Abstract

We report the first demonstration of a uni-traveling carrier photodiode (UTC-PD) used as a 5 Gbps wireless receiver. In this experiment, a 35.1 GHz carrier was electrically modulated with 5 Gbps non-return with zero on-off keying (NRZ–OOK) data and transmitted wirelessly over a distance of 1.3 m. At the receiver, a UTC-PD was used as an optically pumped mixer (OPM) to down-convert the received radio frequency (RF) signal to an intermediate frequency (IF) of 11.7 GHz, before it was down-converted to the baseband using an electronic mixer. The recovered data show a clear eye diagram, and a bit error rate (BER) of less than 10−8 was measured. The conversion loss of the UTC-PD optoelectronic mixer has been measured at 22 dB. The frequency of the local oscillator (LO) used for the UTC-PD is defined by the frequency spacing between the two optical tones, which can be broadly tuneable offering the frequency agility of this photodiode-based receiver.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes

Efthymios Rouvalis, Martyn J. Fice, Cyril C. Renaud, and Alwyn J. Seeds
Opt. Express 19(3) 2079-2084 (2011)

Traveling-wave Uni-Traveling Carrier Photodiodes for continuous wave THz generation

Efthymios Rouvalis, Cyril C. Renaud, David G. Moodie, Michael J. Robertson, and Alwyn J. Seeds
Opt. Express 18(11) 11105-11110 (2010)

High performance waveguide uni-travelling carrier photodiode grown by solid source molecular beam epitaxy

Xiaoli Lin, Michele Natrella, James Seddon, Chris Graham, Cyril C. Renaud, Mingchu Tang, Jiang Wu, Huiyun Liu, and Alwyn J. Seeds
Opt. Express 27(25) 37065-37086 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Ng’oma, “Radio-over-fiber techniques for millimeter wave wireless applications,” in IEEE International Topical Meeting on Microwave Photonics (MWP 2015), pp. 1–4.
    [Crossref]
  2. Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag. 49(6), 101–107 (2011).
    [Crossref]
  3. A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “TeraHertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
    [Crossref]
  4. H.-W. Hubers, “Terahertz heterodyne receivers,” IEEE J. Sel. Top. Quantum Electron. 14(2), 378–391 (2008).
    [Crossref]
  5. J.-H. Son, Terahertz Biomedical Science and Technology (CRC/Taylor & Francis Group, 2014), Chap. 5.
  6. S. Khanal, T. Kiuru, M. Hoefle, J. Montero, O. Cojocari, J. Mallat, P. Piironen, and A. V. Räisänen, “Characterisation of low-barrier Schottky diodes for millimeter wave mixer applications,” in Global Symposium on Millimeter Waves (GSMM 2016), pp. 3–6.
    [Crossref]
  7. A. Navarrini, A. L. Fontana, D. Maier, P. Serres, and D. Billon-Pierron, “Superconductor-insulator-superconductor mixers for the 2 mm band (129-174 GHz),” J. Infrared Millim. Terahertz Waves 35(6-7), 536–562 (2014).
    [Crossref]
  8. E. Novoselov and S. Cherednichenko, “Broadband MgB2 hot-electron bolometer THz mixers operating up to 20K,” IEEE Trans. Appl. Supercond. 27(4), 1 (2017).
  9. G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis, “THz photomixer with a 40nm-wide nanoelectrode gap on low-temperature grown GaAs,” Proc. SPIE 8923, 892322 (2013).
    [Crossref]
  10. E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Millimeter-wave optoelectronic mixers based on uni-traveling carrier photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 686–691 (2012).
    [Crossref]
  11. M. Fice, E. Rouvalis, L. Ponnampalam, C. Renaud, and A. Seeds, “Telecommunications technology-based terahertz sources,” Electron. Lett. 46(26), 28–31 (2010).
    [Crossref]
  12. C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
    [Crossref]
  13. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
    [Crossref]
  14. C. C. Renaud, M. J. Fice, L. Ponnampalam, M. Natrella, C. Graham, and A. J. Seeds, “Uni-travelling carrier photodetectors as THz detectors and emitters,” Proc. SPIE 9370, 93700B (2015).
  15. E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes,” Opt. Express 19(3), 2079–2084 (2011).
    [Crossref] [PubMed]
  16. F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
    [Crossref]
  17. 4G Americas, “5G spectrum recommendations” (2015).
  18. M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
    [Crossref] [PubMed]
  19. F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, C. Renaud, G. Carpintero, and M. Alouini, “Wireless data transmission and frequency stabilization with a millimeter-wave photonic integrated circuit,” in IEEE International Topical Meeting on Microwave Photonics (MWP 2015), pp. 1–4.

