Abstract

Optical frequency-modulated continuous-wave (FMCW) reflectometry is a ranging technique that allows for high-resolution distance measurements over long ranges. Similarly, swept-source optical coherence tomography (SS-OCT) provides high-resolution depth imaging over typically shorter distances and higher scan speeds. In this work, we demonstrate a low-cost, low-bandwidth 3D imaging system that provides the high axial resolution imaging capability normally associated with SS-OCT over typical FMCW ranging depths. The imaging system combines 12 distributed feedback laser (DFB) elements from a single butterfly module to provide an axial resolution of 27.1 μm over 6 m of depth and up to 14 cubic meters of volume. Active sweep linearization is used, greatly reducing the signal processing overhead. Various sub-surface, OCT-style tomograms of semi-transparent objects are shown, as well as 3D maps of various objects over depths ranging from sub-millimeter to several meters. Such imaging capability would make long-distance, high-resolution surface interrogation possible in a low-cost, compact package.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-accuracy range-sensing system based on FMCW using low-cost VCSEL

Tatsuo Hariyama, Phillip A. M. Sandborn, Masahiro Watanabe, and Ming C. Wu
Opt. Express 26(7) 9285-9297 (2018)

VCSEL-based swept source for low-cost optical coherence tomography

Sucbei Moon and Eun Seo Choi
Biomed. Opt. Express 8(2) 1110-1121 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  2. J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
    [Crossref]
  3. C. Lu, G. Liu, B. Liu, F. Chen, and Y. Gan, “Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration,” Opt. Express 24(26), 30215–30224 (2016).
    [Crossref] [PubMed]
  4. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009).
    [Crossref] [PubMed]
  5. M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, and P. J. Delfyett, “Range resolved lidar for long distance ranging with sub-millimeter resolution,” Opt. Express 18(7), 7184–7189 (2010).
    [Crossref] [PubMed]
  6. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
    [Crossref] [PubMed]
  7. F. Amzajerdian, L. Petway, B. Barnes, G. Hines, D. Pierrottet, and G. Lockard, “Fiber-Based Coherent Doppler Lidar for Precision Landing on the Moon and Mars,” in Fiber Laser Applications (Optical Society of America, 2011), FWC1.
  8. M. E. Froggatt, D. K. Gifford, S. Kreger, M. Wolfe, and B. J. Soller, “Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry,” J. Lightwave Technol. 24(11), 4149–4154 (2006).
    [Crossref]
  9. S. Ohno, D. Iida, K. Toge, and T. Manabe, “Long-range measurement of Rayleigh scatter signature beyond laser coherence length based on coherent optical frequency domain reflectometry,” Opt. Express 24(17), 19651–19660 (2016).
    [Crossref] [PubMed]
  10. L. Shiloh and A. Eyal, “Sinusoidal frequency scan OFDR with fast processing algorithm for distributed acoustic sensing,” Opt. Express 25(16), 19205–19215 (2017).
    [Crossref] [PubMed]
  11. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [Crossref] [PubMed]
  12. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [Crossref] [PubMed]
  13. D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for ophthalmic imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
    [Crossref] [PubMed]
  14. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  15. M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
    [Crossref] [PubMed]
  16. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
    [Crossref] [PubMed]
  17. C. Jun, M. Villiger, W.-Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
    [Crossref] [PubMed]
  18. R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
    [Crossref]
  19. H. Gong, Z. Liu, Y. Zhou, and W. Zhang, “Extending the mode-hop-free tuning range of an external-cavity diode laser by synchronous tuning with mode matching,” Appl. Opt. 53(33), 7878–7884 (2014).
    [Crossref] [PubMed]
  20. P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
