1)

G. R. Walker, N. G. Walker, R. C. Steele, M. J. Creaner, and M. C. Brain, “Erbium-doped fiber amplifier cascade for multichannel coherent optical transmission,” J. Lightwave Technol. 9, 182–193 (1991).
[Crossref]

1986 (1)

B. L. Kasper, C. A. Burrus, J. R. Talman, and K. L. Hall, “Balanced dual-detector receiver for optical heterodyne communication at Gbit/s rates,” Electron. Lett. 22, 413–415 (1986).
[Crossref]

1984 (1)

G. Nicholson, “Probability of error for optical heterodyne DPSK system with quantum phase noise,” Electron. Lett. 20, 1005–1007 (1984).
[Crossref]

1981 (1)

T. Okoshi, K. Emura, K. Kikuchi, and R. T. Kesten, “Computation of bit-error rate of various heterodyne and coherent-type optical communication schemes,” J. Opt. Comm. 2, 89–96 (1981).
[Crossref]

Alves, T. M. F.

Andrekson, P. A.

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL,” in “2014 The European Conference on Optical Communication (ECOC),” (2014), pp. 1–3.

Antonelli, C.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3, 1220–1227 (2016).
[Crossref]

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2017), p. Th5B.6.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “4 × 240 Gb/s dense WDM and PDM Kramers-Kronig detection with 125-km SSMF transmission,” in “European Conference on Optical Communications,” (2017), p. W.2.D.4.

Arbab, V. R.

Aref, V.

S. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8×256Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in “European Conference on Optical Communications Postdeadline Papers,” (2017), p. Th.PDP.B.1.

Armstrong, J.

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42, 370–372 (2006).
[Crossref]

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), p. PDP39.

Barton, J. S.

S. B. Estrella, L. A. Johansson, M. L. Masanovic, J. A. Thomas, and J. S. Barton, “Widely tunable compact monolithically integrated photonic coherent receiver,” IEEE Photonics Technol. Lett. 24, 365–367 (2012).
[Crossref]

Bayvel, P.

Z. Li, M. S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35, 1887–1893 (2017).
[Crossref]

M. S. Erkilinç, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Performance comparison of single-sideband direct detection Nyquist-subcarrier modulation and OFDM,” J. Lightwave Technol. 33, 2038–2046 (2015).
[Crossref]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17, 714–716 (2005).
[Crossref]

Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “ Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in “European Conference on Optical Communications,” (2017), p. W.2.D.3.

Brain, M. C.

G. R. Walker, N. G. Walker, R. C. Steele, M. J. Creaner, and M. C. Brain, “Erbium-doped fiber amplifier cascade for multichannel coherent optical transmission,” J. Lightwave Technol. 9, 182–193 (1991).
[Crossref]

Buchali, F.

S. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8×256Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in “European Conference on Optical Communications Postdeadline Papers,” (2017), p. Th.PDP.B.1.

Buelow, H.

S. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8×256Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in “European Conference on Optical Communications Postdeadline Papers,” (2017), p. Th.PDP.B.1.

Burrus, C. A.

B. L. Kasper, C. A. Burrus, J. R. Talman, and K. L. Hall, “Balanced dual-detector receiver for optical heterodyne communication at Gbit/s rates,” Electron. Lett. 22, 413–415 (1986).
[Crossref]

Carena, A.

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100GE coherent PM-QPSK,” IEEE Photonics Technol. Lett. 20, 1281–1283 (2008).
[Crossref]

Cartaxo, A. V. T.

Cartledge, J. C.

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25, 757–760 (2013).
[Crossref]

Chagnon, M.

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

S. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8×256Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in “European Conference on Optical Communications Postdeadline Papers,” (2017), p. Th.PDP.B.1.

M. Chagnon, M. Morsy-Osman, and D. V. Plant, “Half-terabit single carrier direct detect transceiver, formats and DSP: Analysis and demonstration,” J. Lightwave Technol., doi: .
[Crossref]

Chandrasekhar, S.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2017), p. Th5B.6.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “4 × 240 Gb/s dense WDM and PDM Kramers-Kronig detection with 125-km SSMF transmission,” in “European Conference on Optical Communications,” (2017), p. W.2.D.4.

