Abstract

Dispersion ultimately limits the efficiency of the nonlinear process in the optical waveguide. Traditional dispersion engineering method is to tailor the cross-section of the waveguide with both of the height and width. However, the fabrication process limits the design freedom of the height in some cases. To solve the problem, we develop a dispersion engineering technique based on spatial mode coupling. Just by tailoring the width of waveguide without altering the height, the proposed method achieves anomalous dispersion with a range of 70 nm numerically and experimentally changes the dispersion of a micro-ring resonator from −750 ± 30 ps/nm/km to 1300 ± 200 ps/nm/km over a wavelength range of 25 nm with high Q of 0.8 million on the Si3N4/SiO2 waveguide platform. This technique overcomes the restrict from the fabrication process to the optical waveguide on the dispersion control and can enlarge application of the nonlinear optics on chip.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-Q tellurium-oxide-coated silicon nitride microring resonators

Henry C. Frankis, Khadijeh Miarabbas Kiani, Daniel Su, Richard Mateman, Arne Leinse, and Jonathan D. B. Bradley
Opt. Lett. 44(1) 118-121 (2019)

High-Q silicon-on-insulator optical rib waveguide racetrack resonators

Isa Kiyat, Atilla Aydinli, and Nadir Dagli
Opt. Express 13(6) 1900-1905 (2005)

High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation

Yi Xuan, Yang Liu, Leo T. Varghese, Andrew J. Metcalf, Xiaoxiao Xue, Pei-Hsun Wang, Kyunghun Han, Jose A. Jaramillo-Villegas, Abdullah Al Noman, Cong Wang, Sangsik Kim, Min Teng, Yun Jo Lee, Ben Niu, Li Fan, Jian Wang, Daniel E. Leaird, Andrew M. Weiner, and Minghao Qi
Optica 3(11) 1171-1180 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  2. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  3. X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.
  4. J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, C. Fallnich, and K. J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23(15), 19596–19604 (2015).
    [Crossref] [PubMed]
  5. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2(2), 88–94 (2015).
    [Crossref]
  6. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
    [Crossref] [PubMed]
  7. J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  8. H. Jung, M. Poot, and H. X. Tang, “In-resonator variation of waveguide cross-sections for dispersion control of aluminum nitride micro-rings,” Opt. Express 23(24), 30634–30640 (2015).
    [Crossref] [PubMed]
  9. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
    [Crossref] [PubMed]
  10. D. Li, X. Zhao, C. Zeng, G. Gao, Z. Huang, and J. Xia, “Compact grating coupler for thick silicon nitride,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W2A.20.
  11. P. Dumon, W. Bogaerts, R. Baets, J. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
    [Crossref]
  12. M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
    [Crossref]
  13. A. Leinse, R. Heideman, E. Klein, R. Dekker, C. Roeloffzen, and D. Marpaung, “TriPleX™ platform technology for photonic integration: Applications from UV through NIR to IR,” ICO International Conference (IEEE, 2011).
    [Crossref]
  14. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20(2), 1685–1690 (2012).
    [Crossref] [PubMed]
  15. K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
    [Crossref]
  16. Y. Liu, Y. Xuan, X. Xue, P. Wang, S. Chen, A. Metcalf, J. Wang, D. Leaird, M. Qi, and A. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
    [Crossref]
  17. S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
    [Crossref] [PubMed]
  18. H. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
    [Crossref]
  19. K. Wörhoff, R. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
  20. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  21. D. Spencer, J. Bauters, M. Heck, and J. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153–157 (2014).
    [Crossref]
  22. Y. Li, L. An, Y. Huo, M. Chen, H. Chen, S. Yang, “Broadband dispersion engineering for integrated photonics just by tuning the width of the waveguide,” CLEO: Science and Innovations. (Optical Society of America, 2017), paper JW2A–116.
    [Crossref]
  23. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
    [Crossref] [PubMed]
  24. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
    [Crossref]
  25. T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
    [Crossref]
  26. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [Crossref] [PubMed]
  27. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
    [Crossref] [PubMed]

2016 (2)

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

2015 (4)

2014 (3)

2012 (1)

2011 (2)

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

2010 (2)

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

2009 (1)

P. Dumon, W. Bogaerts, R. Baets, J. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

2007 (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
[Crossref] [PubMed]

2006 (2)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (1)

1991 (1)

H. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Almeida, V. R.

Ambrosius, H.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Azzini, S.

Baets, R.

P. Dumon, W. Bogaerts, R. Baets, J. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

Bajoni, D.

Barrios, C. A.

Barwicz, T.

Bauters, J.

Beausoleil, R. G.

Beha, K.

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

Bente, E.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Bogaerts, W.

P. Dumon, W. Bogaerts, R. Baets, J. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

Boller, K. J.

