Abstract

Continuous-variable quantum key distribution (CVQKD) with a real local oscillator (LO) has been extensively studied recently due to its security and simplicity. In this paper, we propose a novel implementation of a high-key-rate CVQKD with a real LO. Particularly, with the help of the simultaneously generated reference pulse, the phase drift of the signal is tracked in real time and then compensated. By utilizing the time and polarization multiplexing techniques to isolate the reference pulse and controlling the intensity of it, not only the contamination from it is suppressed, but also a high accuracy of the phase compensation can be guaranteed. Besides, we employ homodyne detection on the signal to ensure the high quantum efficiency and heterodyne detection on the reference pulse to acquire the complete phase information of it. In order to suppress the excess noise, a theoretical noise model for our scheme is established. According to this model, the impact of the modulation variance and the intensity of the reference pulse are both analysed theoretically and then optimized according to the experimental data. By measuring the excess noise in the 25km optical fiber transmission system, a 3.14Mbps key rate in the asymptotic regime proves to be achievable. This work verifies the feasibility of the high-key-rate CVQKD with a real LO within the metropolitan area.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Practical security of the continuous-variable quantum key distribution with real local oscillators under phase attack

Biao Huang, Yongmei Huang, and Zhenming Peng
Opt. Express 27(15) 20621-20631 (2019)

Continuous-variable quantum key distribution with 1 Mbps secure key rate

Duan Huang, Dakai Lin, Chao Wang, Weiqi Liu, Shuanghong Fang, Jinye Peng, Peng Huang, and Guihua Zeng
Opt. Express 23(13) 17511-17519 (2015)

Reference pulse attack on continuous variable quantum key distribution with local local oscillator under trusted phase noise

Shengjun Ren, Rupesh Kumar, Adrian Wonfor, Xinke Tang, Richard Penty, and Ian White
J. Opt. Soc. Am. B 36(3) B7-B15 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
    [Crossref]
  2. F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
    [Crossref] [PubMed]
  3. F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238 (2003).
    [Crossref] [PubMed]
  4. F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv:1703.09278v2 [quant-ph] (2017).
  5. J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
    [Crossref]
  6. S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101, 200504 (2008).
    [Crossref] [PubMed]
  7. A. Leverrier and P. Grangier, “Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 81, 062314 (2010).
    [Crossref]
  8. A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
    [Crossref]
  9. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
    [Crossref] [PubMed]
  10. A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
    [Crossref] [PubMed]
  11. A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118, 200501 (2017).
    [Crossref] [PubMed]
  12. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
    [Crossref]
  13. D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
    [Crossref] [PubMed]
  14. C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
    [Crossref]
  15. D. Huang, D. Lin, C. Wang, W. Liu, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511 (2015).
    [Crossref] [PubMed]
  16. X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
    [Crossref]
  17. P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
    [Crossref]
  18. D. Huang, D. K. Lin, P. Huang, and G. H. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695 (2015).
    [Crossref] [PubMed]
  19. D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).
  20. B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 40, 041009 (2015).
  21. A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
    [Crossref]
  22. R. Corvaja, “Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection,” Phys. Rev. A 95, 022315 (2017).
    [Crossref]
  23. Z. Qu, I. B. Djordjevic, and M. A. Neifeld, “RF-subcarrier-assisted four-state continuous-variable QKD based on coherent detection,” Opt. Lett. 41, 5507 (2016).
    [Crossref] [PubMed]
  24. Z. Qu and I. B. Djordjevic, “High-speed free-space optical continuous-variable quantum key distribution enabled by three-dimensional multiplexing,” Opt. Express 25, 7919 (2017).
    [Crossref] [PubMed]
  25. S. Kleis, M. Rueckmann, and C. G. Schaeffer, “Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals,” Opt. Lett. 42, 1588 (2017).
    [Crossref] [PubMed]
  26. B. Schrenk and H. Hübel, “Pilot-Assisted Local Oscillator Synchronisation for CV-QKD,” Qcrypt 2016 (Poster).
  27. F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).
  28. J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
    [Crossref]
  29. R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Optics Communications 285, 5259–5267 (2012).
    [Crossref]
  30. H. Qin, A. Q. Huang, and V. Makarov, “Short pulse attack on continuous-variable quantum key distribution system,” Qcrypt 2017 (Poster).
  31. A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
    [Crossref]
  32. P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
    [Crossref]
  33. B. Qi and C. C. W. Lim, “Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator,” arXiv: 1708.08742v1 [quant-ph] (2017).
  34. W. Liu, X. Wang, N. Wang, S. Du, and Y. Li, “Imperfect state preparation in continuous-variable quantum key distribution,” Phys. Rev. A 96, 042312 (2017).
    [Crossref]

