Abstract

We demonstrate time-resolved tomography with 200 fs resolution for the three-dimensional analysis of the non-linear dynamics of ultrafast laser-matter interaction inside the volume of transparent materials. We reconstruct as an example the three-dimensional spatial distribution of the transient extinction coefficient induced by focusing higher-order Bessel-Gaussian-beams into Gorilla glass. This approach can be employed to gaseous, liquid and transparent solid state matter which interact with laser light.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation on reconstruction methods applied to 3D terahertz computed tomography

B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham
Opt. Express 19(6) 5105-5117 (2011)

Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser

Daniel Grossmann, Martin Reininghaus, Christian Kalupka, Malte Kumkar, and Reinhart Poprawe
Opt. Express 24(20) 23221-23231 (2016)

Sinogram recovery with the method of convex projections for limited-data reconstruction in computed tomography

Hiroyuki Kudo and Tsuneo Saito
J. Opt. Soc. Am. A 8(7) 1148-1160 (1991)

References

  • View by:
  • |
  • |
  • |

  1. J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
    [Crossref] [PubMed]
  2. M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
    [Crossref]
  3. Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
    [Crossref]
  4. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
    [Crossref]
  5. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002).
    [Crossref] [PubMed]
  6. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
    [Crossref] [PubMed]
  7. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics 2, 219–225 (2008).
    [Crossref]
  8. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
    [Crossref]
  9. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
    [Crossref]
  10. S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
    [Crossref]
  11. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
    [Crossref]
  12. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
    [Crossref]
  13. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
    [Crossref]
  14. Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Phys. Usp. 8, 650 (1966).
    [Crossref]
  15. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  16. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
    [Crossref] [PubMed]
  17. S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
    [Crossref]
  18. T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
    [Crossref]
  19. S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
    [Crossref]
  20. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
    [Crossref] [PubMed]
  21. J. Dudutis, P. GeČys, and G. RaČiukaitis, “Non-ideal axicon-generated bessel beam application for intra-volume glass modification,” Opt. Express 24, 28433–28443 (2016).
    [Crossref] [PubMed]
  22. R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
    [Crossref] [PubMed]
  23. C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
    [Crossref]
  24. C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
    [Crossref] [PubMed]
  25. Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
    [Crossref]
  26. S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
    [Crossref]
  27. J. Arlt and K. Dholakia, “Generation of high-order bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
    [Crossref]
  28. F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
    [Crossref]
  29. D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).
  30. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  31. J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5581–5587 (2006).
    [Crossref] [PubMed]
  32. R. Vasilyeu, A. Dudley, N. Khilo, and A. Forbes, “Generating superpositions of higher–order bessel beams,” Opt. Express 17, 23389–23395 (2009).
    [Crossref]
  33. M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
    [Crossref]
  34. D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
    [Crossref] [PubMed]
  35. A. Michalowski, Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen (Herbert Utz Verlag, 2014).
  36. D. A. Green, “A colour scheme for the display of astronomical intensity images,” Bull. Astr. Soc. India 39, 289–295 (2011).
  37. W. Singer, M. Totzeck, and H. Gross, Handbook of optical systems, physical image formation, vol. 2 (John Wiley & Sons, 2006).
  38. D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36, 1766–1775 (1997).
    [Crossref] [PubMed]
  39. H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
    [Crossref]

2017 (1)

2016 (4)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref] [PubMed]

J. Dudutis, P. GeČys, and G. RaČiukaitis, “Non-ideal axicon-generated bessel beam application for intra-volume glass modification,” Opt. Express 24, 28433–28443 (2016).
[Crossref] [PubMed]

2015 (2)

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

2014 (1)

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

2013 (2)

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

2012 (1)

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

2011 (2)

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

D. A. Green, “A colour scheme for the display of astronomical intensity images,” Bull. Astr. Soc. India 39, 289–295 (2011).

