Abstract

We experimentally demonstrate a source of nearly pure single photons in arbitrary temporal shapes heralded from a parametric down-conversion (PDC) source at telecom wavelengths. The technology is enabled by the tailored dispersion of in-house fabricated waveguides with shaped pump pulses to directly generate the PDC photons in on-demand temporal shapes. We generate PDC photons in Hermite-Gauss and frequency-binned modes and confirm a minimum purity of 0.81, even for complex temporal shapes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion

Fumihiro Kaneda, Karina Garay-Palmett, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 24(10) 10733-10747 (2016)

An optimized photon pair source for quantum circuits

Georg Harder, Vahid Ansari, Benjamin Brecht, Thomas Dirmeier, Christoph Marquardt, and Christine Silberhorn
Opt. Express 21(12) 13975-13985 (2013)

On-chip low loss heralded source of pure single photons

Justin B. Spring, Patrick S. Salter, Benjamin J. Metcalf, Peter C. Humphreys, Merritt Moore, Nicholas Thomas-Peter, Marco Barbieri, Xian-Min Jin, Nathan K. Langford, W. Steven Kolthammer, Martin J. Booth, and Ian A. Walmsley
Opt. Express 21(11) 13522-13532 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. N Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733 (2000).
    [Crossref] [PubMed]
  2. N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H.-A. Bachor, and C. Fabr,. “Surpassing the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88(20), 203601 (2002).
    [Crossref] [PubMed]
  3. N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101(13), 130501 (2008).
    [Crossref] [PubMed]
  4. S. Rahimi-Keshari, T. C. Ralph, and C. M Caves, “Sufficient conditions for efficient classical simulation of quantum optics,” Phys. Rev. X 6(2), 021039 (2016).
  5. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
    [Crossref] [PubMed]
  6. J. Nunn, L.J. Wright, C. Söller, L. Zhang, I.A. Walmsley, and B.J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21(13), 15959–15973 (2013).
    [Crossref] [PubMed]
  7. T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
    [Crossref]
  8. P. J Mosley, J. Lundeen, B. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100(13), 133601 (2008).
    [Crossref] [PubMed]
  9. D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
    [Crossref] [PubMed]
  10. B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5(4), 041017 (2015).
  11. F. Kaneda, B. G. Christensen, J. Ju. Wong, H. S. Park, K. T. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” Optica 2(12), 1010–1013 (2015).
    [Crossref]
  12. R. J. A. Francis-Jones, R. A. Hoggarth, and P. J. Mosley, “All-fiber multiplexed source of high-purity single photons,” Optica 3(11), 1270–1273 (2016).
    [Crossref]
  13. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
    [Crossref]
  14. Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67(5), 053810 (2003).
    [Crossref]
  15. O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601 (2005).
    [Crossref] [PubMed]
  16. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
    [Crossref]
  17. A. Eckstein, A. S. Christ, P. J. Mosley, and C. Silberhor, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106(1), 013603 (2011).
    [Crossref] [PubMed]
  18. R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21(9), 10659–10666 (2013).
    [Crossref] [PubMed]
  19. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975–13985 (2013).
    [Crossref] [PubMed]
  20. F. Kaneda, K. Garay-Palmett, A. B. U’Ren, and P. G. Kwiat, “Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion,” Opt. Express 24(10), 10733–10747 (2016).
    [Crossref] [PubMed]
  21. J. B. Spring, P. L. Mennea, B. J. Metcalf, P. C. Humphreys, J. C. Gates, H. L. Rogers, C. Söller, B. J. Smith, W. S. Kolthammer, P. G. R. Smith, and I. A. Walmsley, “Chip-based array of near-identical, pure, heralded single-photon sources,” Optica 4(1), 90–96 (2017).
    [Crossref]
  22. M. Bellini, F. Marin, S. Viciani, A. Zavatta, and F. T. Arecchi, “Nonlocal pulse shaping with entangled photon pairs,” Phys. Rev. Lett. 90(4), 043602 (2003).
    [Crossref] [PubMed]
  23. A. Pe’Er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94(7), 073601 (2005).
    [Crossref]
  24. S.-Y. Baek, O. Kwon, and Y.-H. Kim, “Temporal shaping of a heralded single-photon wave packet,” Phys. Rev. A 77(1), 013829 (2008).
    [Crossref]
  25. J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112(13), 133602 (2014).
    [Crossref] [PubMed]
  26. C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88(3), 032322 (2013).
    [Crossref]
  27. A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480 (2003).
  28. E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
    [Crossref]
  29. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98(23), 230501 (2007).
    [Crossref] [PubMed]
  30. M. Lucamarini, G. Vallone, I. Gianani, P. Mataloni, and G. Di Giuseppe, “Device-independent entanglement-based Bennett 1992 protocol,” Phys. Rev. A 86(3), 032325 (2012).
    [Crossref]
  31. Michael Varnava, Daniel E Browne, and Terry Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100(6), 060502 (2008).
    [Crossref] [PubMed]
  32. Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non–photon-number-resolving detectors,” Phys. Rev. A 81(5), 052303 (2010).
    [Crossref]
  33. Th. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58(3–4), 276–287 (2011).
    [Crossref]
  34. J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117(24), 243602 (2016).
    [Crossref] [PubMed]
  35. N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2(3), e1501223 (2016).
    [Crossref] [PubMed]
  36. M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
    [Crossref] [PubMed]
  37. V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96(4), 043822 (2017).
    [Crossref]
  38. K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
    [Crossref] [PubMed]
  39. M. Karpiński, Mi. Jachura, L. J Wright, and B. J Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11,53–57 (2017).
    [Crossref]
  40. P. T. Callahan, K. Safak, P. Battle, T. D. Roberts, and F. X. Kärtner, “Fiber-coupled balanced optical cross-correlator using PPKTP waveguides,” Opt. Express 22(8), 9749–9758 (2014).
    [Crossref] [PubMed]
  41. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84(23), 5304–5307 (2000).
    [Crossref] [PubMed]
  42. J. H. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys. 16(6), 921–926 (2006).
    [Crossref]
  43. A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13(3), 033027 (2011).
    [Crossref]
  44. W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80(5), 053815 (2009).
    [Crossref]
  45. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. K. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15(1), 146–161 (2005).
  46. J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30(3), 323–325 (2005).
    [Crossref] [PubMed]
  47. E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24(12), 2940–2947 (2007).
    [Crossref]
  48. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
    [Crossref]
  49. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl Phys B-Lasers O. 36(3), 143–147 (1985).
    [Crossref]
  50. D.N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Quantum Electron. 10(9), 1112–1117 (1980).
  51. X. Cao, J. Natour, R. V. Ramaswamy, and R. Srivastava, “Effect of waveguide uniformity on phase matching for frequency conversion in channel waveguides,” Appl. Phys. Lett. 58(21), 2331–2333 (1991).
    [Crossref]
  52. S. Helmfrid, G. Arvidsson, and J. Webjörn, “Influence of various imperfections on the conversion efficiency of second-harmonic generation in quasi-phase-matching lithium niobate waveguides,” J. Opt. Soc. Am. B 10(2), 222–229 (1993).
    [Crossref]
  53. M. L. Bortz, S.J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D.F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
    [Crossref]
  54. I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-µm-band cascaded wavelength conversion,” Opt. Commun. 187(1), 263–270 (2001).
    [Crossref]
  55. E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57(22), 2294–2296 (1990).
    [Crossref]
  56. K. Laiho, A. Christ, K. N. Cassemiro, and C. Silberhorn, “Testing spectral filters as Gaussian quantum optical channels,” Opt. Lett. 36(8), 1476–1478 (2011).
    [Crossref] [PubMed]
  57. M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34(18), 2873–2875 (2009).
    [Crossref] [PubMed]
  58. P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45(3), 595–604 (1998).
    [Crossref]
  59. A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
    [Crossref]
  60. F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Science and Technology 2(3), 035001 (2017).
    [Crossref]

