Abstract

In this research, an approach called modulation-based structured-illumination microscopy (MSIM) is proposed to measure the surface and thickness profile of thin film layers. With this method, a sinusoidal fringe pattern generated by digital micro-mirror devices (DMD) is projected on the sample. The modulation estimation of the reflected patterns is implemented for characterizing the surface and thickness profile of the sample. The measurement system is relatively simple and only an ordinary objective is enough to achieve imaging of the sample. In addition, the reflected signals come from the back surface of the film create less disturbance to the front surface compared with white-light interferometry. Consequently, they can be easily distinguished and achieve a successful measurement precisely. Both simulation and experiments are carried out to demonstrate the availability of this MISM method. The results are in excellent agreement with commercial stage profiler and the relative uncertainty is less than 10 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry

Seung-Woo Kim and Gee-Hong Kim
Appl. Opt. 38(28) 5968-5973 (1999)

Surface and thickness measurement of a transparent film using wavelength scanning interferometry

Feng Gao, Hussam Muhamedsalih, and Xiangqian Jiang
Opt. Express 20(19) 21450-21456 (2012)

Fast structured illumination microscopy with reflectance disturbance resistibility and improved accuracy

Zhongye Xie, Yan Tang, Yu He, Junbo Liu, Jinhua Feng, and Song Hu
Opt. Express 27(15) 21508-21519 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Panda and C. Jacob, “Preparation of transparent zno thin films and their application in uv sensor devices,” Solid-State Electron. 73(14), 44–50 (2012).
    [Crossref]
  2. S. M. Park, T. Ikegami, and K. Ebihara, “Growth of Transparent Conductive Al-Doped ZnO Thin Films and Device Applications,” Jpn. J. Appl. Phys. 45(10), 8453–8456 (2014).
  3. H. W. Park, K. Park, J. Y. Kwon, D. Choi, and K. B. Chung, “Effect of active layer thickness on device performance of tungsten-doped inzno thin-film transistor,” IEEE Trans. Electron Dev. 64(1), 159–163 (2017).
    [Crossref]
  4. A. Piegari and E. Masetti, “Thin film thickness measurement: A comparison of various techniques ☆,” Thin Solid Films 124(3–4), 249–257 (1985).
    [Crossref]
  5. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
    [Crossref] [PubMed]
  6. H. Akiyama, O. Sasaki, and T. Suzuki, “Sinusoidal wavelength-scanning interferometer using an acousto-optic tunable filter for measurement of thickness and surface profile of a thin film,” Opt. Express 13(25), 10066–10074 (2005).
    [Crossref] [PubMed]
  7. M. Krumrey, M. Hoffmann, G. Ulm, K. Hasche, and P. Thomsen-Schmidt, “Thickness determination for sio2 films on si by x-ray reflectometry at the si k edge,” Thin Solid Films 459(1–2), 241–244 (2004).
    [Crossref]
  8. U. Karabiyik, M. Mao, S. K. Satija, and A. R. Esker, “Determination of thicknesses and refractive indices of polymer thin films by multiple incident media ellipsometry,” Thin Solid Films 565(565), 72–78 (2014).
    [Crossref]
  9. K. Kitagawa, “Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry,” Opt. Lett. 39(14), 4172–4175 (2014).
    [Crossref] [PubMed]
  10. S. W. Kim and G. H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38(28), 5968–5973 (1999).
    [Crossref] [PubMed]
  11. P. Hlubina, D. Ciprian, J. Lunácek, and M. Lesnák, “Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film,” Opt. Express 14(17), 7678–7685 (2006).
    [Crossref] [PubMed]
  12. J. T. Dong and R. S. Lu, “Sensitivity analysis of thin-film thickness measurement by vertical scanning white-light interferometry,” Appl. Opt. 51(23), 5668–5675 (2012).
    [Crossref] [PubMed]
  13. S. Ma, C. Quan, R. Zhu, C. J. Tay, L. Chen, and Z. Gao, “Micro-profile measurement based on windowed Fourier transform in white-light scanning interferometry,” Opt. Commun. 284(10–11), 2488–2493 (2011).
    [Crossref]
  14. Y. M. Hwang, S. W. Yoon, J. H. Kim, S. Kim, and H. J. Pahk, “Thin-film thickness profile measurement using wavelet transform in wavelength-scanning interferometry,” Opt. Lasers Eng. 46(2), 179–184 (2008).
    [Crossref]
  15. O. Sasaki, S. Hirakubo, S. Choi, and T. Suzuki, “Utilization of frequency information in a linear wavenumber-scanning interferometer for profile measurement of a thin film,” Appl. Opt. 51(13), 2429–2435 (2012).
    [Crossref] [PubMed]
  16. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [Crossref] [PubMed]
  17. P. Křížek, I. Raška, and G. M. Hagen, “Flexible structured illumination microscope with a programmable illumination array,” Opt. Express 20(22), 24585–24599 (2012).
    [Crossref] [PubMed]
  18. H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
    [Crossref]
  19. F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express 15(24), 16130–16140 (2007).
    [Crossref] [PubMed]
  20. L. G. Krzewina and M. K. Kim, “Single-exposure optical sectioning by color structured illumination microscopy,” Opt. Lett. 31(4), 477–479 (2006).
    [Crossref] [PubMed]
  21. D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron 39(7), 808–818 (2008).
    [Crossref] [PubMed]
  22. P. A. Stokseth, “Properties of a Defocused Optical System,” J. Opt. Soc. Am. 59(10), 1314–1321 (1969).
    [Crossref]