2010 (3)

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

2009 (1)

2008 (2)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics 2, 219–225 (2008).
[Crossref]

2007 (2)

2006 (5)

J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic bessel beams using a compensated spatial light modulator,” Opt. Express 14, 5581–5587 (2006).
[Crossref] [PubMed]

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[Crossref]

2005 (1)

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

2004 (2)

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

2003 (1)

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

2002 (2)

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002).
[Crossref] [PubMed]

2000 (1)

J. Arlt and K. Dholakia, “Generation of high-order bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

1997 (1)

1966 (1)

Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Phys. Usp. 8, 650 (1966).
[Crossref]

Akturk, S.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

André, Y.-B.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Andrews, M.

Anisimov, S.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Arlt, J.

J. Arlt and K. Dholakia, “Generation of high-order bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

Arnold, C. L.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Ashkenasi, D.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

Bergner, K.

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Bhuyan, M.

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Biggs, D. S. C.

Bonanomi, S.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

Bourayou, R.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Bulgakova, N.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Burakov, I.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Chen, Q.-D.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Cheng, W.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Chin, S.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Christodoulides, D. N.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Couairon, A.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Courvoisier, F.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref] [PubMed]

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Daigle, J.-F.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Dholakia, K.

J. Arlt and K. Dholakia, “Generation of high-order bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

Dudley, A.

Dudley, J.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref] [PubMed]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Dudley, J. M.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Dudutis, J.

Esposito, E.

Fan, C.

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Flamm, D.

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Forbes, A.

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Frey, S.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Furfaro, L.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref] [PubMed]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Gailevicius, D.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Gamaly, E. G.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics 2, 219–225 (2008).
[Crossref]

GeCys, P.

Gibson, G. M.

Girkin, J. M.

Giust, R.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref] [PubMed]

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Glezer, E. N.

Gord, J. R.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

Green, D. A.

D. A. Green, “A colour scheme for the display of astronomical intensity images,” Bull. Astr. Soc. India 39, 289–295 (2011).

Gross, H.

W. Singer, M. Totzeck, and H. Gross, Handbook of optical systems, physical image formation, vol. 2 (John Wiley & Sons, 2006).

Grossmann, D.

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref] [PubMed]

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Guizard, S.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Hertel, I.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

Hirao, K.

Hosseini, S.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Hsu, P. S.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

Husakou, A.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Itina, T.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Itoh, K.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

Jacquot, M.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref] [PubMed]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Jedrkiewicz, O.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Jonavicius, T.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Jukna, V.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Juodkazis, S.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Kaiser, M.

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Kalupka, C.

Kasparian, J.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Khilo, N.

Kim, A. M.-T.

Kleiner, J.

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Kolesik, M.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Kulatilaka, W. D.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

Kumkar, M.

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref] [PubMed]

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Lacourt, P.

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Lacourt, P.-A.

Leach, J.

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Luo, Q.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Mao, S.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Mao, X.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Martin, P.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Matsumoto, M.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

Mauclair, C.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics 2, 219–225 (2008).
[Crossref]

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002).
[Crossref] [PubMed]

McConnell, G.

Méjean, G.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Mermillod-Blondin, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Meyer, R.

Michalowski, A.

A. Michalowski, Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen (Herbert Utz Verlag, 2014).

Milián, C.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Mills, M. S.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Miri, M.-A.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Miura, K.

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Moloney, J. V.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Mysyrowicz, A.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Nishimura, N.

Nolte, S.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

Ouadghiri-Idrissi, I.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Ozeki, Y.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

Padgett, M. J.

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Petite, G.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Polynkin, P.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Poprawe, R.

Qiao, C.

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Quere, F.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

RaCiukaitis, G.

Raizer, Y. P.

Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Phys. Usp. 8, 650 (1966).
[Crossref]

Rapp, L.

Reininghaus, M.

Rekštyte, S.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Rethfeld, B.

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[Crossref]

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Rodríguez, M.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Rosenfeld, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Roy, S.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

Russo, R.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Safioui, J.

Sakakura, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
[Crossref] [PubMed]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

Salmon, E.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Salut, R.