2017 (6)

A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118, 200501 (2017).
[Crossref] [PubMed]

A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
[Crossref]

R. Corvaja, “Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection,” Phys. Rev. A 95, 022315 (2017).
[Crossref]

Z. Qu and I. B. Djordjevic, “High-speed free-space optical continuous-variable quantum key distribution enabled by three-dimensional multiplexing,” Opt. Express 25, 7919 (2017).
[Crossref] [PubMed]

S. Kleis, M. Rueckmann, and C. G. Schaeffer, “Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals,” Opt. Lett. 42, 1588 (2017).
[Crossref] [PubMed]

W. Liu, X. Wang, N. Wang, S. Du, and Y. Li, “Imperfect state preparation in continuous-variable quantum key distribution,” Phys. Rev. A 96, 042312 (2017).
[Crossref]

2016 (2)

Z. Qu, I. B. Djordjevic, and M. A. Neifeld, “RF-subcarrier-assisted four-state continuous-variable QKD based on coherent detection,” Opt. Lett. 41, 5507 (2016).
[Crossref] [PubMed]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

2015 (6)

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511 (2015).
[Crossref] [PubMed]

D. Huang, D. K. Lin, P. Huang, and G. H. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695 (2015).
[Crossref] [PubMed]

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 40, 041009 (2015).

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
[Crossref] [PubMed]

2013 (3)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

2012 (3)

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Optics Communications 285, 5259–5267 (2012).
[Crossref]

2011 (1)

P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
[Crossref]

2010 (2)

A. Leverrier and P. Grangier, “Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 81, 062314 (2010).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

2008 (2)

S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101, 200504 (2008).
[Crossref] [PubMed]

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

2007 (1)

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

2005 (1)

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

2003 (1)

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238 (2003).
[Crossref] [PubMed]

2002 (1)

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Alléaume, R.

A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
[Crossref]

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

Assche, G. V.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238 (2003).
[Crossref] [PubMed]

Barrios, E.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Optics Communications 285, 5259–5267 (2012).
[Crossref]

Berta, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Bloch, M.

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

Bobrek, M.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 40, 041009 (2015).

Boutros, J.

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

Braunstein, S. L.

S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101, 200504 (2008).
[Crossref] [PubMed]

Brif, C.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Brouri, R.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238 (2003).
[Crossref] [PubMed]

Cairns, E.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Optics Communications 285, 5259–5267 (2012).
[Crossref]

Camacho, R. M.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238 (2003).
[Crossref] [PubMed]

Coles, P. J.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Corvaja, R.

R. Corvaja, “Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection,” Phys. Rev. A 95, 022315 (2017).
[Crossref]

Debuisschert, T.

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

Diamanti, E.

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Djordjevic, I. B.

Du, S.

W. Liu, X. Wang, N. Wang, S. Du, and Y. Li, “Imperfect state preparation in continuous-variable quantum key distribution,” Phys. Rev. A 96, 042312 (2017).
[Crossref]

Fossier, S.

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

Franz, T.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Fung, C. H. F.

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv:1703.09278v2 [quant-ph] (2017).

Furrer, F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

García-Patrón, R.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

A. Leverrier and P. Grangier, “Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 81, 062314 (2010).
[Crossref]

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238 (2003).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Grice, W.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 40, 041009 (2015).

Grosshans, F.