    [Crossref]
  21. Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23(20), 25988–25995 (2015).
    [Crossref] [PubMed]
  22. S. Kakuma, “Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time measurements of distance and radial velocity,” Opt. Rev. 24(1), 39–46 (2017).
    [Crossref]
  23. Z. Chen, G. Hefferman, and T. Wei, “A Sweep Velocity-Controlled VCSEL Pulse Laser to Interrogate Sub-THz-Range Fiber Sensors,” IEEE Photonics Technol. Lett. 29(17), 1471–1474 (2017).
    [Crossref]
  24. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
    [Crossref] [PubMed]
  25. J. Qin, Q. Zhou, W. Xie, Y. Xu, S. Yu, Z. Liu, Y. Tong, Y. Dong, and W. Hu, “Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop,” Opt. Lett. 40(19), 4500–4503 (2015).
    [Crossref] [PubMed]
  26. T. DiLazaro and G. Nehmetallah, “Multi-terahertz frequency sweeps for high-resolution, frequency-modulated continuous wave ladar using a distributed feedback laser array,” Opt. Express 25(3), 2327–2340 (2017).
    [Crossref]
  27. W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22(8), 1749–1756 (2005).
    [Crossref]
  28. S. H. Kassani, M. Villiger, N. Uribe-Patarroyo, C. Jun, R. Khazaeinezhad, N. Lippok, and B. E. Bouma, “Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging,” Opt. Express 25(7), 8255–8266 (2017).
    [Crossref] [PubMed]
  29. A. Vasilyev, N. Satyan, S. Xu, G. Rakuljic, and A. Yariv, “Multiple source frequency-modulated continuous-wave optical reflectometry: theory and experiment,” Appl. Opt. 49(10), 1932–1937 (2010).
    [Crossref] [PubMed]
  30. E. Baumann, F. R. Giorgetta, J.-D. Deschênes, W. C. Swann, I. Coddington, and N. R. Newbury, “Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance,” Opt. Express 22(21), 24914–24928 (2014).
    [Crossref] [PubMed]
  31. Z. Barber, J. R. Dahl, P. A. Roos, R. R. Reibel, N. Greenfield, F. Giorgetta, I. Coddington, and N. R. Newbury, “Ultra-broadband chirp linearity characterization with an optical frequency comb,” in CLEO: Science and Innovations, (2011), paper CWH4.
  32. M. Njegovec and D. Donlagic, “Rapid and broad wavelength sweeping of standard telecommunication distributed feedback laser diode,” Opt. Lett. 38(11), 1999–2001 (2013).
    [Crossref] [PubMed]
  33. D. Xu, Y. Huang, and J. U. Kang, “GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography,” Opt. Express 22(12), 14871–14884 (2014).
    [Crossref] [PubMed]
  34. I. Sarkar and A. T. Fam, “The interlaced chirp Z transform,” Signal Process. 86(9), 2221–2232 (2006).
    [Crossref]
  35. C. Ma, Q. Zhou, J. Qin, W. Xie, Y. Dong, and W. Hu, “Fast Spectrum Analysis for an OFDR Using the FFT and SCZT Combination Approach,” IEEE Photonics Technol. Lett. 28(6), 657–660 (2016).
    [Crossref]
  36. J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41(5), 302–304 (1951).
    [Crossref]

2017 (5)

2016 (4)

2015 (3)

2014 (5)

2013 (2)

2010 (2)

2009 (2)

2008 (1)

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

2006 (3)

2005 (3)

2003 (1)

2001 (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

2000 (1)

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

1951 (1)

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Babbitt, W. R.

Barber, Z. W.

Barry, L. P.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Baumann, E.

Berg, T.

Bonesi, M.

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Boschert, P.

Bouma, B.

Bouma, B. E.

Burgner, C. B.

Byrne, D.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Cable, A. E.

Chen, F.

Chen, L.

Chen, Z.

Z. Chen, G. Hefferman, and T. Wei, “A Sweep Velocity-Controlled VCSEL Pulse Laser to Interrogate Sub-THz-Range Fiber Sensors,” IEEE Photonics Technol. Lett. 29(17), 1471–1474 (2017).
[Crossref]

Choi, W. J.

Coddington, I.

Corbett, B.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Crawford, M.

Curcio, J. A.

de Boer, J.

Delfyett, P. J.

Deschênes, J.-D.

DiLazaro, T.

Doerr, C.

Donegan, J. F.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Dong, Y.