2017 (6)

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96(4), 043822 (2017).
[Crossref]

M. Karpiński, Mi. Jachura, L. J Wright, and B. J Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11,53–57 (2017).
[Crossref]

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Science and Technology 2(3), 035001 (2017).
[Crossref]

J. B. Spring, P. L. Mennea, B. J. Metcalf, P. C. Humphreys, J. C. Gates, H. L. Rogers, C. Söller, B. J. Smith, W. S. Kolthammer, P. G. R. Smith, and I. A. Walmsley, “Chip-based array of near-identical, pure, heralded single-photon sources,” Optica 4(1), 90–96 (2017).
[Crossref]

2016 (7)

F. Kaneda, K. Garay-Palmett, A. B. U’Ren, and P. G. Kwiat, “Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion,” Opt. Express 24(10), 10733–10747 (2016).
[Crossref] [PubMed]

R. J. A. Francis-Jones, R. A. Hoggarth, and P. J. Mosley, “All-fiber multiplexed source of high-purity single photons,” Optica 3(11), 1270–1273 (2016).
[Crossref]

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
[Crossref]

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref] [PubMed]

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117(24), 243602 (2016).
[Crossref] [PubMed]

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2(3), e1501223 (2016).
[Crossref] [PubMed]

S. Rahimi-Keshari, T. C. Ralph, and C. M Caves, “Sufficient conditions for efficient classical simulation of quantum optics,” Phys. Rev. X 6(2), 021039 (2016).

2015 (3)

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5(4), 041017 (2015).