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPB2.

Che, D.

Chen, X.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for linear complex optical channels,” J. Lightwave Technol. 33, 678–684 (2015).
[Crossref]

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2017), p. Th5B.6.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “4 × 240 Gb/s dense WDM and PDM Kramers-Kronig detection with 125-km SSMF transmission,” in “European Conference on Optical Communications,” (2017), p. W.2.D.4.

Chen, Y.-K.

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPB2.

Chi, N.

Chi, S.

Christen, L. C.

Creaner, M. J.

G. R. Walker, N. G. Walker, R. C. Steele, M. J. Creaner, and M. C. Brain, “Erbium-doped fiber amplifier cascade for multichannel coherent optical transmission,” J. Lightwave Technol. 9, 182–193 (1991).
[Crossref]

Cunningham, D. G.

J. D. Ingham, R. V. Penty, I. H. White, and D. G. Cunningham, “Carrierless amplitude and phase modulation for low-cost, high-spectral-efficiency optical datacommunication links,” in “Conference on Lasers and Electro-Optics 2010,” (Optical Society of America, 2010), p. CThC5.

Curri, V.

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100GE coherent PM-QPSK,” IEEE Photonics Technol. Lett. 20, 1281–1283 (2008).
[Crossref]

Dischler, R.

S. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8×256Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in “European Conference on Optical Communications Postdeadline Papers,” (2017), p. Th.PDP.B.1.

Doerr, C. R.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multi-wavelength coherent receiver,” in “National Fiber Optic Engineers Conference,” (Optical Society of America, 2010), p. PDPB1.

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPB2.

Dong, Z.

Du, L.

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), p. PDP39.

Du, L. B.

B. J. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPC3.

Earnshaw, M. P.

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPB2.

Emura, K.

T. Okoshi, K. Emura, K. Kikuchi, and R. T. Kesten, “Computation of bit-error rate of various heterodyne and coherent-type optical communication schemes,” J. Opt. Comm. 2, 89–96 (1981).
[Crossref]

Engenhardt, K.

S. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8×256Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in “European Conference on Optical Communications Postdeadline Papers,” (2017), p. Th.PDP.B.1.

Erkilinç, M.

Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “ Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in “European Conference on Optical Communications,” (2017), p. W.2.D.3.

Erkilinç, M. S.

Estrella, S. B.

S. B. Estrella, L. A. Johansson, M. L. Masanovic, J. A. Thomas, and J. S. Barton, “Widely tunable compact monolithically integrated photonic coherent receiver,” IEEE Photonics Technol. Lett. 24, 365–367 (2012).
[Crossref]

Feng, K.-M.

Fernando, N.

N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for unipolar communication systems,” IEEE Trans. Comm. 60, 3726–3733 (2012).
[Crossref]

Forghieri, F.

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100GE coherent PM-QPSK,” IEEE Photonics Technol. Lett. 20, 1281–1283 (2008).
[Crossref]

Galdino, L.

Z. Li, M. S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35, 1887–1893 (2017).
[Crossref]

Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “ Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in “European Conference on Optical Communications,” (2017), p. W.2.D.3.

Gill, D. M.

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPB2.

Glick, M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17, 714–716 (2005).
[Crossref]

Griesser, H.

Hall, K. L.

B. L. Kasper, C. A. Burrus, J. R. Talman, and K. L. Hall, “Balanced dual-detector receiver for optical heterodyne communication at Gbit/s rates,” Electron. Lett. 22, 413–415 (1986).
[Crossref]

Hoang, T. M.

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Hong, Y.

N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for unipolar communication systems,” IEEE Trans. Comm. 60, 3726–3733 (2012).
[Crossref]

Hu, Q.

Ingham, J. D.

J. D. Ingham, R. V. Penty, I. H. White, and D. G. Cunningham, “Carrierless amplitude and phase modulation for low-cost, high-spectral-efficiency optical datacommunication links,” in “Conference on Lasers and Electro-Optics 2010,” (Optical Society of America, 2010), p. CThC5.

Jensen, J. B.