C. Ma, Q. Zhou, J. Qin, W. Xie, Y. Dong, and W. Hu, “Fast Spectrum Analysis for an OFDR Using the FFT and SCZT Combination Approach,” IEEE Photonics Technol. Lett. 28(6), 657–660 (2016).
[Crossref]

J. Qin, Q. Zhou, W. Xie, Y. Xu, S. Yu, Z. Liu, Y. Tong, Y. Dong, and W. Hu, “Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop,” Opt. Lett. 40(19), 4500–4503 (2015).
[Crossref] [PubMed]

Donlagic, D.

Drexler, W.

Ensher, J.

Eyal, A.

Fam, A. T.

I. Sarkar and A. T. Fam, “The interlaced chirp Z transform,” Signal Process. 86(9), 2221–2232 (2006).
[Crossref]

Fan, X.

Froggatt, M. E.

Fujimoto, J.

Fujimoto, J. G.

Gan, Y.

Geng, J.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Gifford, D. K.

Gilbert, S. L.

Giorgetta, F. R.

Gisin, N.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

Gong, H.

Guinnard, L.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

Guinnard, O.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

Guo, W.-H.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

He, Z.

Hefferman, G.

Z. Chen, G. Hefferman, and T. Wei, “A Sweep Velocity-Controlled VCSEL Pulse Laser to Interrogate Sub-THz-Range Fiber Sensors,” IEEE Photonics Technol. Lett. 29(17), 1471–1474 (2017).
[Crossref]

Hoover, E.

Hsu, K.

Hu, W.

C. Ma, Q. Zhou, J. Qin, W. Xie, Y. Dong, and W. Hu, “Fast Spectrum Analysis for an OFDR Using the FFT and SCZT Combination Approach,” IEEE Photonics Technol. Lett. 28(6), 657–660 (2016).
[Crossref]

J. Qin, Q. Zhou, W. Xie, Y. Xu, S. Yu, Z. Liu, Y. Tong, Y. Dong, and W. Hu, “Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop,” Opt. Lett. 40(19), 4500–4503 (2015).
[Crossref] [PubMed]

Huang, Y.

Huber, R.

Huttner, B.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

Iftimia, N.

Iida, D.

Jayaraman, V.

Jiang, S.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

John, D. D.

Jun, C.

Kakuma, S.

S. Kakuma, “Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time measurements of distance and radial velocity,” Opt. Rev. 24(1), 39–46 (2017).
[Crossref]

Kang, J. U.

Kassani, S. H.

Kaylor, B.

Kelly, B.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Khazaeinezhad, R.

Knabe, K.

Kreger, S.

Lambkin, P.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Lee, B. K.

Lee, H.-C.

Leitgeb, R. A.

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Leyva, V.

Lippok, N.

Liu, B.

Liu, G.

Liu, Q.

Liu, Z.

Lu, C.

Lu, Q.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Ma, C.

C. Ma, Q. Zhou, J. Qin, W. Xie, Y. Dong, and W. Hu, “Fast Spectrum Analysis for an OFDR Using the FFT and SCZT Combination Approach,” IEEE Photonics Technol. Lett. 28(6), 657–660 (2016).
[Crossref]

Manabe, T.

Mandridis, D.

Minneman, M. P.

Myllyla, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Nehmetallah, G.

Newbury, N. R.

Nguyen, D.

Nielson, T.

Njegovec, M.

O’Gorman, J.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Oberson, P.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

Oh, W.-Y.

Ohno, S.

Ozdur, I.

Ozharar, S.

Petty, C. C.

Phelan, R.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Piracha, M. U.

Potsaid, B.

Qin, J.

C. Ma, Q. Zhou, J. Qin, W. Xie, Y. Dong, and W. Hu, “Fast Spectrum Analysis for an OFDR Using the FFT and SCZT Combination Approach,” IEEE Photonics Technol. Lett. 28(6), 657–660 (2016).
[Crossref]

J. Qin, Q. Zhou, W. Xie, Y. Xu, S. Yu, Z. Liu, Y. Tong, Y. Dong, and W. Hu, “Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop,” Opt. Lett. 40(19), 4500–4503 (2015).
[Crossref] [PubMed]

Rakuljic, G.