F. Kaneda, B. G. Christensen, J. Ju. Wong, H. S. Park, K. T. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” Optica 2(12), 1010–1013 (2015).
[Crossref]

2014 (2)

P. T. Callahan, K. Safak, P. Battle, T. D. Roberts, and F. X. Kärtner, “Fiber-coupled balanced optical cross-correlator using PPKTP waveguides,” Opt. Express 22(8), 9749–9758 (2014).
[Crossref] [PubMed]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112(13), 133602 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

M. Lucamarini, G. Vallone, I. Gianani, P. Mataloni, and G. Di Giuseppe, “Device-independent entanglement-based Bennett 1992 protocol,” Phys. Rev. A 86(3), 032325 (2012).
[Crossref]

2011 (5)

Th. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58(3–4), 276–287 (2011).
[Crossref]

A. Eckstein, A. S. Christ, P. J. Mosley, and C. Silberhor, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106(1), 013603 (2011).
[Crossref] [PubMed]

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref] [PubMed]

K. Laiho, A. Christ, K. N. Cassemiro, and C. Silberhorn, “Testing spectral filters as Gaussian quantum optical channels,” Opt. Lett. 36(8), 1476–1478 (2011).
[Crossref] [PubMed]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13(3), 033027 (2011).
[Crossref]

2010 (2)

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non–photon-number-resolving detectors,” Phys. Rev. A 81(5), 052303 (2010).
[Crossref]

2009 (2)

W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80(5), 053815 (2009).
[Crossref]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34(18), 2873–2875 (2009).
[Crossref] [PubMed]

2008 (4)

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “Temporal shaping of a heralded single-photon wave packet,” Phys. Rev. A 77(1), 013829 (2008).
[Crossref]

Michael Varnava, Daniel E Browne, and Terry Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100(6), 060502 (2008).
[Crossref] [PubMed]

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101(13), 130501 (2008).
[Crossref] [PubMed]

P. J Mosley, J. Lundeen, B. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

2007 (2)

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98(23), 230501 (2007).
[Crossref] [PubMed]

E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24(12), 2940–2947 (2007).
[Crossref]

2006 (1)

J. H. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys. 16(6), 921–926 (2006).
[Crossref]

2005 (4)

A. Pe’Er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94(7), 073601 (2005).
[Crossref]

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601 (2005).
[Crossref] [PubMed]

J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30(3), 323–325 (2005).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. K. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15(1), 146–161 (2005).

2003 (3)

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67(5), 053810 (2003).
[Crossref]

M. Bellini, F. Marin, S. Viciani, A. Zavatta, and F. T. Arecchi, “Nonlocal pulse shaping with entangled photon pairs,” Phys. Rev. Lett. 90(4), 043602 (2003).
[Crossref] [PubMed]

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480 (2003).

2002 (1)

N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H.-A. Bachor, and C. Fabr,. “Surpassing the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88(20), 203601 (2002).
[Crossref] [PubMed]

2001 (2)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[Crossref]

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-µm-band cascaded wavelength conversion,” Opt. Commun. 187(1), 263–270 (2001).
[Crossref]

2000 (3)

A. N Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733 (2000).
[Crossref] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84(23), 5304–5307 (2000).
[Crossref] [PubMed]

1998 (1)

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45(3), 595–604 (1998).
[Crossref]

1994 (1)

M. L. Bortz, S.J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D.F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

1993 (1)

1991 (1)

X. Cao, J. Natour, R. V. Ramaswamy, and R. Srivastava, “Effect of waveguide uniformity on phase matching for frequency conversion in channel waveguides,” Appl. Phys. Lett. 58(21), 2331–2333 (1991).
[Crossref]

1990 (1)

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57(22), 2294–2296 (1990).
[Crossref]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl Phys B-Lasers O. 36(3), 143–147 (1985).
[Crossref]

1982 (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

1980 (1)

D.N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Quantum Electron. 10(9), 1112–1117 (1980).

Abrams, D. S.

A. N Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733 (2000).
[Crossref] [PubMed]

Acín, A.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98(23), 230501 (2007).
[Crossref] [PubMed]

Albota, M.

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601 (2005).
[Crossref] [PubMed]

Allgaier, M.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Andersen, U.

N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H.-A. Bachor, and C. Fabr,. “Surpassing the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88(20), 203601 (2002).
[Crossref] [PubMed]

Ansari, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975–13985 (2013).
[Crossref] [PubMed]

Arecchi, F. T.

M. Bellini, F. Marin, S. Viciani, A. Zavatta, and F. T. Arecchi, “Nonlocal pulse shaping with entangled photon pairs,” Phys. Rev. Lett. 90(4), 043602 (2003).
[Crossref] [PubMed]

Arvidsson, G.

Avenhaus, M.

W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80(5), 053815 (2009).
[Crossref]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34(18), 2873–2875 (2009).
[Crossref] [PubMed]

Averchenko, V.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96(4), 043822 (2017).
[Crossref]

Bachor, H.-A.

N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H.-A. Bachor, and C. Fabr,. “Surpassing the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88(20), 203601 (2002).
[Crossref] [PubMed]

Baek, S.-Y.

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “Temporal shaping of a heralded single-photon wave packet,” Phys. Rev. A 77(1), 013829 (2008).
[Crossref]

Banaszek, K.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. K. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15(1), 146–161 (2005).

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480 (2003).

Barbieri, M.

Th. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58(3–4), 276–287 (2011).
[Crossref]

Bartley, T. J.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Bassi, P.