Bowers, J.

Brasch, V.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

Chen, S.

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Clemmen, S.

Cole, D.

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

Dekker, R.

A. Leinse, R. Heideman, E. Klein, R. Dekker, C. Roeloffzen, and D. Marpaung, “TriPleX™ platform technology for photonic integration: Applications from UV through NIR to IR,” ICO International Conference (IEEE, 2011).
[Crossref]

Del’Haye, P.

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Diddams, S.

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Dumon, P.

P. Dumon, W. Bogaerts, R. Baets, J. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

Epping, J. P.

Fallnich, C.

Farsi, A.

Fedeli, J.

P. Dumon, W. Bogaerts, R. Baets, J. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Foster, M.

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[Crossref] [PubMed]

Fukuda, H.

Fulbert, L.

P. Dumon, W. Bogaerts, R. Baets, J. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

Gaeta, A.

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gaeta, A. L.

Galli, M.

Geiselmann, M.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

Gondarenko, A.

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gorodetsky, M. L.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

Grassani, D.

Grote, N.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Han, Y.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Hao, Z.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Haus, H.

Heck, M.

Heideman, R.

K. Wörhoff, R. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

A. Leinse, R. Heideman, E. Klein, R. Dekker, C. Roeloffzen, and D. Marpaung, “TriPleX™ platform technology for photonic integration: Applications from UV through NIR to IR,” ICO International Conference (IEEE, 2011).
[Crossref]

Heideman, R. G.

Hellwig, T.

Herr, T.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

Hoekman, M.

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Huang, W.

H. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Itabashi, S.

Johnson, A. R.

Jung, H.

Khan, M. H.

Kippenberg, T. J.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Klein, E.

A. Leinse, R. Heideman, E. Klein, R. Dekker, C. Roeloffzen, and D. Marpaung, “TriPleX™ platform technology for photonic integration: Applications from UV through NIR to IR,” ICO International Conference (IEEE, 2011).
[Crossref]

Lamont, M. R.

Leaird, D.

Lee, C. J.

Lee, H.

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

Leijtens, X.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Leinse, A.

K. Wörhoff, R. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, C. Fallnich, and K. J. Boller, “On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth,” Opt. Express 23(15), 19596–19604 (2015).
[Crossref] [PubMed]

A. Leinse, R. Heideman, E. Klein, R. Dekker, C. Roeloffzen, and D. Marpaung, “TriPleX™ platform technology for photonic integration: Applications from UV through NIR to IR,” ICO International Conference (IEEE, 2011).
[Crossref]

Levy, J.

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Levy, J. S.

Li, H.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Li, J.

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

Lihachev, G.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

Lin, Q.

Lipson, M.

Liscidini, M.

Little, B.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Liu, X.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Liu, Y.

Luo, Y.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Manolatou, C.

Marpaung, D.

A. Leinse, R. Heideman, E. Klein, R. Dekker, C. Roeloffzen, and D. Marpaung, “TriPleX™ platform technology for photonic integration: Applications from UV through NIR to IR,” ICO International Conference (IEEE, 2011).
[Crossref]

Mateman, R.

Metcalf, A.

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Moss, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Oh, D.

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

Okawachi, Y.

Papp, S.

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

Pfeiffer, M. H.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

Poot, M.

Qi, M.

Ramelow, S.

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Robbins, D.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Roeloffzen, C.

A. Leinse, R. Heideman, E. Klein, R. Dekker, C. Roeloffzen, and D. Marpaung, “TriPleX™ platform technology for photonic integration: Applications from UV through NIR to IR,” ICO International Conference (IEEE, 2011).
[Crossref]

Schell, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[Crossref] [PubMed]

Sharping, J. E.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Shen, H.

Shoji, T.

Sipe, J. E.

Smit, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Sorel, M.

Spencer, D.

Strain, M. J.

Sun, C.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Takahashi, J.

Takahashi, M.

Tang, H. X.

Tsuchizawa, T.

Turner, A. C.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Turner-Foster, A.

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Vahala, K.

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

van der Slot, P. J.

Van der Tol, J.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

van Rees, A.

Wale, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

Wang, J.

Y. Liu, Y. Xuan, X. Xue, P. Wang, S. Chen, A. Metcalf, J. Wang, D. Leaird, M. Qi, and A. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Wang, L.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Wang, P.

Watanabe, T.

Wei, T.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Weiner, A.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Willner, A. E.

Wörhoff, K.

K. Wörhoff, R. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Xiao, S.

Xiong, B.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Xu, Q.

Xuan, Y.

Xue, X.

Yamada, K.

Yan, J.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Yan, Y.

Yang, K.

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

Yi, X.

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

Yue, Y.

Zhang, L.