Reibel, R. R.

Ribordy, G.

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Robertson, M. E.

Roos, P. A.

Roycroft, B.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Sarkar, I.

I. Sarkar and A. T. Fam, “The interlaced chirp Z transform,” Signal Process. 86(9), 2221–2232 (2006).
[Crossref]

Sattmann, H.

Satyan, N.

Shiloh, L.

Sinclair, L. C.

Smyth, F.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Soller, B. J.

Spiegelberg, C.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Swann, W. C.

Swanson, E.

Taira, K.

Tearney, G.

Toge, K.

Tong, Y.

Uribe-Patarroyo, N.

Vasilyev, A.

Villiger, M.

Wang, Z.

Wei, T.

Z. Chen, G. Hefferman, and T. Wei, “A Sweep Velocity-Controlled VCSEL Pulse Laser to Interrogate Sub-THz-Range Fiber Sensors,” IEEE Photonics Technol. Lett. 29(17), 1471–1474 (2017).
[Crossref]

Wojtkowski, M.

Wolfe, M.

Xie, W.

C. Ma, Q. Zhou, J. Qin, W. Xie, Y. Dong, and W. Hu, “Fast Spectrum Analysis for an OFDR Using the FFT and SCZT Combination Approach,” IEEE Photonics Technol. Lett. 28(6), 657–660 (2016).
[Crossref]

J. Qin, Q. Zhou, W. Xie, Y. Xu, S. Yu, Z. Liu, Y. Tong, Y. Dong, and W. Hu, “Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop,” Opt. Lett. 40(19), 4500–4503 (2015).
[Crossref] [PubMed]

Xu, D.

Xu, S.

Xu, Y.

Yariv, A.

Yilmaz, T.

Yu, S.

Yun, S.

Zabihian, B.

Zhang, W.

Zhou, Q.

C. Ma, Q. Zhou, J. Qin, W. Xie, Y. Dong, and W. Hu, “Fast Spectrum Analysis for an OFDR Using the FFT and SCZT Combination Approach,” IEEE Photonics Technol. Lett. 28(6), 657–660 (2016).
[Crossref]

J. Qin, Q. Zhou, W. Xie, Y. Xu, S. Yu, Z. Liu, Y. Tong, Y. Dong, and W. Hu, “Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop,” Opt. Lett. 40(19), 4500–4503 (2015).
[Crossref] [PubMed]

Zhou, Y.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (4)

P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, and N. Gisin, “Optical frequency domain reflectometry with a narrow linewidth fiber laser,” IEEE Photonics Technol. Lett. 12(7), 867–869 (2000).
[Crossref]

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Z. Chen, G. Hefferman, and T. Wei, “A Sweep Velocity-Controlled VCSEL Pulse Laser to Interrogate Sub-THz-Range Fiber Sensors,” IEEE Photonics Technol. Lett. 29(17), 1471–1474 (2017).
[Crossref]

C. Ma, Q. Zhou, J. Qin, W. Xie, Y. Dong, and W. Hu, “Fast Spectrum Analysis for an OFDR Using the FFT and SCZT Combination Approach,” IEEE Photonics Technol. Lett. 28(6), 657–660 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Opt. Express (15)

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
[Crossref] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[Crossref] [PubMed]

Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23(20), 25988–25995 (2015).
[Crossref] [PubMed]

M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
[Crossref] [PubMed]

D. Xu, Y. Huang, and J. U. Kang, “GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography,” Opt. Express 22(12), 14871–14884 (2014).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, J.-D. Deschênes, W. C. Swann, I. Coddington, and N. R. Newbury, “Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance,” Opt. Express 22(21), 24914–24928 (2014).
[Crossref] [PubMed]

C. Jun, M. Villiger, W.-Y. Oh, and B. E. Bouma, “All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging,” Opt. Express 22(21), 25805–25814 (2014).
[Crossref] [PubMed]