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Sauerbrey, R.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196–203 (2002).
[Crossref] [PubMed]

Scheller, M.

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Sharifi, M.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Shimotsuma, Y.

Singer, W.

W. Singer, M. Totzeck, and H. Gross, Handbook of optical systems, physical image formation, vol. 2 (John Wiley & Sons, 2006).

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Sokolowski-Tinten, K.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Stauffer, H. U.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

Stoian, R.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Sun, H.-B.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Sundaram, S.

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Terazima, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15, 5674–5686 (2007).
[Crossref] [PubMed]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

Théberge, F.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Totzeck, M.

W. Singer, M. Totzeck, and H. Gross, Handbook of optical systems, physical image formation, vol. 2 (John Wiley & Sons, 2006).

Trapani, P. Di.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Vasilyeu, R.

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Von Der Linde, D.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Wang, H.

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

Wille, H.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Winkler, S.

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

Wolf, J.-P.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Wöste, L.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Wright, A. J.

Xia, H.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Xie, C.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Xu, H.

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Yoshino, T.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

Yu, J.

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Zhang, J.

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Zhang, P.

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Zhang, Y.-L.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Adv. Opt. Mater. (1)

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale precision of 3d polymerization via polarization control,” Adv. Opt. Mater. 4, 1209–1214 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (4)

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

S. Winkler, I. Burakov, R. Stoian, N. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006).
[Crossref]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79, 767–769 (2004).
[Crossref]

Appl. Phys. B (1)

Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[Crossref]

Appl. Phys. Lett. (2)

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved h 2 q-branch raman coherence lifetimes using time-resolved picosecond coherent anti-stokes raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[Crossref]

M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Bull. Astr. Soc. India (1)

D. A. Green, “A colour scheme for the display of astronomical intensity images,” Bull. Astr. Soc. India 39, 289–295 (2011).

J. Phys. B (1)

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di. Trapani, “Nonlinear bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “In situ micro-raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass,” Jpn. J. Appl. Phys. 51, 102403 (2012).
[Crossref]

Light Sci. Appl. (1)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

MRS Bull (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull 31, 620–625 (2006).
[Crossref]

Nano Today (1)

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3d nanofabrication by femtosecond laser direct writing,” Nano Today 5, 435–448 (2010).
[Crossref]

Nat. Mater. (1)

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Nat. photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. photonics 2, 219–225 (2008).
[Crossref]

M. Scheller, M. S. Mills, M.-A. Miri, W. Cheng, J. V. Moloney, M. Kolesik, P. Polynkin, and D. N. Christodoulides, “Externally refuelled optical filaments,” Nat. Photonics 8, 297–301 (2014).
[Crossref]

Opt. Commun. (2)

J. Arlt and K. Dholakia, “Generation of high-order bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

H. Wang, C. Fan, P. Zhang, J. Zhang, and C. Qiao, “Extending mechanism of femtosecond filamentation by double coaxial beams,” Opt. Commun. 305, 48–52 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. B (2)

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[Crossref]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[Crossref]

Phys. Rev. Lett. (1)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref] [PubMed]

Phys. Usp. (1)

Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Phys. Usp. 8, 650 (1966).
[Crossref]

Rev. Sci. Instrum. (1)

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Science (1)

J. Kasparian, M. Rodríguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref] [PubMed]

Other (4)

A. Michalowski, Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen (Herbert Utz Verlag, 2014).

D. Flamm, D. Grossmann, M. Kaiser, J. Kleiner, M. Kumkar, K. Bergner, and S. Nolte, “Tuning the energy deposition of ultrashort pulses inside transparent materials for laser cutting applications,” in “LIM – Lasers in Manufacturing Conference,” (2015).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

W. Singer, M. Totzeck, and H. Gross, Handbook of optical systems, physical image formation, vol. 2 (John Wiley & Sons, 2006).