2017 (1)

H. W. Park, K. Park, J. Y. Kwon, D. Choi, and K. B. Chung, “Effect of active layer thickness on device performance of tungsten-doped inzno thin-film transistor,” IEEE Trans. Electron Dev. 64(1), 159–163 (2017).
[Crossref]

2016 (1)

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

2014 (3)

S. M. Park, T. Ikegami, and K. Ebihara, “Growth of Transparent Conductive Al-Doped ZnO Thin Films and Device Applications,” Jpn. J. Appl. Phys. 45(10), 8453–8456 (2014).

U. Karabiyik, M. Mao, S. K. Satija, and A. R. Esker, “Determination of thicknesses and refractive indices of polymer thin films by multiple incident media ellipsometry,” Thin Solid Films 565(565), 72–78 (2014).
[Crossref]

K. Kitagawa, “Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry,” Opt. Lett. 39(14), 4172–4175 (2014).
[Crossref] [PubMed]

2012 (4)

2011 (1)

S. Ma, C. Quan, R. Zhu, C. J. Tay, L. Chen, and Z. Gao, “Micro-profile measurement based on windowed Fourier transform in white-light scanning interferometry,” Opt. Commun. 284(10–11), 2488–2493 (2011).
[Crossref]

2008 (2)

Y. M. Hwang, S. W. Yoon, J. H. Kim, S. Kim, and H. J. Pahk, “Thin-film thickness profile measurement using wavelet transform in wavelength-scanning interferometry,” Opt. Lasers Eng. 46(2), 179–184 (2008).
[Crossref]

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron 39(7), 808–818 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

2005 (1)

2004 (2)

M. Krumrey, M. Hoffmann, G. Ulm, K. Hasche, and P. Thomsen-Schmidt, “Thickness determination for sio2 films on si by x-ray reflectometry at the si k edge,” Thin Solid Films 459(1–2), 241–244 (2004).
[Crossref]

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
[Crossref] [PubMed]

1999 (1)

1997 (1)

1985 (1)

A. Piegari and E. Masetti, “Thin film thickness measurement: A comparison of various techniques ☆,” Thin Solid Films 124(3–4), 249–257 (1985).
[Crossref]

1969 (1)

Akiyama, H.

Arwin, H.

Boccara, A. C.

Chasles, F.

Chen, L.

S. Ma, C. Quan, R. Zhu, C. J. Tay, L. Chen, and Z. Gao, “Micro-profile measurement based on windowed Fourier transform in white-light scanning interferometry,” Opt. Commun. 284(10–11), 2488–2493 (2011).
[Crossref]

Choi, D.

H. W. Park, K. Park, J. Y. Kwon, D. Choi, and K. B. Chung, “Effect of active layer thickness on device performance of tungsten-doped inzno thin-film transistor,” IEEE Trans. Electron Dev. 64(1), 159–163 (2017).
[Crossref]

Choi, S.

Chung, K. B.

H. W. Park, K. Park, J. Y. Kwon, D. Choi, and K. B. Chung, “Effect of active layer thickness on device performance of tungsten-doped inzno thin-film transistor,” IEEE Trans. Electron Dev. 64(1), 159–163 (2017).
[Crossref]

Ciprian, D.

Dong, J. T.

Dubertret, B.

Ebihara, K.