Johansson, L. A.

S. B. Estrella, L. A. Johansson, M. L. Masanovic, J. A. Thomas, and J. S. Barton, “Widely tunable compact monolithically integrated photonic coherent receiver,” IEEE Photonics Technol. Lett. 24, 365–367 (2012).
[Crossref]

Karar, A. S.

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25, 757–760 (2013).
[Crossref]

Karlsson, M.

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL,” in “2014 The European Conference on Optical Communication (ECOC),” (2014), pp. 1–3.

Kasper, B. L.

B. L. Kasper, C. A. Burrus, J. R. Talman, and K. L. Hall, “Balanced dual-detector receiver for optical heterodyne communication at Gbit/s rates,” Electron. Lett. 22, 413–415 (1986).
[Crossref]

Kesten, R. T.

T. Okoshi, K. Emura, K. Kikuchi, and R. T. Kesten, “Computation of bit-error rate of various heterodyne and coherent-type optical communication schemes,” J. Opt. Comm. 2, 89–96 (1981).
[Crossref]

Kikuchi, K.

T. Okoshi, K. Emura, K. Kikuchi, and R. T. Kesten, “Computation of bit-error rate of various heterodyne and coherent-type optical communication schemes,” J. Opt. Comm. 2, 89–96 (1981).
[Crossref]

Killey, R.

Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “ Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in “European Conference on Optical Communications,” (2017), p. W.2.D.3.

Killey, R. I.

Larsson, A.

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL,” in “2014 The European Conference on Optical Communication (ECOC),” (2014), pp. 1–3.

Le, S.

S. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8×256Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in “European Conference on Optical Communications Postdeadline Papers,” (2017), p. Th.PDP.B.1.

Li, A.

Li, X.

Li, Z.

Z. Li, M. S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35, 1887–1893 (2017).
[Crossref]

Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “ Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in “European Conference on Optical Communications,” (2017), p. W.2.D.3.

Liboiron-Ladouceur, O.

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Lowery, A. J.

A. J. Lowery, “Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems,” Opt. Express 24, 3950–3966 (2016).
[Crossref] [PubMed]

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42, 370–372 (2006).
[Crossref]

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), p. PDP39.

B. J. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPC3.

Masanovic, M. L.

S. B. Estrella, L. A. Johansson, M. L. Masanovic, J. A. Thomas, and J. S. Barton, “Widely tunable compact monolithically integrated photonic coherent receiver,” IEEE Photonics Technol. Lett. 24, 365–367 (2012).
[Crossref]

Mecozzi, A.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3, 1220–1227 (2016).
[Crossref]

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2017), p. Th5B.6.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “4 × 240 Gb/s dense WDM and PDM Kramers-Kronig detection with 125-km SSMF transmission,” in “European Conference on Optical Communications,” (2017), p. W.2.D.4.

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17, 714–716 (2005).
[Crossref]

Monroy, I. T.

Morsy-Osman, M.

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

M. Chagnon, M. Morsy-Osman, and D. V. Plant, “Half-terabit single carrier direct detect transceiver, formats and DSP: Analysis and demonstration,” J. Lightwave Technol., doi: .
[Crossref]

Nicholson, G.

G. Nicholson, “Probability of error for optical heterodyne DPSK system with quantum phase noise,” Electron. Lett. 20, 1005–1007 (1984).
[Crossref]

Okoshi, T.

S. Yamashita and T. Okoshi, “Suppression of beat noise from optical amplifiers using coherent receivers,” J. Lightwave Technol. 12, 1029–1035 (1994).
[Crossref]

T. Okoshi, K. Emura, K. Kikuchi, and R. T. Kesten, “Computation of bit-error rate of various heterodyne and coherent-type optical communication schemes,” J. Opt. Comm. 2, 89–96 (1981).
[Crossref]

Pachnicke, S.

Paquet, C.

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Paquet, S.

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Patel, D.

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Peng, W.-R.

Penty, R. V.

J. D. Ingham, R. V. Penty, I. H. White, and D. G. Cunningham, “Carrierless amplitude and phase modulation for low-cost, high-spectral-efficiency optical datacommunication links,” in “Conference on Lasers and Electro-Optics 2010,” (Optical Society of America, 2010), p. CThC5.