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-µm-band cascaded wavelength conversion,” Opt. Commun. 187(1), 263–270 (2001).
[Crossref]

Battle, P.

Bellini, M.

M. Bellini, F. Marin, S. Viciani, A. Zavatta, and F. T. Arecchi, “Nonlocal pulse shaping with entangled photon pairs,” Phys. Rev. Lett. 90(4), 043602 (2003).
[Crossref] [PubMed]

Benichi, H.

Bennink, R. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

Bernhard, C.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88(3), 032322 (2013).
[Crossref]

Bessire, B.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88(3), 032322 (2013).
[Crossref]

Bienfang, J. C.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Booth, M. C.

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67(5), 053810 (2003).
[Crossref]

Bortz, M. L.

M. L. Bortz, S.J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D.F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

Boto, A. N

A. N Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733 (2000).
[Crossref] [PubMed]

Branczyk, A. M.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Science and Technology 2(3), 035001 (2017).
[Crossref]

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
[Crossref]

Braunstein, S. L.

A. N Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733 (2000).
[Crossref] [PubMed]

Brecht, B.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5(4), 041017 (2015).

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975–13985 (2013).
[Crossref] [PubMed]

Browne, Daniel E

Michael Varnava, Daniel E Browne, and Terry Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100(6), 060502 (2008).
[Crossref] [PubMed]

Brunner, N.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98(23), 230501 (2007).
[Crossref] [PubMed]

Buchler, B.

N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H.-A. Bachor, and C. Fabr,. “Surpassing the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88(20), 203601 (2002).
[Crossref] [PubMed]

Bustard, P. J.

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref] [PubMed]

Callahan, P. T.

Cao, X.

X. Cao, J. Natour, R. V. Ramaswamy, and R. Srivastava, “Effect of waveguide uniformity on phase matching for frequency conversion in channel waveguides,” Appl. Phys. Lett. 58(21), 2331–2333 (1991).
[Crossref]

Cassemiro, K. N.

K. Laiho, A. Christ, K. N. Cassemiro, and C. Silberhorn, “Testing spectral filters as Gaussian quantum optical channels,” Opt. Lett. 36(8), 1476–1478 (2011).
[Crossref] [PubMed]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13(3), 033027 (2011).
[Crossref]

Caves, C. M

S. Rahimi-Keshari, T. C. Ralph, and C. M Caves, “Sufficient conditions for efficient classical simulation of quantum optics,” Phys. Rev. X 6(2), 021039 (2016).

Christ, A.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13(3), 033027 (2011).
[Crossref]

K. Laiho, A. Christ, K. N. Cassemiro, and C. Silberhorn, “Testing spectral filters as Gaussian quantum optical channels,” Opt. Lett. 36(8), 1476–1478 (2011).
[Crossref] [PubMed]

Christ, A. S.

A. Eckstein, A. S. Christ, P. J. Mosley, and C. Silberhor, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106(1), 013603 (2011).
[Crossref] [PubMed]

Christensen, B. G.

Cincio, L.

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
[Crossref]

Corney, J. F.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref] [PubMed]

Cristiani, I.

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-µm-band cascaded wavelength conversion,” Opt. Commun. 187(1), 263–270 (2001).
[Crossref]

Dayan, B.

A. Pe’Er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94(7), 073601 (2005).
[Crossref]

Degiorgio, V.

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-µm-band cascaded wavelength conversion,” Opt. Commun. 187(1), 263–270 (2001).
[Crossref]

Dezfooliyan, A.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112(13), 133602 (2014).
[Crossref] [PubMed]

Di Giuseppe, G.

M. Lucamarini, G. Vallone, I. Gianani, P. Mataloni, and G. Di Giuseppe, “Device-independent entanglement-based Bennett 1992 protocol,” Phys. Rev. A 86(3), 032325 (2012).
[Crossref]

Dirmeier, T.

Donohue, J. M.

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117(24), 243602 (2016).
[Crossref] [PubMed]

Dosseva, A.

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
[Crossref]

Dowling, J. P.

A. N Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733 (2000).
[Crossref] [PubMed]

Eberly, J. H.

J. H. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys. 16(6), 921–926 (2006).
[Crossref]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84(23), 5304–5307 (2000).
[Crossref] [PubMed]

Eckstein, A.

A. Eckstein, A. S. Christ, P. J. Mosley, and C. Silberhor, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106(1), 013603 (2011).
[Crossref] [PubMed]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13(3), 033027 (2011).
[Crossref]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34(18), 2873–2875 (2009).
[Crossref] [PubMed]

Eigner, C.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

England, D. G.

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref] [PubMed]

Englund, D.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Erdmann, R. K.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. K. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15(1), 146–161 (2005).

Evans, P. G.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

Fabr, C.

N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H.-A. Bachor, and C. Fabr,. “Surpassing the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88(20), 203601 (2002).
[Crossref] [PubMed]

Fedrizzi, A.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Science and Technology 2(3), 035001 (2017).
[Crossref]

Fejer, M. M.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112(13), 133602 (2014).
[Crossref] [PubMed]

M. L. Bortz, S.J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D.F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57(22), 2294–2296 (1990).
[Crossref]

Feurer, T.