S. M. Park, T. Ikegami, and K. Ebihara, “Growth of Transparent Conductive Al-Doped ZnO Thin Films and Device Applications,” Jpn. J. Appl. Phys. 45(10), 8453–8456 (2014).

Esker, A. R.

U. Karabiyik, M. Mao, S. K. Satija, and A. R. Esker, “Determination of thicknesses and refractive indices of polymer thin films by multiple incident media ellipsometry,” Thin Solid Films 565(565), 72–78 (2014).
[Crossref]

Gao, Z.

S. Ma, C. Quan, R. Zhu, C. J. Tay, L. Chen, and Z. Gao, “Micro-profile measurement based on windowed Fourier transform in white-light scanning interferometry,” Opt. Commun. 284(10–11), 2488–2493 (2011).
[Crossref]

Hagen, G. M.

Hasche, K.

M. Krumrey, M. Hoffmann, G. Ulm, K. Hasche, and P. Thomsen-Schmidt, “Thickness determination for sio2 films on si by x-ray reflectometry at the si k edge,” Thin Solid Films 459(1–2), 241–244 (2004).
[Crossref]

Hirakubo, S.

Hlubina, P.

Hoffmann, M.

M. Krumrey, M. Hoffmann, G. Ulm, K. Hasche, and P. Thomsen-Schmidt, “Thickness determination for sio2 films on si by x-ray reflectometry at the si k edge,” Thin Solid Films 459(1–2), 241–244 (2004).
[Crossref]

Hwang, Y. M.

Y. M. Hwang, S. W. Yoon, J. H. Kim, S. Kim, and H. J. Pahk, “Thin-film thickness profile measurement using wavelet transform in wavelength-scanning interferometry,” Opt. Lasers Eng. 46(2), 179–184 (2008).
[Crossref]

Ikegami, T.

S. M. Park, T. Ikegami, and K. Ebihara, “Growth of Transparent Conductive Al-Doped ZnO Thin Films and Device Applications,” Jpn. J. Appl. Phys. 45(10), 8453–8456 (2014).

Jacob, C.

S. K. Panda and C. Jacob, “Preparation of transparent zno thin films and their application in uv sensor devices,” Solid-State Electron. 73(14), 44–50 (2012).
[Crossref]

Johansen, K.

Juskaitis, R.

Karabiyik, U.

U. Karabiyik, M. Mao, S. K. Satija, and A. R. Esker, “Determination of thicknesses and refractive indices of polymer thin films by multiple incident media ellipsometry,” Thin Solid Films 565(565), 72–78 (2014).
[Crossref]

Karadaglic, D.

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron 39(7), 808–818 (2008).
[Crossref] [PubMed]

Kim, G. H.

Kim, J. H.

Y. M. Hwang, S. W. Yoon, J. H. Kim, S. Kim, and H. J. Pahk, “Thin-film thickness profile measurement using wavelet transform in wavelength-scanning interferometry,” Opt. Lasers Eng. 46(2), 179–184 (2008).
[Crossref]

Kim, M. K.

Kim, S.

Y. M. Hwang, S. W. Yoon, J. H. Kim, S. Kim, and H. J. Pahk, “Thin-film thickness profile measurement using wavelet transform in wavelength-scanning interferometry,” Opt. Lasers Eng. 46(2), 179–184 (2008).
[Crossref]

Kim, S. W.

Kitagawa, K.

Krížek, P.

Krumrey, M.

M. Krumrey, M. Hoffmann, G. Ulm, K. Hasche, and P. Thomsen-Schmidt, “Thickness determination for sio2 films on si by x-ray reflectometry at the si k edge,” Thin Solid Films 459(1–2), 241–244 (2004).
[Crossref]

Krzewina, L. G.

Kwon, J. Y.

H. W. Park, K. Park, J. Y. Kwon, D. Choi, and K. B. Chung, “Effect of active layer thickness on device performance of tungsten-doped inzno thin-film transistor,” IEEE Trans. Electron Dev. 64(1), 159–163 (2017).
[Crossref]

Lesnák, M.

Li, Y.

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

Liu, C.

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

Liu, J.

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

Lu, R. S.

Lunácek, J.

Ma, S.

S. Ma, C. Quan, R. Zhu, C. J. Tay, L. Chen, and Z. Gao, “Micro-profile measurement based on windowed Fourier transform in white-light scanning interferometry,” Opt. Commun. 284(10–11), 2488–2493 (2011).
[Crossref]

Mao, M.