Pham, T. T.

Plant, D.

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Plant, D. V.

M. Chagnon, M. Morsy-Osman, and D. V. Plant, “Half-terabit single carrier direct detect transceiver, formats and DSP: Analysis and demonstration,” J. Lightwave Technol., doi: .
[Crossref]

Poggiolini, P.

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100GE coherent PM-QPSK,” IEEE Photonics Technol. Lett. 20, 1281–1283 (2008).
[Crossref]

Rasras, M.

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPB2.

Raybon, G.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2017), p. Th5B.6.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “4 × 240 Gb/s dense WDM and PDM Kramers-Kronig detection with 125-km SSMF transmission,” in “European Conference on Optical Communications,” (2017), p. W.2.D.4.

Rodes, R.

Ruan, X.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photonics Technol. Lett. 29, 1788–1791 (2017).
[Crossref]

Schmidt, B. J.

B. J. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPC3.

Schuh, K.

S. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8×256Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in “European Conference on Optical Communications Postdeadline Papers,” (2017), p. Th.PDP.B.1.

Shamee, B.

Shi, K.

Z. Li, M. S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35, 1887–1893 (2017).
[Crossref]

Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “ Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in “European Conference on Optical Communications,” (2017), p. W.2.D.3.

Shieh, W.

Shtaif, M.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3, 1220–1227 (2016).
[Crossref]

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2017), p. Th5B.6.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “4 × 240 Gb/s dense WDM and PDM Kramers-Kronig detection with 125-km SSMF transmission,” in “European Conference on Optical Communications,” (2017), p. W.2.D.4.

Sillekens, E.

Z. Li, M. S. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35, 1887–1893 (2017).
[Crossref]

Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “ Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in “European Conference on Optical Communications,” (2017), p. W.2.D.3.

Sinsky, J.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2017), p. Th5B.6.

Siuzdak, J.

Sowailem, M. Y. S.

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Steele, R. C.

G. R. Walker, N. G. Walker, R. C. Steele, M. J. Creaner, and M. C. Brain, “Erbium-doped fiber amplifier cascade for multichannel coherent optical transmission,” J. Lightwave Technol. 9, 182–193 (1991).
[Crossref]

Szczerba, K.

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL,” in “2014 The European Conference on Optical Communication (ECOC),” (2014), pp. 1–3.

Talman, J. R.

B. L. Kasper, C. A. Burrus, J. R. Talman, and K. L. Hall, “Balanced dual-detector receiver for optical heterodyne communication at Gbit/s rates,” Electron. Lett. 22, 413–415 (1986).
[Crossref]

Thomas, J. A.

S. B. Estrella, L. A. Johansson, M. L. Masanovic, J. A. Thomas, and J. S. Barton, “Widely tunable compact monolithically integrated photonic coherent receiver,” IEEE Photonics Technol. Lett. 24, 365–367 (2012).
[Crossref]

Thomsen, B.

Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “ Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in “European Conference on Optical Communications,” (2017), p. W.2.D.3.

Thomsen, B. C.

Turkiewicz, J.

Viterbo, E.

N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for unipolar communication systems,” IEEE Trans. Comm. 60, 3726–3733 (2012).
[Crossref]

Walker, G. R.

G. R. Walker, N. G. Walker, R. C. Steele, M. J. Creaner, and M. C. Brain, “Erbium-doped fiber amplifier cascade for multichannel coherent optical transmission,” J. Lightwave Technol. 9, 182–193 (1991).
[Crossref]

Walker, N. G.

G. R. Walker, N. G. Walker, R. C. Steele, M. J. Creaner, and M. C. Brain, “Erbium-doped fiber amplifier cascade for multichannel coherent optical transmission,” J. Lightwave Technol. 9, 182–193 (1991).
[Crossref]

Wang, Y.

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17, 714–716 (2005).
[Crossref]

Weiner, J. S.

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPB2.

Westbergh, P.

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL,” in “2014 The European Conference on Optical Communication (ECOC),” (2014), pp. 1–3.