Field, S.J.

M. L. Bortz, S.J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D.F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

Fiorentino, M.

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601 (2005).
[Crossref] [PubMed]

Fisher, K. A. G.

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref] [PubMed]

Flammia, S. T.

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101(13), 130501 (2008).
[Crossref] [PubMed]

Francis-Jones, R. J. A.

Friesem, A. A.

A. Pe’Er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94(7), 073601 (2005).
[Crossref]

Frumker, E.

Garay-Palmett, K.

Gates, J. C.

Gerrits, T.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Gianani, I.

M. Lucamarini, G. Vallone, I. Gianani, P. Mataloni, and G. Di Giuseppe, “Device-independent entanglement-based Bennett 1992 protocol,” Phys. Rev. A 86(3), 032325 (2012).
[Crossref]

Gisin, N.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98(23), 230501 (2007).
[Crossref] [PubMed]

Gong, Y.-X.

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non–photon-number-resolving detectors,” Phys. Rev. A 81(5), 052303 (2010).
[Crossref]

Graffitti, F.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Science and Technology 2(3), 035001 (2017).
[Crossref]

Grice, W. P.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. K. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15(1), 146–161 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[Crossref]

Guo, G.-C.

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non–photon-number-resolving detectors,” Phys. Rev. A 81(5), 052303 (2010).
[Crossref]

Harder, G.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975–13985 (2013).
[Crossref] [PubMed]

Helmfrid, S.

Helwig, W.

W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80(5), 053815 (2009).
[Crossref]

Herrmann, H.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Hoggarth, R. A.

Horansky, R. D

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Hornung, T.

Humble, T. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

Humphreys, P. C.

Ina, H.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Jachura, Mi.

M. Karpiński, Mi. Jachura, L. J Wright, and B. J Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11,53–57 (2017).
[Crossref]

Jennewein, T.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

Jennewein, Th.

Th. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58(3–4), 276–287 (2011).
[Crossref]

Jin, R.-B.

Kaneda, F.

Karpinski, M.

M. Karpiński, Mi. Jachura, L. J Wright, and B. J Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11,53–57 (2017).
[Crossref]

Kärtner, F.

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601 (2005).
[Crossref] [PubMed]

Kärtner, F. X.

Kielpinski, D.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref] [PubMed]

Kim, Y.-H.

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “Temporal shaping of a heralded single-photon wave packet,” Phys. Rev. A 77(1), 013829 (2008).
[Crossref]

Klyshko, D.N.

D.N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Quantum Electron. 10(9), 1112–1117 (1980).

Kobayashi, S.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Kok, P.

A. N Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733 (2000).
[Crossref] [PubMed]

Kolthammer, W. S.

Kundys, D.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Science and Technology 2(3), 035001 (2017).
[Crossref]

Kuzucu, O.

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601 (2005).
[Crossref] [PubMed]

Kwiat, P. G.

Kwon, O.

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “Temporal shaping of a heralded single-photon wave packet,” Phys. Rev. A 77(1), 013829 (2008).
[Crossref]

Laiho, K.

K. Laiho, A. Christ, K. N. Cassemiro, and C. Silberhorn, “Testing spectral filters as Gaussian quantum optical channels,” Opt. Lett. 36(8), 1476–1478 (2011).
[Crossref] [PubMed]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13(3), 033027 (2011).
[Crossref]

Lam, P. K.

N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H.-A. Bachor, and C. Fabr,. “Surpassing the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88(20), 203601 (2002).
[Crossref] [PubMed]

Langrock, C.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112(13), 133602 (2014).
[Crossref] [PubMed]

Law, C. K.

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84(23), 5304–5307 (2000).
[Crossref] [PubMed]

Leaird, D. E.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112(13), 133602 (2014).
[Crossref] [PubMed]

Lee, C.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Leuchs, G.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96(4), 043822 (2017).
[Crossref]

Liberale, C.

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-µm-band cascaded wavelength conversion,” Opt. Commun. 187(1), 263–270 (2001).
[Crossref]

Lim, E. J.

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57(22), 2294–2296 (1990).
[Crossref]

Lita, A. E.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Lucamarini, M.

M. Lucamarini, G. Vallone, I. Gianani, P. Mataloni, and G. Di Giuseppe, “Device-independent entanglement-based Bennett 1992 protocol,” Phys. Rev. A 86(3), 032325 (2012).
[Crossref]

Lukens, J. M.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112(13), 133602 (2014).
[Crossref] [PubMed]

Lundeen, J.

P. J Mosley, J. Lundeen, B. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

MacLean, J.-P. W.

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref] [PubMed]

Maitre, A.

N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H.-A. Bachor, and C. Fabr,. “Surpassing the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88(20), 203601 (2002).
[Crossref] [PubMed]

Marin, F.