2017 (1)

E. Novoselov and S. Cherednichenko, “Broadband MgB2 hot-electron bolometer THz mixers operating up to 20K,” IEEE Trans. Appl. Supercond. 27(4), 1 (2017).

2015 (2)

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “TeraHertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
[Crossref]

C. C. Renaud, M. J. Fice, L. Ponnampalam, M. Natrella, C. Graham, and A. J. Seeds, “Uni-travelling carrier photodetectors as THz detectors and emitters,” Proc. SPIE 9370, 93700B (2015).

2014 (2)

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

A. Navarrini, A. L. Fontana, D. Maier, P. Serres, and D. Billon-Pierron, “Superconductor-insulator-superconductor mixers for the 2 mm band (129-174 GHz),” J. Infrared Millim. Terahertz Waves 35(6-7), 536–562 (2014).
[Crossref]

2013 (1)

G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis, “THz photomixer with a 40nm-wide nanoelectrode gap on low-temperature grown GaAs,” Proc. SPIE 8923, 892322 (2013).
[Crossref]

2012 (2)

E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Millimeter-wave optoelectronic mixers based on uni-traveling carrier photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 686–691 (2012).
[Crossref]

M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

M. Fice, E. Rouvalis, L. Ponnampalam, C. Renaud, and A. Seeds, “Telecommunications technology-based terahertz sources,” Electron. Lett. 46(26), 28–31 (2010).
[Crossref]

2008 (1)

H.-W. Hubers, “Terahertz heterodyne receivers,” IEEE J. Sel. Top. Quantum Electron. 14(2), 378–391 (2008).
[Crossref]

2006 (1)

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

2004 (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

Billon-Pierron, D.

A. Navarrini, A. L. Fontana, D. Maier, P. Serres, and D. Billon-Pierron, “Superconductor-insulator-superconductor mixers for the 2 mm band (129-174 GHz),” J. Infrared Millim. Terahertz Waves 35(6-7), 536–562 (2014).
[Crossref]

Cannard, P. J.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Carpintero, G.

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Cherednichenko, S.

E. Novoselov and S. Cherednichenko, “Broadband MgB2 hot-electron bolometer THz mixers operating up to 20K,” IEEE Trans. Appl. Supercond. 27(4), 1 (2017).

Chtioui, M.

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Cojocari, O.

S. Khanal, T. Kiuru, M. Hoefle, J. Montero, O. Cojocari, J. Mallat, P. Piironen, and A. V. Räisänen, “Characterisation of low-barrier Schottky diodes for millimeter wave mixer applications,” in Global Symposium on Millimeter Waves (GSMM 2016), pp. 3–6.
[Crossref]

Constable, E.

G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis, “THz photomixer with a 40nm-wide nanoelectrode gap on low-temperature grown GaAs,” Proc. SPIE 8923, 892322 (2013).
[Crossref]

Dijk, F. V.

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Fice, M.

M. Fice, E. Rouvalis, L. Ponnampalam, C. Renaud, and A. Seeds, “Telecommunications technology-based terahertz sources,” Electron. Lett. 46(26), 28–31 (2010).
[Crossref]

Fice, M. J.

C. C. Renaud, M. J. Fice, L. Ponnampalam, M. Natrella, C. Graham, and A. J. Seeds, “Uni-travelling carrier photodetectors as THz detectors and emitters,” Proc. SPIE 9370, 93700B (2015).

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “TeraHertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
[Crossref]

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Millimeter-wave optoelectronic mixers based on uni-traveling carrier photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 686–691 (2012).
[Crossref]

E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes,” Opt. Express 19(3), 2079–2084 (2011).
[Crossref] [PubMed]

Firth, R.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Fontana, A. L.

A. Navarrini, A. L. Fontana, D. Maier, P. Serres, and D. Billon-Pierron, “Superconductor-insulator-superconductor mixers for the 2 mm band (129-174 GHz),” J. Infrared Millim. Terahertz Waves 35(6-7), 536–562 (2014).
[Crossref]

Furuta, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

Gervinskas, G.