White, I. H.

J. D. Ingham, R. V. Penty, I. H. White, and D. G. Cunningham, “Carrierless amplitude and phase modulation for low-cost, high-spectral-efficiency optical datacommunication links,” in “Conference on Lasers and Electro-Optics 2010,” (Optical Society of America, 2010), p. CThC5.

Wieckowski, M.

Willner, A. E.

Winzer, P.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “4 × 240 Gb/s dense WDM and PDM Kramers-Kronig detection with 125-km SSMF transmission,” in “European Conference on Optical Communications,” (2017), p. W.2.D.4.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2017), p. Th5B.6.

Winzer, P. J.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multi-wavelength coherent receiver,” in “National Fiber Optic Engineers Conference,” (Optical Society of America, 2010), p. PDPB1.

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPB2.

Woods, I.

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Wu, X.

Yamashita, S.

S. Yamashita and T. Okoshi, “Suppression of beat noise from optical amplifiers using coherent receivers,” J. Lightwave Technol. 12, 1029–1035 (1994).
[Crossref]

Yang, J.-Y.

Yu, J.

Zan, Z.

B. J. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPC3.

Zhang, F.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photonics Technol. Lett. 29, 1788–1791 (2017).
[Crossref]

Zhang, L.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multi-wavelength coherent receiver,” in “National Fiber Optic Engineers Conference,” (Optical Society of America, 2010), p. PDPB1.

Zhu, Y.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photonics Technol. Lett. 29, 1788–1791 (2017).
[Crossref]

Zou, K.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photonics Technol. Lett. 29, 1788–1791 (2017).
[Crossref]

Electron. Lett. (3)

J. Armstrong and A. J. Lowery, “Power efficient optical OFDM,” Electron. Lett. 42, 370–372 (2006).
[Crossref]

B. L. Kasper, C. A. Burrus, J. R. Talman, and K. L. Hall, “Balanced dual-detector receiver for optical heterodyne communication at Gbit/s rates,” Electron. Lett. 22, 413–415 (1986).
[Crossref]

G. Nicholson, “Probability of error for optical heterodyne DPSK system with quantum phase noise,” Electron. Lett. 20, 1005–1007 (1984).
[Crossref]

IEEE Photonics J. (1)

T. M. Hoang, M. Y. S. Sowailem, M. Morsy-Osman, M. Chagnon, D. Patel, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. Plant, “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (5)

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Dynamic range of single-ended detection receivers for 100GE coherent PM-QPSK,” IEEE Photonics Technol. Lett. 20, 1281–1283 (2008).
[Crossref]

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photonics Technol. Lett. 29, 1788–1791 (2017).
[Crossref]

S. B. Estrella, L. A. Johansson, M. L. Masanovic, J. A. Thomas, and J. S. Barton, “Widely tunable compact monolithically integrated photonic coherent receiver,” IEEE Photonics Technol. Lett. 24, 365–367 (2012).
[Crossref]

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25, 757–760 (2013).
[Crossref]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17, 714–716 (2005).
[Crossref]

IEEE Trans. Comm. (1)

N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for unipolar communication systems,” IEEE Trans. Comm. 60, 3726–3733 (2012).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. Comm. (1)

T. Okoshi, K. Emura, K. Kikuchi, and R. T. Kesten, “Computation of bit-error rate of various heterodyne and coherent-type optical communication schemes,” J. Opt. Comm. 2, 89–96 (1981).
[Crossref]

Opt. Express (4)

Optica (1)

Other (12)

Z. Li, M. Erkılınç, K. Shi, E. Sillekens, L. Galdino, B. Thomsen, P. Bayvel, and R. Killey, “ Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers-Kronig receivers,” in “European Conference on Optical Communications,” (2017), p. W.2.D.3.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection,” in “Optical Fiber Communication Conference Postdeadline Papers,” (Optical Society of America, 2017), p. Th5B.6.