M. Bellini, F. Marin, S. Viciani, A. Zavatta, and F. T. Arecchi, “Nonlocal pulse shaping with entangled photon pairs,” Phys. Rev. Lett. 90(4), 043602 (2003).
[Crossref] [PubMed]

Marquardt, C.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96(4), 043822 (2017).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975–13985 (2013).
[Crossref] [PubMed]

Marsili, F.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Massar, S.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98(23), 230501 (2007).
[Crossref] [PubMed]

Mastrovich, M.

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117(24), 243602 (2016).
[Crossref] [PubMed]

Mataloni, P.

M. Lucamarini, G. Vallone, I. Gianani, P. Mataloni, and G. Di Giuseppe, “Device-independent entanglement-based Bennett 1992 protocol,” Phys. Rev. A 86(3), 032325 (2012).
[Crossref]

Matsuda, N.

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2(3), e1501223 (2016).
[Crossref] [PubMed]

Matsumoto, S.

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57(22), 2294–2296 (1990).
[Crossref]

Mauerer, W.

W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80(5), 053815 (2009).
[Crossref]

McCusker, K. T.

Menicucci, N. C.

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101(13), 130501 (2008).
[Crossref] [PubMed]

Mennea, P. L.

Metcalf, B. J.

Meyer-Scott, E.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Mirin, R. P.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Montaut, N.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Mosley, P. J

P. J Mosley, J. Lundeen, B. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

Mosley, P. J.

Nam, D. W.

M. L. Bortz, S.J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D.F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

Nam, S. W.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Natour, J.

X. Cao, J. Natour, R. V. Ramaswamy, and R. Srivastava, “Effect of waveguide uniformity on phase matching for frequency conversion in channel waveguides,” Appl. Phys. Lett. 58(21), 2331–2333 (1991).
[Crossref]

Nelson, K. A.

Nunn, J.

Park, H. S.

Pe’Er, A.

A. Pe’Er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94(7), 073601 (2005).
[Crossref]

Pfister, O.

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101(13), 130501 (2008).
[Crossref] [PubMed]

Pironio, S.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98(23), 230501 (2007).
[Crossref] [PubMed]

Quiring, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Rahimi-Keshari, S.

S. Rahimi-Keshari, T. C. Ralph, and C. M Caves, “Sufficient conditions for efficient classical simulation of quantum optics,” Phys. Rev. X 6(2), 021039 (2016).

Ralph, T. C.

S. Rahimi-Keshari, T. C. Ralph, and C. M Caves, “Sufficient conditions for efficient classical simulation of quantum optics,” Phys. Rev. X 6(2), 021039 (2016).

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non–photon-number-resolving detectors,” Phys. Rev. A 81(5), 052303 (2010).
[Crossref]

Ramaswamy, R. V.

X. Cao, J. Natour, R. V. Ramaswamy, and R. Srivastava, “Effect of waveguide uniformity on phase matching for frequency conversion in channel waveguides,” Appl. Phys. Lett. 58(21), 2331–2333 (1991).
[Crossref]

Rarity, J. G.

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45(3), 595–604 (1998).
[Crossref]

Raymer, M. G.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5(4), 041017 (2015).

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. K. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15(1), 146–161 (2005).

Reddy, D. V.

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5(4), 041017 (2015).

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl Phys B-Lasers O. 36(3), 143–147 (1985).
[Crossref]

Reid, D. T.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Science and Technology 2(3), 035001 (2017).
[Crossref]

Resch, K. J.

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117(24), 243602 (2016).
[Crossref] [PubMed]

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref] [PubMed]

Restelli, A.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Ricken, R.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Roberts, T. D.

Rogers, H. L.

Rudolph, Terry

Michael Varnava, Daniel E Browne, and Terry Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100(6), 060502 (2008).
[Crossref] [PubMed]

Safak, K.

Saleh, B. E.

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67(5), 053810 (2003).
[Crossref]

Sansoni, L.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Sasaki, M.

Scarani, V.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98(23), 230501 (2007).
[Crossref] [PubMed]

Schaake, J

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

Schunk, G.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96(4), 043822 (2017).
[Crossref]

Sergienko, A. V.

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67(5), 053810 (2003).
[Crossref]

Shapiro, J. H.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Shaw, M. D.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Shimizu, R.

Silberberg, Y.

E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24(12), 2940–2947 (2007).
[Crossref]

A. Pe’Er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94(7), 073601 (2005).
[Crossref]

Silberhor, C.

A. Eckstein, A. S. Christ, P. J. Mosley, and C. Silberhor, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106(1), 013603 (2011).
[Crossref] [PubMed]

Silberhorn, C.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5(4), 041017 (2015).

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975–13985 (2013).
[Crossref] [PubMed]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13(3), 033027 (2011).
[Crossref]

K. Laiho, A. Christ, K. N. Cassemiro, and C. Silberhorn, “Testing spectral filters as Gaussian quantum optical channels,” Opt. Lett. 36(8), 1476–1478 (2011).
[Crossref] [PubMed]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34(18), 2873–2875 (2009).
[Crossref] [PubMed]

W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80(5), 053815 (2009).
[Crossref]

P. J Mosley, J. Lundeen, B. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. K. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15(1), 146–161 (2005).