S. Ohno, D. Iida, K. Toge, and T. Manabe, “Long-range measurement of Rayleigh scatter signature beyond laser coherence length based on coherent optical frequency domain reflectometry,” Opt. Express 24(17), 19651–19660 (2016).
[Crossref] [PubMed]

C. Lu, G. Liu, B. Liu, F. Chen, and Y. Gan, “Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration,” Opt. Express 24(26), 30215–30224 (2016).
[Crossref] [PubMed]

T. DiLazaro and G. Nehmetallah, “Multi-terahertz frequency sweeps for high-resolution, frequency-modulated continuous wave ladar using a distributed feedback laser array,” Opt. Express 25(3), 2327–2340 (2017).
[Crossref]

S. H. Kassani, M. Villiger, N. Uribe-Patarroyo, C. Jun, R. Khazaeinezhad, N. Lippok, and B. E. Bouma, “Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging,” Opt. Express 25(7), 8255–8266 (2017).
[Crossref] [PubMed]

L. Shiloh and A. Eyal, “Sinusoidal frequency scan OFDR with fast processing algorithm for distributed acoustic sensing,” Opt. Express 25(16), 19205–19215 (2017).
[Crossref] [PubMed]

M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, and P. J. Delfyett, “Range resolved lidar for long distance ranging with sub-millimeter resolution,” Opt. Express 18(7), 7184–7189 (2010).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Rev. (1)

S. Kakuma, “Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time measurements of distance and radial velocity,” Opt. Rev. 24(1), 39–46 (2017).
[Crossref]

Optica (1)

Signal Process. (1)

I. Sarkar and A. T. Fam, “The interlaced chirp Z transform,” Signal Process. 86(9), 2221–2232 (2006).
[Crossref]

Other (2)

Z. Barber, J. R. Dahl, P. A. Roos, R. R. Reibel, N. Greenfield, F. Giorgetta, I. Coddington, and N. R. Newbury, “Ultra-broadband chirp linearity characterization with an optical frequency comb,” in CLEO: Science and Innovations, (2011), paper CWH4.

F. Amzajerdian, L. Petway, B. Barnes, G. Hines, D. Pierrottet, and G. Lockard, “Fiber-Based Coherent Doppler Lidar for Precision Landing on the Moon and Mars,” in Fiber Laser Applications (Optical Society of America, 2011), FWC1.

Supplementary Material (4)