S. Le, K. Schuh, M. Chagnon, F. Buchali, R. Dischler, V. Aref, H. Buelow, and K. Engenhardt, “8×256Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200km,” in “European Conference on Optical Communications Postdeadline Papers,” (2017), p. Th.PDP.B.1.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, A. Mecozzi, M. Shtaif, and P. Winzer, “4 × 240 Gb/s dense WDM and PDM Kramers-Kronig detection with 125-km SSMF transmission,” in “European Conference on Optical Communications,” (2017), p. W.2.D.4.

J. D. Ingham, R. V. Penty, I. H. White, and D. G. Cunningham, “Carrierless amplitude and phase modulation for low-cost, high-spectral-efficiency optical datacommunication links,” in “Conference on Lasers and Electro-Optics 2010,” (Optical Society of America, 2010), p. CThC5.

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), p. PDP39.

Cisco, “Cisco Visual Networking Index,” https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html .

M. Chagnon, M. Morsy-Osman, and D. V. Plant, “Half-terabit single carrier direct detect transceiver, formats and DSP: Analysis and demonstration,” J. Lightwave Technol., doi: .
[Crossref]

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL,” in “2014 The European Conference on Optical Communication (ECOC),” (2014), pp. 1–3.

B. J. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPC3.

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic silicon coherent receiver,” in “Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,” (Optical Society of America, 2009), p. PDPB2.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multi-wavelength coherent receiver,” in “National Fiber Optic Engineers Conference,” (Optical Society of America, 2010), p. PDPB1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Comparison on hardware requirements for a polarization diverse a) intradyne or b) heterodyne coherent optical receivers. Minimum E–O component bandwidth requirements are noted, and insets illustrate received optical and electrical spectra
Fig. 2
Fig. 2 a) Back-to-back set-up for characterization of SSBI against CSPR. WSS: Wavelength selective switch, PBS: Polarization beam splitter, PM-3dB: polarization maintaining 3-dB coupler. b) Transmitter- and receiver-side digital signal processing stacks. These represent common DSP flow for intradyne detection, with the exception of the (red) set value frequency shifting stage at the receive-side
Fig. 3
Fig. 3 Characterization of the effect of CSPR on SSBI in a single photodiode-per-polarization heterodyne receiver. a) Received electrical spectra at high and low CSPR with a 32 GHz carrier-signal detuning to spectrally resolve signal-carrier beat and signal-signal beat, b) Signal-to-interference-and-noise ratio inferred from received spectra against measured against measured carrier-to-signal power ratio, and c) received signal quality against CSPR for a 11 GHz carrier-signal detuning
Fig. 4
Fig. 4 a) Experimental set-up for back-to-back noise loading experiments. OSA: optical spectrum analyzer. b) Performance against received OSNR for heterodyne received signals at various symbol rates (closed points), and theoretical performance assuming intradyne coherent detection (lines). c) Measured receiver performance when detecting a 61 Gbd signal, with intradyne (closed points) receiving a single-polarization signal and (open points) heterodyne receiving a dual polarization signal.
Fig. 5
Fig. 5 Experimental set-up for 8-channel 100-GHz-grid WDM experiments. Between the emulated WDM transmitter and heterodyne receiver is placed either a lumped loss (VOA), a single span of in-lab spooled fiber, or a span of installed metropolitan dark fiber. Inset: map of the Australian Lightwave Infrastructure Research Test-bed (ALIRT), hosted by Australia’s Academic and Research Network (AARNet).
Fig. 6
Fig. 6 Performance curves for the center (193.1 THz) channel, heterodyne received, after WDM transmission. a) BER against loss for a lumped loss only between transmitter and receiver, b) BER against transmission distance for in-lab fibers (span losses marked against points), and c) ’X’-polarization constellations and dual-pol. BER after in-field transmission.

Tables (1)

Tables Icon

Table 1 Required OSNR for single-photodiode receivers when measuring signals targeting net data rates of ≈ 200 Gb/s/pol. Results are extracted from the papers cited, or from Fig. 4(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I rec = R 0 × P rec = R 0 × ( E sig + E LO ) ( E sig + E LO ) * = R 0 × ( P sig + P LO + 2 P sig P LO cos θ )
I sig × LO 2 I sig × sig 2 = 2 P LO P sig

Metrics