Simon, C.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

Smith, B.

P. J Mosley, J. Lundeen, B. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

Smith, B. J

M. Karpiński, Mi. Jachura, L. J Wright, and B. J Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11,53–57 (2017).
[Crossref]

Smith, B. J.

Smith, B.J.

Smith, P. G. R.

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl Phys B-Lasers O. 36(3), 143–147 (1985).
[Crossref]

Söller, C.

Spring, J. B.

Srivastava, R.

X. Cao, J. Natour, R. V. Ramaswamy, and R. Srivastava, “Effect of waveguide uniformity on phase matching for frequency conversion in channel waveguides,” Appl. Phys. Lett. 58(21), 2331–2333 (1991).
[Crossref]

Stefanov, A.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88(3), 032322 (2013).
[Crossref]

Sussman, B. J.

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref] [PubMed]

Sych, D.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96(4), 043822 (2017).
[Crossref]

Takeda, M.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Tapster, P. R.

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45(3), 595–604 (1998).
[Crossref]

Tartarini, G.

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-µm-band cascaded wavelength conversion,” Opt. Commun. 187(1), 263–270 (2001).
[Crossref]

Teich, M. C.

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67(5), 053810 (2003).
[Crossref]

Tiedau, J.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

Treps, N.

N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H.-A. Bachor, and C. Fabr,. “Surpassing the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88(20), 203601 (2002).
[Crossref] [PubMed]

U’Ren, A. B.

F. Kaneda, K. Garay-Palmett, A. B. U’Ren, and P. G. Kwiat, “Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion,” Opt. Express 24(10), 10733–10747 (2016).
[Crossref] [PubMed]

P. J Mosley, J. Lundeen, B. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. K. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15(1), 146–161 (2005).

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480 (2003).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[Crossref]

Vallone, G.

M. Lucamarini, G. Vallone, I. Gianani, P. Mataloni, and G. Di Giuseppe, “Device-independent entanglement-based Bennett 1992 protocol,” Phys. Rev. A 86(3), 032325 (2012).
[Crossref]

Varnava, Michael

Michael Varnava, Daniel E Browne, and Terry Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100(6), 060502 (2008).
[Crossref] [PubMed]

Vaughan, J. C.

Verma, V. B.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Viciani, S.

M. Bellini, F. Marin, S. Viciani, A. Zavatta, and F. T. Arecchi, “Nonlocal pulse shaping with entangled photon pairs,” Phys. Rev. Lett. 90(4), 043602 (2003).
[Crossref] [PubMed]

Vogl, U.

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96(4), 043822 (2017).
[Crossref]

Waarts, R. G.

M. L. Bortz, S.J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D.F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

Wakui, K.

Walmsley, I. A.

J. B. Spring, P. L. Mennea, B. J. Metcalf, P. C. Humphreys, J. C. Gates, H. L. Rogers, C. Söller, B. J. Smith, W. S. Kolthammer, P. G. R. Smith, and I. A. Walmsley, “Chip-based array of near-identical, pure, heralded single-photon sources,” Optica 4(1), 90–96 (2017).
[Crossref]

P. J Mosley, J. Lundeen, B. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. K. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15(1), 146–161 (2005).

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480 (2003).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[Crossref]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84(23), 5304–5307 (2000).
[Crossref] [PubMed]

Walmsley, I.A.

Walton, Z. D.

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67(5), 053810 (2003).
[Crossref]

Wang, L.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Wasylczyk, P.

P. J Mosley, J. Lundeen, B. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

Webjörn, J.

Weihs, G.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

Weiner, A. M.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112(13), 133602 (2014).
[Crossref] [PubMed]

Weinfurter, H.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

Welch, D.F.

M. L. Bortz, S.J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D.F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

White, A. G.

Th. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58(3–4), 276–287 (2011).
[Crossref]

Williams, C. P.

A. N Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733 (2000).
[Crossref] [PubMed]

Wiseman, H. M.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref] [PubMed]

Wong, F. N. C.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601 (2005).
[Crossref] [PubMed]

Wong, J. Ju.

Wornell, G. W.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Wright, L. J

M. Karpiński, Mi. Jachura, L. J Wright, and B. J Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11,53–57 (2017).
[Crossref]

Wright, L.J.

Zavatta, A.

M. Bellini, F. Marin, S. Viciani, A. Zavatta, and F. T. Arecchi, “Nonlocal pulse shaping with entangled photon pairs,” Phys. Rev. Lett. 90(4), 043602 (2003).
[Crossref] [PubMed]

Zeilinger, A.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

Zhang, L.

Zhang, Z.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Zhong, T.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Zhou, H.

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Zhu, S.-N.

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non–photon-number-resolving detectors,” Phys. Rev. A 81(5), 052303 (2010).
[Crossref]

Zou, X.-B.