G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis, “THz photomixer with a 40nm-wide nanoelectrode gap on low-temperature grown GaAs,” Proc. SPIE 8923, 892322 (2013).
[Crossref]

Graham, C.

C. C. Renaud, M. J. Fice, L. Ponnampalam, M. Natrella, C. Graham, and A. J. Seeds, “Uni-travelling carrier photodetectors as THz detectors and emitters,” Proc. SPIE 9370, 93700B (2015).

Hoefle, M.

S. Khanal, T. Kiuru, M. Hoefle, J. Montero, O. Cojocari, J. Mallat, P. Piironen, and A. V. Räisänen, “Characterisation of low-barrier Schottky diodes for millimeter wave mixer applications,” in Global Symposium on Millimeter Waves (GSMM 2016), pp. 3–6.
[Crossref]

Hubers, H.-W.

H.-W. Hubers, “Terahertz heterodyne receivers,” IEEE J. Sel. Top. Quantum Electron. 14(2), 378–391 (2008).
[Crossref]

Ishibashi, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

Ito, H.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

Jimenez, A.

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Juodkazis, S.

G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis, “THz photomixer with a 40nm-wide nanoelectrode gap on low-temperature grown GaAs,” Proc. SPIE 8923, 892322 (2013).
[Crossref]

Kervella, G.

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Khan, F.

Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag. 49(6), 101–107 (2011).
[Crossref]

Khanal, S.

S. Khanal, T. Kiuru, M. Hoefle, J. Montero, O. Cojocari, J. Mallat, P. Piironen, and A. V. Räisänen, “Characterisation of low-barrier Schottky diodes for millimeter wave mixer applications,” in Global Symposium on Millimeter Waves (GSMM 2016), pp. 3–6.
[Crossref]

Kiuru, T.

S. Khanal, T. Kiuru, M. Hoefle, J. Montero, O. Cojocari, J. Mallat, P. Piironen, and A. V. Räisänen, “Characterisation of low-barrier Schottky diodes for millimeter wave mixer applications,” in Global Symposium on Millimeter Waves (GSMM 2016), pp. 3–6.
[Crossref]

Kodama, S.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

Krotkus, A.

G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis, “THz photomixer with a 40nm-wide nanoelectrode gap on low-temperature grown GaAs,” Proc. SPIE 8923, 892322 (2013).
[Crossref]

Lamponi, M.

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Lelarge, F.

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Lewis, R. A.

G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis, “THz photomixer with a 40nm-wide nanoelectrode gap on low-temperature grown GaAs,” Proc. SPIE 8923, 892322 (2013).
[Crossref]

Liu, C.-P.

Liu, H.

Maier, D.

A. Navarrini, A. L. Fontana, D. Maier, P. Serres, and D. Billon-Pierron, “Superconductor-insulator-superconductor mixers for the 2 mm band (129-174 GHz),” J. Infrared Millim. Terahertz Waves 35(6-7), 536–562 (2014).
[Crossref]

Mallat, J.

S. Khanal, T. Kiuru, M. Hoefle, J. Montero, O. Cojocari, J. Mallat, P. Piironen, and A. V. Räisänen, “Characterisation of low-barrier Schottky diodes for millimeter wave mixer applications,” in Global Symposium on Millimeter Waves (GSMM 2016), pp. 3–6.
[Crossref]

Molis, G.

G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis, “THz photomixer with a 40nm-wide nanoelectrode gap on low-temperature grown GaAs,” Proc. SPIE 8923, 892322 (2013).
[Crossref]

Montero, J.

S. Khanal, T. Kiuru, M. Hoefle, J. Montero, O. Cojocari, J. Mallat, P. Piironen, and A. V. Räisänen, “Characterisation of low-barrier Schottky diodes for millimeter wave mixer applications,” in Global Symposium on Millimeter Waves (GSMM 2016), pp. 3–6.
[Crossref]

Moore, R.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Muramoto, Y.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

Nagatsuma, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

Natrella, M.

C. C. Renaud, M. J. Fice, L. Ponnampalam, M. Natrella, C. Graham, and A. J. Seeds, “Uni-travelling carrier photodetectors as THz detectors and emitters,” Proc. SPIE 9370, 93700B (2015).

M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
[Crossref] [PubMed]

Navarrini, A.