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238 (2003).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Hentschel, M.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv:1703.09278v2 [quant-ph] (2017).

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

Huang, A. Q.

H. Qin, A. Q. Huang, and V. Makarov, “Short pulse attack on continuous-variable quantum key distribution system,” Qcrypt 2017 (Poster).

Huang, D.

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511 (2015).
[Crossref] [PubMed]

D. Huang, D. K. Lin, P. Huang, and G. H. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695 (2015).
[Crossref] [PubMed]

Huang, P.

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

D. Huang, D. K. Lin, P. Huang, and G. H. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695 (2015).
[Crossref] [PubMed]

Hübel, H.

B. Schrenk and H. Hübel, “Pilot-Assisted Local Oscillator Synchronisation for CV-QKD,” Qcrypt 2016 (Poster).

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv:1703.09278v2 [quant-ph] (2017).

Humer, G.

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

Huntington, E. H.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Optics Communications 285, 5259–5267 (2012).
[Crossref]

Jiang, M. S.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Jouguet, P.

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
[Crossref]

Kleis, S.

Kumar, R.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Optics Communications 285, 5259–5267 (2012).
[Crossref]

Kunz-Jacques, S.

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
[Crossref]

Laudenbach, F.

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv:1703.09278v2 [quant-ph] (2017).

Leverrier, A.

A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118, 200501 (2017).
[Crossref] [PubMed]

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
[Crossref]

A. Leverrier and P. Grangier, “Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 81, 062314 (2010).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

Li, Y.

W. Liu, X. Wang, N. Wang, S. Du, and Y. Li, “Imperfect state preparation in continuous-variable quantum key distribution,” Phys. Rev. A 96, 042312 (2017).
[Crossref]

Liang, L. M.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Lieger, R.

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

Lim, C. C. W.

B. Qi and C. C. W. Lim, “Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator,” arXiv: 1708.08742v1 [quant-ph] (2017).

Lin, D.

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511 (2015).
[Crossref] [PubMed]

Lin, D. K.

Liu, W.

W. Liu, X. Wang, N. Wang, S. Du, and Y. Li, “Imperfect state preparation in continuous-variable quantum key distribution,” Phys. Rev. A 96, 042312 (2017).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511 (2015).
[Crossref] [PubMed]

Lloyd, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101, 200504 (2008).
[Crossref] [PubMed]

Lodewyck, J.

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

Lougovski, P.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 40, 041009 (2015).

Lütkenhaus, N.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Lvovsky, A. I.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Optics Communications 285, 5259–5267 (2012).
[Crossref]

Ma, X. C.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

MacRae, A.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Optics Communications 285, 5259–5267 (2012).
[Crossref]

Makarov, V.

H. Qin, A. Q. Huang, and V. Makarov, “Short pulse attack on continuous-variable quantum key distribution system,” Qcrypt 2017 (Poster).

Marie, A.

A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
[Crossref]

Neifeld, M. A.

Pacher, C.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv:1703.09278v2 [quant-ph] (2017).

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

Peev, M.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv:1703.09278v2 [quant-ph] (2017).

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

Peng, J.

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

Pirandola, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101, 200504 (2008).
[Crossref] [PubMed]

Pooser, R.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 40, 041009 (2015).

Poppe, A.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv:1703.09278v2 [quant-ph] (2017).

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

Qi, B.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 40, 041009 (2015).

B. Qi and C. C. W. Lim, “Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator,” arXiv: 1708.08742v1 [quant-ph] (2017).

Qin, H.

H. Qin, A. Q. Huang, and V. Makarov, “Short pulse attack on continuous-variable quantum key distribution system,” Qcrypt 2017 (Poster).

Qu, Z.

Querasser, E.

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Rueckmann, M.

Sarovar, M.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Schaeffer, C. G.

Scholz, V. B.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Schrenk, B.

B. Schrenk and H. Hübel, “Pilot-Assisted Local Oscillator Synchronisation for CV-QKD,” Qcrypt 2016 (Poster).

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv:1703.09278v2 [quant-ph] (2017).