U. Karabiyik, M. Mao, S. K. Satija, and A. R. Esker, “Determination of thicknesses and refractive indices of polymer thin films by multiple incident media ellipsometry,” Thin Solid Films 565(565), 72–78 (2014).
[Crossref]

Masetti, E.

A. Piegari and E. Masetti, “Thin film thickness measurement: A comparison of various techniques ☆,” Thin Solid Films 124(3–4), 249–257 (1985).
[Crossref]

Neil, M. A. A.

Pahk, H. J.

Y. M. Hwang, S. W. Yoon, J. H. Kim, S. Kim, and H. J. Pahk, “Thin-film thickness profile measurement using wavelet transform in wavelength-scanning interferometry,” Opt. Lasers Eng. 46(2), 179–184 (2008).
[Crossref]

Panda, S. K.

S. K. Panda and C. Jacob, “Preparation of transparent zno thin films and their application in uv sensor devices,” Solid-State Electron. 73(14), 44–50 (2012).
[Crossref]

Park, H. W.

H. W. Park, K. Park, J. Y. Kwon, D. Choi, and K. B. Chung, “Effect of active layer thickness on device performance of tungsten-doped inzno thin-film transistor,” IEEE Trans. Electron Dev. 64(1), 159–163 (2017).
[Crossref]

Park, K.

H. W. Park, K. Park, J. Y. Kwon, D. Choi, and K. B. Chung, “Effect of active layer thickness on device performance of tungsten-doped inzno thin-film transistor,” IEEE Trans. Electron Dev. 64(1), 159–163 (2017).
[Crossref]

Park, S. M.

S. M. Park, T. Ikegami, and K. Ebihara, “Growth of Transparent Conductive Al-Doped ZnO Thin Films and Device Applications,” Jpn. J. Appl. Phys. 45(10), 8453–8456 (2014).

Piegari, A.

A. Piegari and E. Masetti, “Thin film thickness measurement: A comparison of various techniques ☆,” Thin Solid Films 124(3–4), 249–257 (1985).
[Crossref]

Poksinski, M.

Quan, C.

S. Ma, C. Quan, R. Zhu, C. J. Tay, L. Chen, and Z. Gao, “Micro-profile measurement based on windowed Fourier transform in white-light scanning interferometry,” Opt. Commun. 284(10–11), 2488–2493 (2011).
[Crossref]

Raška, I.

Sasaki, O.

Satija, S. K.

U. Karabiyik, M. Mao, S. K. Satija, and A. R. Esker, “Determination of thicknesses and refractive indices of polymer thin films by multiple incident media ellipsometry,” Thin Solid Films 565(565), 72–78 (2014).
[Crossref]

Stokseth, P. A.

Suzuki, T.

Tan, J.

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

Tay, C. J.

S. Ma, C. Quan, R. Zhu, C. J. Tay, L. Chen, and Z. Gao, “Micro-profile measurement based on windowed Fourier transform in white-light scanning interferometry,” Opt. Commun. 284(10–11), 2488–2493 (2011).
[Crossref]

Thomsen-Schmidt, P.

M. Krumrey, M. Hoffmann, G. Ulm, K. Hasche, and P. Thomsen-Schmidt, “Thickness determination for sio2 films on si by x-ray reflectometry at the si k edge,” Thin Solid Films 459(1–2), 241–244 (2004).
[Crossref]

Ulm, G.

M. Krumrey, M. Hoffmann, G. Ulm, K. Hasche, and P. Thomsen-Schmidt, “Thickness determination for sio2 films on si by x-ray reflectometry at the si k edge,” Thin Solid Films 459(1–2), 241–244 (2004).
[Crossref]

Wang, H.

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

Wilson, T.

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron 39(7), 808–818 (2008).
[Crossref] [PubMed]

M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
[Crossref] [PubMed]

Yoon, S. W.

Y. M. Hwang, S. W. Yoon, J. H. Kim, S. Kim, and H. J. Pahk, “Thin-film thickness profile measurement using wavelet transform in wavelength-scanning interferometry,” Opt. Lasers Eng. 46(2), 179–184 (2008).
[Crossref]

Zhu, R.