A. Navarrini, A. L. Fontana, D. Maier, P. Serres, and D. Billon-Pierron, “Superconductor-insulator-superconductor mixers for the 2 mm band (129-174 GHz),” J. Infrared Millim. Terahertz Waves 35(6-7), 536–562 (2014).
[Crossref]

Novoselov, E.

E. Novoselov and S. Cherednichenko, “Broadband MgB2 hot-electron bolometer THz mixers operating up to 20K,” IEEE Trans. Appl. Supercond. 27(4), 1 (2017).

Pi, Z.

Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag. 49(6), 101–107 (2011).
[Crossref]

Piironen, P.

S. Khanal, T. Kiuru, M. Hoefle, J. Montero, O. Cojocari, J. Mallat, P. Piironen, and A. V. Räisänen, “Characterisation of low-barrier Schottky diodes for millimeter wave mixer applications,” in Global Symposium on Millimeter Waves (GSMM 2016), pp. 3–6.
[Crossref]

Ponnampalam, L.

C. C. Renaud, M. J. Fice, L. Ponnampalam, M. Natrella, C. Graham, and A. J. Seeds, “Uni-travelling carrier photodetectors as THz detectors and emitters,” Proc. SPIE 9370, 93700B (2015).

M. Fice, E. Rouvalis, L. Ponnampalam, C. Renaud, and A. Seeds, “Telecommunications technology-based terahertz sources,” Electron. Lett. 46(26), 28–31 (2010).
[Crossref]

Räisänen, A. V.

S. Khanal, T. Kiuru, M. Hoefle, J. Montero, O. Cojocari, J. Mallat, P. Piironen, and A. V. Räisänen, “Characterisation of low-barrier Schottky diodes for millimeter wave mixer applications,” in Global Symposium on Millimeter Waves (GSMM 2016), pp. 3–6.
[Crossref]

Renaud, C.

M. Fice, E. Rouvalis, L. Ponnampalam, C. Renaud, and A. Seeds, “Telecommunications technology-based terahertz sources,” Electron. Lett. 46(26), 28–31 (2010).
[Crossref]

Renaud, C. C.

C. C. Renaud, M. J. Fice, L. Ponnampalam, M. Natrella, C. Graham, and A. J. Seeds, “Uni-travelling carrier photodetectors as THz detectors and emitters,” Proc. SPIE 9370, 93700B (2015).

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “TeraHertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
[Crossref]

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Millimeter-wave optoelectronic mixers based on uni-traveling carrier photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 686–691 (2012).
[Crossref]

M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
[Crossref] [PubMed]

E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes,” Opt. Express 19(3), 2079–2084 (2011).
[Crossref] [PubMed]

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Robert, Y.

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Robertson, M.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Rogers, D.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Rouvalis, E.

E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Millimeter-wave optoelectronic mixers based on uni-traveling carrier photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 686–691 (2012).
[Crossref]

M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
[Crossref] [PubMed]

E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes,” Opt. Express 19(3), 2079–2084 (2011).
[Crossref] [PubMed]

M. Fice, E. Rouvalis, L. Ponnampalam, C. Renaud, and A. Seeds, “Telecommunications technology-based terahertz sources,” Electron. Lett. 46(26), 28–31 (2010).
[Crossref]

Seeds, A.

M. Fice, E. Rouvalis, L. Ponnampalam, C. Renaud, and A. Seeds, “Telecommunications technology-based terahertz sources,” Electron. Lett. 46(26), 28–31 (2010).
[Crossref]

Seeds, A. J.

C. C. Renaud, M. J. Fice, L. Ponnampalam, M. Natrella, C. Graham, and A. J. Seeds, “Uni-travelling carrier photodetectors as THz detectors and emitters,” Proc. SPIE 9370, 93700B (2015).

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “TeraHertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
[Crossref]

M. Natrella, E. Rouvalis, C.-P. Liu, H. Liu, C. C. Renaud, and A. J. Seeds, “InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy,” Opt. Express 20(17), 19279–19288 (2012).
[Crossref] [PubMed]

E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Millimeter-wave optoelectronic mixers based on uni-traveling carrier photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 686–691 (2012).
[Crossref]

E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes,” Opt. Express 19(3), 2079–2084 (2011).
[Crossref] [PubMed]

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

Seniutinas, G.

G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis, “THz photomixer with a 40nm-wide nanoelectrode gap on low-temperature grown GaAs,” Proc. SPIE 8923, 892322 (2013).
[Crossref]

Serres, P.