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Soh, D. B. S.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Sun, S. H.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Tomamichel, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Tualle-Brouri, R.

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

Urayama, J.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Walther, P.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv:1703.09278v2 [quant-ph] (2017).

Wang, C.

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511 (2015).
[Crossref] [PubMed]

Wang, N.

W. Liu, X. Wang, N. Wang, S. Du, and Y. Li, “Imperfect state preparation in continuous-variable quantum key distribution,” Phys. Rev. A 96, 042312 (2017).
[Crossref]

Wang, X.

W. Liu, X. Wang, N. Wang, S. Du, and Y. Li, “Imperfect state preparation in continuous-variable quantum key distribution,” Phys. Rev. A 96, 042312 (2017).
[Crossref]

Weedbrook, C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Wenger, J.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238 (2003).
[Crossref] [PubMed]

Werner, R. F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Zémor, G.

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

Zeng, G.

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511 (2015).
[Crossref] [PubMed]

Zeng, G. H.

Nat. Photonics (1)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Nature (1)

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Optics Communications (1)

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Optics Communications 285, 5259–5267 (2012).
[Crossref]

Phys. Rev. A (11)

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
[Crossref]

W. Liu, X. Wang, N. Wang, S. Du, and Y. Li, “Imperfect state preparation in continuous-variable quantum key distribution,” Phys. Rev. A 96, 042312 (2017).
[Crossref]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
[Crossref]

R. Corvaja, “Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection,” Phys. Rev. A 95, 022315 (2017).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

A. Leverrier and P. Grangier, “Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 81, 062314 (2010).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

Phys. Rev. Lett. (5)

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
[Crossref] [PubMed]

A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118, 200501 (2017).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101, 200504 (2008).
[Crossref] [PubMed]

Phys. Rev. X (2)

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 40, 041009 (2015).

Rev. Mod. Phys. (1)

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621 (2012).
[Crossref]

Sci. Rep. (2)

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

Other (5)

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv:1703.09278v2 [quant-ph] (2017).

B. Schrenk and H. Hübel, “Pilot-Assisted Local Oscillator Synchronisation for CV-QKD,” Qcrypt 2016 (Poster).

F. Laudenbach, B. Schrenk, C. Pacher, R. Lieger, E. Querasser, G. Humer, M. Hentschel, H. Hübel, C. H. F. Fung, A. Poppe, and M. Peev, “Pilot-Disciplined CV-QKD with True Local Oscillator,” Qcrypt 2017 (Contributed Talk).

B. Qi and C. C. W. Lim, “Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator,” arXiv: 1708.08742v1 [quant-ph] (2017).