NameDescription
» Visualization 1       Rotating surface map of a stamped medallion.
» Visualization 2       Single scan point cloud of a potted plant.
» Visualization 3       Rotating point cloud of a 6-foot ladder. (Raw data)
» Visualization 4       Raw 3D point cloud of a room with various objects. Maximum depth is 5.6m, 9.6 cubic meters shown. The points are shaded by the strength of the return (brighter is stronger).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Example combined measurement signal for n laser elements. The top axis is angular optical frequency, and the bottom axis is the sample number acquired. The registration error for the third DFB (ε3) is shown.
Fig. 2
Fig. 2 (a) Scanning system layout. DFB: Distributed feedback laser, ISO: Optical isolator, PD1: Balanced photodetector (PD) used for distance measurement, PD2/PD3: PDs used for the reference coarse and fine fiber Mach-Zehnder interferometers (MZI), PD4: PD used to track the absolute wavelength via a hydrogen cyanide (HCN) gas cell. The PDs had low-pass filters (not shown) to reduce out of band noise. The dotted line indicates the custom printed circuit board (PCB). A zero-crossing (ZC) circuit monitored PD3 was mixed with a clock reference (XRef) using a complex programmable logic device (CPLD). Semiconductor optical amplifier (SOA) and thermoelectric cooler (TEC) drivers locked the temperature and output power. The “zero-delay” point (r0) was set to 5 cm beyond the back mirror. µC: Teensy microcontroller, SSD: solid-state hard drive, PC: computer. (b) DFB array module. (c) Normalized output power over all elements.
Fig. 3
Fig. 3 DFB signature stitching details. (a) Reference traces for two adjacent DFBs. Bottom trace: HCN absorption peaks (inverted and band-pass filtered) used to estimate the first shift, εHCN. The grey trace is the original DFB 3 HCN trace before shifting, while the blue trace is after shifting the trace to the left by εHCN. This moves the peak to the estimated R15 location relative to R16. Middle trace (red): coarse MZI beat signature, Top trace: detail of the stitch point. After shifting the traces by εHCN, the remaining error (εD) is corrected via the dithering process. The dotted line is the trace after shifting by εHCN, which still has a small phase error. The red line is the phase-matched version after dithering by εD. (b) Histogram of the required sample dither for 11,000 stitches. (c) The sampled traces (blue boxes) are collected from the 12 DFB elements, then stitched and processed (green boxes) to generate the final image.
Fig. 4
Fig. 4 PSFs for 12 DFBs. (a) Final 220-point PSFs up to 6 m. FFTs of measurements using a mirror placed at (b) 0.5 m, (c) 1.5 m, (d) 2 m, and (e) 3 m. The PSFs before (dotted red line) and after (solid black line) the dispersion correction is applied are shown. Note: For smoother visual plots, the data was zero-padded to 222 points first before the FFTs shown in (b) – (d).
Fig. 5
Fig. 5 Distortion visualization. (a) Post-objective, two-axis, two-mirror scanning. The red line indicates the measured range. The optical scan angle is twice the mechanical angle. 3D scan of a quarter as viewed along its edge, (b) before and (c) after distortion and tilt correction.
Fig. 6
Fig. 6 (a) Eight gauge blocks placed for scanning at 4.9 m. The block heights are labeled above in mm. (b) Monolithic step block placed at 5.18 m. (c) Close-up of individual measurements taken on the 3 mm gauge block. (d) Single lateral scan of a 0.1” step steel block.
Fig. 7
Fig. 7 Remote 2D tomographic images. The inset number indicates the amount of DFB elements used. Axial resolution per number of DFBs: 1 = 294.2 µm, 2 = 155.3 µm, 4 = 79.0 µm, 8 = 40.6 µm, 12 = 27.1 µm. Yellow bar = 5 mm. (a-f) Egg crate packaging foam located at 5.1 m. The red box indicates a 10 x 5 mm region. (g) Polyethylene packaging slab at 5.1 m, (h-j) 2” laminated medallion at 1 m. Reference photographs: (k) egg crate foam, (l) polyethylene slab, (m) laminated medallion.
Fig. 8
Fig. 8 3D images over depths ranging from less than a millimeter to meters. (a) Surface map of a (b) quarter at 25 cm, 400 x 420 pixels. (c) Surface map of a (d) 15 cm diameter medallion at 1.1 m, 700 x 740 pixels. (e) Volume depth map of a (f) potted plant placed at 2.5 m, 408 x 490 pixels. Volume shown = 33.5l x 30d x 40h cm. (g) Reflectivity profile of the plant with a (h) rotated view. (i) 3D mesh of a (j) six-foot ladder starting at 2.5 m, 408 x 370 pixels. The red arrows indicate the illumination direction. (k) 3D point cloud of a (l) room with a variety of objects, 884 x 900 pixels. Volume shown = 2.4l x 1.6d x 2.5h m (9.6m3).
Fig. 9
Fig. 9 Detailed view of the room scan, colored by depth and shaded by signal strength.

Tables (1)

Tables Icon

Table 1 Gauge Block Height Measurements.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V(t)=Arect( t t 0 T/2 T )cos[ ατ(tτ/2)+ ω 0 τ ],
V(ω)=Arect( ω ω 0 b/2 b )cos[ τ(ωατ/2) ].
V(ω)= n=1 N A n rect( ω ω n1 b n /2 b n )cos[ τ(ωατ/2) ].
V(s)= n=1 N A n rect( s s n1 M n /2 M n ) cos[Δ ω s τ(s ε n )+ ϕ n1 ],
x m = r m sin ϕ m ,
y m =( r m cos ϕ m Δr)sin θ m ,
z m =( r m cos ϕ m Δr)cos θ m ,

Metrics