S. Ma, C. Quan, R. Zhu, C. J. Tay, L. Chen, and Z. Gao, “Micro-profile measurement based on windowed Fourier transform in white-light scanning interferometry,” Opt. Commun. 284(10–11), 2488–2493 (2011).
[Crossref]

Appl. Opt. (4)

IEEE Trans. Electron Dev. (1)

H. W. Park, K. Park, J. Y. Kwon, D. Choi, and K. B. Chung, “Effect of active layer thickness on device performance of tungsten-doped inzno thin-film transistor,” IEEE Trans. Electron Dev. 64(1), 159–163 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

S. M. Park, T. Ikegami, and K. Ebihara, “Growth of Transparent Conductive Al-Doped ZnO Thin Films and Device Applications,” Jpn. J. Appl. Phys. 45(10), 8453–8456 (2014).

Micron (1)

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron 39(7), 808–818 (2008).
[Crossref] [PubMed]

Opt. Commun. (2)

H. Wang, J. Tan, C. Liu, J. Liu, and Y. Li, “Wide-field profiling of smooth steep surfaces by structured illumination,” Opt. Commun. 366, 241–247 (2016).
[Crossref]

S. Ma, C. Quan, R. Zhu, C. J. Tay, L. Chen, and Z. Gao, “Micro-profile measurement based on windowed Fourier transform in white-light scanning interferometry,” Opt. Commun. 284(10–11), 2488–2493 (2011).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

Y. M. Hwang, S. W. Yoon, J. H. Kim, S. Kim, and H. J. Pahk, “Thin-film thickness profile measurement using wavelet transform in wavelength-scanning interferometry,” Opt. Lasers Eng. 46(2), 179–184 (2008).
[Crossref]

Opt. Lett. (3)

Solid-State Electron. (1)

S. K. Panda and C. Jacob, “Preparation of transparent zno thin films and their application in uv sensor devices,” Solid-State Electron. 73(14), 44–50 (2012).
[Crossref]

Thin Solid Films (3)

A. Piegari and E. Masetti, “Thin film thickness measurement: A comparison of various techniques ☆,” Thin Solid Films 124(3–4), 249–257 (1985).
[Crossref]

M. Krumrey, M. Hoffmann, G. Ulm, K. Hasche, and P. Thomsen-Schmidt, “Thickness determination for sio2 films on si by x-ray reflectometry at the si k edge,” Thin Solid Films 459(1–2), 241–244 (2004).
[Crossref]

U. Karabiyik, M. Mao, S. K. Satija, and A. R. Esker, “Determination of thicknesses and refractive indices of polymer thin films by multiple incident media ellipsometry,” Thin Solid Films 565(565), 72–78 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of MSIM system. (b) The reflection takes place on the two interfacial surfaces.
Fig. 2
Fig. 2 The flowchart of the process of signal evaluation for MSIM.
Fig. 3
Fig. 3 (a) Light-intensity distribution of simulated sinusoidal fringe patterns shifted by a certain phase for one z-position. (b) The modulation distribution of all pixels for a specific position. (c) Simulated micro-dome structure with a thin film as the measured object. (d) Light-intensity distribution at different scanning z-position. (e) The modulation depth response for each pixel.
Fig. 4
Fig. 4 (a) Simulated MDR for a pixel. (b) Polynomial curve fitting to determine the focal position of a pixel.
Fig. 5
Fig. 5 (a) The experiment system for MSIM. (b) The captured image from the surface of substrate. (c) The captured image from the surface of photoresist film.
Fig. 6
Fig. 6 (a) The modulation curve of pixel (200,200) along different scanning steps. (b) Estimated surfaces of the photoresist film. (c) The reconstructed surface of substrate. (d) The film thickness profile.
Figure 7
Figure 7 (a) Cross-section profile at the position Y = 80 of Fig. 6(b). (b) The grating step height measured by a commercial stylus profiler.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)= I 0 B(x,y)[1+C(x,y)cos(2πfx+ ϕ 0 )]
I i (x,y)= I 0 B(x,y)[1+C(x,y)cos(2πfx+2iπ/L+ ϕ 0 )]
I i (x,y)= j=1 2 I 0 B j (x,y)[1+ C j (x,y)cos(2πfx+2iπ/L+ ϕ 0 ) ]
M(x,y)= { [ i=1 L I i (x,y)sin(2iπ/L) ] 2 + [ i=1 L I i (x,y)cos(2iπ/L) ] 2 } 1/2
M(x,y)= j=1 2 1 2 L I 0 B j (x,y) C j (x,y)
M(z)= M max e ( z z a FWHM ) 2
M(z)=a ( z z a ) 2 + M max
H j = z aj z s

Metrics