Zhang, Y.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

Adv. Opt. Technol. (1)

K. Wörhoff, R. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Electron. Lett. (1)

P. Dumon, W. Bogaerts, R. Baets, J. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[Crossref]

IET Optoelectron. (1)

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5(5), 187–194 (2011).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (3)

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

K. Yang, K. Beha, D. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Oh, S. Diddams, S. Papp, and K. Vahala, “Broadband dispersion-engineered microresonator on a chip,” Nat. Photonics 10(5), 316–320 (2016).
[Crossref]

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Nature (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Optica (3)

Proc. IEEE (1)

H. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Science (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref] [PubMed]

Other (4)

D. Li, X. Zhao, C. Zeng, G. Gao, Z. Huang, and J. Xia, “Compact grating coupler for thick silicon nitride,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W2A.20.

X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Broadband frequency comb generation in aluminum nitride microring resonators,” Proceedings of 42nd European Conference on Optical Communication (IEEE, 2016), pp.746–748.

A. Leinse, R. Heideman, E. Klein, R. Dekker, C. Roeloffzen, and D. Marpaung, “TriPleX™ platform technology for photonic integration: Applications from UV through NIR to IR,” ICO International Conference (IEEE, 2011).
[Crossref]

Y. Li, L. An, Y. Huo, M. Chen, H. Chen, S. Yang, “Broadband dispersion engineering for integrated photonics just by tuning the width of the waveguide,” CLEO: Science and Innovations. (Optical Society of America, 2017), paper JW2A–116.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The characteristic of TE0 mode of the standard waveguide (in blue line) and the corresponding calculated dispersion (in orange line). Insets show the cross section of the waveguide and the corresponding mode profile at wavelength of 1550 nm respectively. The different colors standing for SiO2 refer to different deposition technologies. Please see [19] to get the details about the fabrication process. (b) Measured transmission spectrum (blue line) and the FSR (orange points) of the TE0 mode of the standard micro-ring resonator. The calculated D of the TE0 mode (black line) is −750 ± 30 ps/nm/km across the entire measured wavelength range. Inset shows the loaded Q value of the TE0 mode is about 0.65 million at the wavelength of 1571 nm. (c) The red line and blue line are the effective index of waveguides with width of 1.2 μm and 3.1 μm individually. The black line and the black dotted line are the effective index of the two hybrid modes of the dispersion engineered waveguide respectively. Insets show the cross section of the dispersion-engineered waveguide and the mode profiles respectively. (d) The D of the two hybrid modes at different gaps.
Fig. 2
Fig. 2 (a) The schematic of a ring resonator with the proposed dispersion engineered waveguide as the ring waveguide; (b) Micrograph of the fabric1ated dispersion engineered ring resonator with radius of 500 μm; (c) Measured transmission spectrum of the dispersion engineered ring resonator. Inset (left) shows that the hybrid mode 2 has a loaded Q of 0.86 million at the wavelength of 1571 nm; Inset (right) is the zoom view of the measured result plotted in the black dotted box, where the two hybrid modes have nearly the same extinction ratio; (d) The measured FSR of the two hybrid modes versus the wavelength are shown as points. The step-like form of the FSR is due to the resolution of the OVA is 160 MHz. The blue line and orange line are the calculated D of the hybrid mode 2 and hybrid mode 1 respectively.
Fig. 3
Fig. 3 Measured transmission spectrum (blue line) of the two fabricated micro-ring resonators. The hybrid mode 2 is marked as blue triangle on the transmission spectrum. The FSR and the D of the hybrid mode 2 are shown with blue points and orange line respectively. (a) The resonator has the same parameters as the resonator described in Fig. 2(c) except for the wider sub-waveguide of the dispersion engineered waveguide is changed from 3.2 μm to 3.3 μm; (b) The micro-ring resonator has a radius of 700 μm.
Fig. 4
Fig. 4 Numerical study on the propagation loss and the nonlinear parameter of the hybrid mode 2. The blue line is the D of the hybrid mode 2. The orange line is the ratio of the hybrid mode 2 of the engineered waveguide to the TE0 mode of the standard waveguide regarding to (a) the propagation loss and (b) the nonlinear parameter γ respectively. Insets are the mode evolution of the hybrid mode 2 versus the wavelength.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D( λ 1 )= 1 C d n g dλ = 1 C n g ( λ 1 ) n g ( λ 2 ) λ 1 λ 2 = 1 2πR( λ 1 λ 2 ) FSR( λ 2 )FSR( λ 1 ) FSR( λ 1 )FSR( λ 2 )
γ= 2π λ n 2 [(E× H * )k] 2 dA [ ( E× H * )kdA] 2
g= γ P pump Δβ (Δβ/2) 2

Metrics