H. Qin, A. Q. Huang, and V. Makarov, “Short pulse attack on continuous-variable quantum key distribution system,” Qcrypt 2017 (Poster).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Set-up of our experiment. CW laser: continuous-wave laser; AM: amplitude modulator; PM: phase modulator; BS: beamsplitter; DL: delay line; VOA: variable optical attenuator; PBC: polarizing beam collector; SMF: single mode fiber; PC: polarization controller; PBS: polarizing beamsplitter; FC: fiber coupler; BD: balanced detector.
Fig. 2
Fig. 2 (a) Acquisition process for the signal pulses and the reference pulses. The sample rate in each channel is 5 GS/s. Pulses Ai represent the interference results of the signal. Pulses Bi and pulses Ci represent the interference results of the reference pulse. Pulses Di represent the interference results of the large LO and the leaked photons from the reference pulse. Ts represents the symbol time, which is 20 ns in our experiment. (b) Phase compensation process for the signal. Circle X represents Alice’s raw data in the phase space. Circle Y represents the data after the first rotation with the angle θ i f . Circle Z represents the data after the second rotation with the angle θs. Circle W represents Bob’s detection data.
Fig. 3
Fig. 3 (a) Secret key rate as a function of VA with different phase noise. The phase noise is selected as σr = 0, 10−4, 1.5 × 10−3, 2.2 × 10−3, 3 × 10−3, 5 × 10−3, 10−2, 2 × 10−2 (in rad2) respectively. Other parameters are set as: the transmission distance L = 25 km, the attenuation coefficient α = 0.2 dB/km, the quantum efficiency η = 0.58, the rest noise εrest = 0.03, which corresponds to the intercept in Fig. 3(b), the electronic noise vel = 0.1, and the reconciliation efficiency β = 95%. (b) Measured excess noise with different modulation variance. The red squares represent the measured excess noise with a block size of 106, and the blue curve represents the fitting curve based on the measured data, whose slope and intercept are 2.2 × 10−3 and 0.03 respectively. Two dotted lines represent the theoretical curves with σr = 1.5 × 10−3 rad2 and σr = 3 × 10−3 rad2 respectively. The inset shows the result in the range of VA from 0 to 50.
Fig. 4
Fig. 4 (a) Measured excess noise with different intensity of the reference pulse. The red squares represent the measured excess noise with a block size of 106, and the blue curve represents the theoretical relationship between the excess noise and the ratio of Iref and Ntotal. The theoretical curve is drawn according to Eq. (9) with the parameters set as εrest = 0.03, VA = 6 and σmisal = 1.2 × 10−3 rad2. (b) Secret key rate as a function of N0/Vel under different distance. From top to bottom, the distance increases by 5 km from 20 km to 65 km. Other parameters are set as: the modulation variance VA = 6, the attenuation coefficient α = 0.2 dB/km, the quantum efficiency η = 0.58, the excess noise ε = 0.03, and the reconciliation efficiency β = 95%.
Fig. 5
Fig. 5 (a) Measured excess noise. The red squares represent the measured excess noise and each of them is measured with a block size of 106, while the blue line represents the average value of them. Other dash lines represent the threshold of 4 Mbps, 2 Mbps, 1 Mbps and null key respectively. (b) Secret key rate as a function of distance. From top to bottom, the solid curves represent the achievable key rate with different excess noise, which is 0.0173, 0.0408, 0.0755 and 0.111, and corresponds to the key rate 4 Mbps, 3.14 Mbps, 2 Mbps, and 1 Mbps within a 25km distance. The red circle represents that 3.14 Mbps can be achieved by our scheme. Besides, the dash-dot curves represent the achievable key rate considering the finite-size effect with N = 1010, N = 108 and N = 106 respectively, where 90% of the data is used to distill the key, and 10% of the data is used to parameter estimation. Other parameters are set as: the modulation variance VA = 6, the quantum efficiency η = 0.58, the electronic noise vel = 0.1, and the reconciliation efficiency β = 95%.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

θ i f = arctan ( P i R X i R ) .
( X i S P i S ) = ( cos θ i f sin θ i f sin θ i f cos θ i f ) ( X i S P i S ) ,
( x φ p φ ) = ( cos φ sin φ sin φ cos φ ) ( x 0 p 0 ) .
Cov ( y , s φ ) = i = 1 m y i s i φ ,
( X S P S ) = ( cos θ s sin θ s sin θ s cos θ s ) ( X S P S ) ,
ε = V A σ r + ε rest ,
σ misal = var ( θ i + 1 | θ i ) = 2 π ( Δ v A + Δ v B ) Δ t ,
σ r = N ch + N shot + N ele I ref + σ misal ,
ε = V A × ( N total I ref + σ misal ) + ε rest ,
R = f rep × ( β I A B χ B E ) ,
I A B = 1 2 log 2 V + χ tot 1 + χ tot ,
χ B E = i = 1 2 G ( λ i 1 2 ) i = 3 5 G ( λ i 1 2 ) ,
λ 1 , 2 2 = 1 2 ( A ± A 2 4 B ) , λ 3 , 4 2 = 1 2 ( C ± C 2 4 D ) , λ 5 = 1 ,
A = V 2 ( 1 2 T ) + 2 T + T 2 ( V + χ line ) 2 , B = T 2 ( V χ line + 1 ) 2 , C = V B + T ( V + χ line ) + A χ hom T ( V + χ tot ) , D = B V + B χ hom T ( V + χ tot ) .

Metrics