A. Navarrini, A. L. Fontana, D. Maier, P. Serres, and D. Billon-Pierron, “Superconductor-insulator-superconductor mixers for the 2 mm band (129-174 GHz),” J. Infrared Millim. Terahertz Waves 35(6-7), 536–562 (2014).
[Crossref]

Shams, H.

Valušis, G.

G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis, “THz photomixer with a 40nm-wide nanoelectrode gap on low-temperature grown GaAs,” Proc. SPIE 8923, 892322 (2013).
[Crossref]

Vinet, E.

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Electron. Lett. (1)

M. Fice, E. Rouvalis, L. Ponnampalam, C. Renaud, and A. Seeds, “Telecommunications technology-based terahertz sources,” Electron. Lett. 46(26), 28–31 (2010).
[Crossref]

IEEE Commun. Mag. (1)

Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag. 49(6), 101–107 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

H.-W. Hubers, “Terahertz heterodyne receivers,” IEEE J. Sel. Top. Quantum Electron. 14(2), 378–391 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

E. Novoselov and S. Cherednichenko, “Broadband MgB2 hot-electron bolometer THz mixers operating up to 20K,” IEEE Trans. Appl. Supercond. 27(4), 1 (2017).

IEEE Trans. Microw. Theory Tech. (1)

E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Millimeter-wave optoelectronic mixers based on uni-traveling carrier photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 686–691 (2012).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

A. Navarrini, A. L. Fontana, D. Maier, P. Serres, and D. Billon-Pierron, “Superconductor-insulator-superconductor mixers for the 2 mm band (129-174 GHz),” J. Infrared Millim. Terahertz Waves 35(6-7), 536–562 (2014).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Proc. SPIE (3)

C. C. Renaud, M. J. Fice, L. Ponnampalam, M. Natrella, C. Graham, and A. J. Seeds, “Uni-travelling carrier photodetectors as THz detectors and emitters,” Proc. SPIE 9370, 93700B (2015).

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 61940C (2006).
[Crossref]

G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R. A. Lewis, and S. Juodkazis, “THz photomixer with a 40nm-wide nanoelectrode gap on low-temperature grown GaAs,” Proc. SPIE 8923, 892322 (2013).
[Crossref]

Other (5)

J.-H. Son, Terahertz Biomedical Science and Technology (CRC/Taylor & Francis Group, 2014), Chap. 5.

S. Khanal, T. Kiuru, M. Hoefle, J. Montero, O. Cojocari, J. Mallat, P. Piironen, and A. V. Räisänen, “Characterisation of low-barrier Schottky diodes for millimeter wave mixer applications,” in Global Symposium on Millimeter Waves (GSMM 2016), pp. 3–6.
[Crossref]

A. Ng’oma, “Radio-over-fiber techniques for millimeter wave wireless applications,” in IEEE International Topical Meeting on Microwave Photonics (MWP 2015), pp. 1–4.
[Crossref]

4G Americas, “5G spectrum recommendations” (2015).

F. V. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, C. Renaud, G. Carpintero, and M. Alouini, “Wireless data transmission and frequency stabilization with a millimeter-wave photonic integrated circuit,” in IEEE International Topical Meeting on Microwave Photonics (MWP 2015), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 I-V characteristic curve of the UTC-PD.
Fig. 2
Fig. 2 Setup for optical heterodyning (without RF) and optoelectronic mixing (with RF) in UTC-PD.
Fig. 3
Fig. 3 UTC-PD bandwidth measurement.
Fig. 4
Fig. 4 UTC-PD’s heterodyne and higher order harmonics at 18 dBm optical power and −4 V bias (RBW = 300 kHz, VBW = 30 kHz).
Fig. 5
Fig. 5 UTC-PD’s conversion loss versus bias voltage for different levels of optical power.
Fig. 6
Fig. 6 UTC-PD’s conversion loss versus optical power.
Fig. 7
Fig. 7 Electrical spectrum showing RF, heterodyne, and IF signals (RBW = 300 kHz, VBW = 30 kHz).
Fig. 8
Fig. 8 Block diagram of the wireless transmission experiment.
Fig. 9
Fig. 9 BER performance of the system as a function of transmitted signal power. The inset shows the eye diagram of the received signal after down-conversion to the baseband.

Metrics