Supplementary Material (4)

NameDescription
» Visualization 1       The complete reconstruction of a first-order petal-like Bessel- Gaussian beam as "flight" through presentation.
» Visualization 2       Isosurface representation of the reconstructed extinction distribution caused by focusing the first-order petal-like Bessel-Gaussian beam into the sample. The dyed surfaces represent five extinction thresholds.
» Visualization 3       Isosurface representation of the reconstructed extinction distribution caused by focusing the third-order petal-like Bessel-Gaussian beam into the sample. The dyed surfaces represent five extinction thresholds.
» Visualization 4       Isosurface representation of the reconstructed extinction distribution caused by focusing the pure third-order Bessel-Gaussian beam into the sample. The dyed surfaces represent five extinction thresholds.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the experimental setup for time-resolved tomographic microscopy. Pulses of 7.5 ps duration at 1026 nm serve as pump whereas pulses of 200 fs duration at 513 nm are used to probe the beam shaped focal region inside the glass volume spatially and temporally. The SLM-based beam shaping unit generates Bessel-Gaussian-beams from the pump-source and ensures appropriate beam orientation.
Fig. 2
Fig. 2 Central details of SLM phase masks arg [T(x, y)] to generate petal-like Bessel-Gaussian beams of first-order, lm = [−1, 1] (a), first-order rotated by θ = π/4 (b) and third-order lm = [−3, 3] (c) as well as the pure Bessel-Gaussian beam of third-order l = −3 (d).
Fig. 3
Fig. 3 Simulated propagation characteristics in vacuum of Bessel-Gaussian beams (profile cut along x-axis) of first order, petal-like (a) third order, petal-like (b) and third-order, pure (c) using the SLM phase masks shown in Figs. 2(a), (c) and (d), respectively, and subsequent 20× demagnification. The insets show the corresponding transverse beam profile at z = 150 μm. This color scheme representation is based on ideas from D. Green [36].
Fig. 4
Fig. 4 Extinction distribution at a certain propagation plane κ (x, y; z = z′) defined in coordinate system Σ and corresponding projections (optical depths) τθ (xθ, z′) for different projection angles θ in their respective rotated coordinate system Σ′. The z-axis corresponds to the beam’s propagation direction.
Fig. 5
Fig. 5 Measured optical depths τθ (xθ, z) of petal-like Bessel-Gaussian beam of first-order at five different projection angles θ = (0 . . . π) (a) – (e).
Fig. 6
Fig. 6 (a) Sinogram representation τθ (θ, xθ) for the measurements shown in Fig. 5 at z = 0. (b) Reconstruction result of transverse extinction distribution κ(x, y) at z = 0 of petal-like Bessel-Gaussian beam of first-order using inverse Radon transform of the corresponding sinogram.
Fig. 7
Fig. 7 Isosurface representation of the reconstructed extinction distribution κ(r) caused by focusing the first-order petal-like Bessel-Gaussian beam into the sample. The colored iso-contours represent five extinction thresholds relative to κmax = 0.7 μm−1.
Fig. 8
Fig. 8 Measured optical depths τθ (xθ, z) of petal-like Bessel-Gaussian beam of third-order at three different projection angles θ = 0 (a), θ = π/6 (b) and θ = π/12 (c).
Fig. 9
Fig. 9 (a) Sinogram representation τθ (θ, xθ) for the measurements shown in Fig. 8 at z = 0. (b) Reconstruction result of transverse extinction distribution κ(x, y) at z = 0 of petal-like Bessel-Gaussian beam of third-order using inverse Radon transform of the corresponding sinogram.
Fig. 10
Fig. 10 Isosurface representation of the reconstructed extinction distribution κ(r) caused by focusing the Bessel-Gaussian beam of third-order, petal-like (a) and pure third-order (b) into the sample. The colored iso-contours represent five extinctions thresholds relative to κmax = 0.4 μm−1 (a) and κmax = 0.1 μm−1 (b), respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ ( x , z ) = ln [ I 0 ( x , z ) I S ( x , z ) ] .
τ θ ( x θ , z ) = 0 y max d y θ κ ( x θ cos θ y θ sin θ , x θ sin θ + y θ cos θ , z ) .

Metrics