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non–photon-number-resolving detectors,” Phys. Rev. A 81(5), 052303 (2010).
[Crossref]

Appl Phys B-Lasers O. (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl Phys B-Lasers O. 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (2)

X. Cao, J. Natour, R. V. Ramaswamy, and R. Srivastava, “Effect of waveguide uniformity on phase matching for frequency conversion in channel waveguides,” Appl. Phys. Lett. 58(21), 2331–2333 (1991).
[Crossref]

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57(22), 2294–2296 (1990).
[Crossref]

IEEE J. Quantum Electron. (1)

M. L. Bortz, S.J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D.F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30(12), 2953–2960 (1994).
[Crossref]

J. Mod. Opt. (2)

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45(3), 595–604 (1998).
[Crossref]

Th. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58(3–4), 276–287 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (2)

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. K. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15(1), 146–161 (2005).

J. H. Eberly, “Schmidt analysis of pure-state entanglement,” Laser Phys. 16(6), 921–926 (2006).
[Crossref]

Nat. Commun. (2)

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

K. A. G. Fisher, D. G. England, J.-P. W. MacLean, P. J. Bustard, K. J. Resch, and B. J. Sussman, “Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory,” Nat. Commun. 7, 11200 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Karpiński, Mi. Jachura, L. J Wright, and B. J Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11,53–57 (2017).
[Crossref]

New J. Phys. (2)

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13(3), 033027 (2011).
[Crossref]

T. Zhong, H. Zhou, R. D Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” New J. Phys. 17(2), 022002 (2015).
[Crossref]

Opt. Commun. (1)

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-µm-band cascaded wavelength conversion,” Opt. Commun. 187(1), 263–270 (2001).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Optica (3)

Phys. Rev. A (10)

A. Dosseva, Ł. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93(1), 013801 (2016).
[Crossref]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[Crossref]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67(5), 053810 (2003).
[Crossref]

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “Temporal shaping of a heralded single-photon wave packet,” Phys. Rev. A 77(1), 013829 (2008).
[Crossref]

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88(3), 032322 (2013).
[Crossref]

W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80(5), 053815 (2009).
[Crossref]

V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, and G. Leuchs, “Temporal shaping of single photons enabled by entanglement,” Phys. Rev. A 96(4), 043822 (2017).
[Crossref]

Y.-X. Gong, X.-B. Zou, T. C. Ralph, S.-N. Zhu, and G.-C. Guo, “Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non–photon-number-resolving detectors,” Phys. Rev. A 81(5), 052303 (2010).
[Crossref]

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95(6), 061803 (2017).
[Crossref]

M. Lucamarini, G. Vallone, I. Gianani, P. Mataloni, and G. Di Giuseppe, “Device-independent entanglement-based Bennett 1992 protocol,” Phys. Rev. A 86(3), 032325 (2012).
[Crossref]

Phys. Rev. Lett. (16)

Michael Varnava, Daniel E Browne, and Terry Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100(6), 060502 (2008).
[Crossref] [PubMed]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98(23), 230501 (2007).
[Crossref] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84(20), 4729–4732 (2000).
[Crossref] [PubMed]

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117(24), 243602 (2016).
[Crossref] [PubMed]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett. 84(23), 5304–5307 (2000).
[Crossref] [PubMed]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, “Orthogonal spectral coding of entangled photons,” Phys. Rev. Lett. 112(13), 133602 (2014).
[Crossref] [PubMed]

O. Kuzucu, M. Fiorentino, M. Albota, F. N. C. Wong, and F. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601 (2005).
[Crossref] [PubMed]

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

A. Eckstein, A. S. Christ, P. J. Mosley, and C. Silberhor, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106(1), 013603 (2011).
[Crossref] [PubMed]

M. Bellini, F. Marin, S. Viciani, A. Zavatta, and F. T. Arecchi, “Nonlocal pulse shaping with entangled photon pairs,” Phys. Rev. Lett. 90(4), 043602 (2003).
[Crossref] [PubMed]

A. Pe’Er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94(7), 073601 (2005).
[Crossref]

P. J Mosley, J. Lundeen, B. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100(13), 133601 (2008).
[Crossref] [PubMed]

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref] [PubMed]

A. N Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733 (2000).
[Crossref] [PubMed]

N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H.-A. Bachor, and C. Fabr,. “Surpassing the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88(20), 203601 (2002).
[Crossref] [PubMed]

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101(13), 130501 (2008).
[Crossref] [PubMed]

Phys. Rev. X (2)

S. Rahimi-Keshari, T. C. Ralph, and C. M Caves, “Sufficient conditions for efficient classical simulation of quantum optics,” Phys. Rev. X 6(2), 021039 (2016).

B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” Phys. Rev. X 5(4), 041017 (2015).

Quantum Electron. (1)

D.N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Quantum Electron. 10(9), 1112–1117 (1980).

Quantum Inf. Comput. (1)

A. B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing,” Quantum Inf. Comput. 3, 480 (2003).

Quantum Science and Technology (1)

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Science and Technology 2(3), 035001 (2017).
[Crossref]

Sci. Adv. (1)

N. Matsuda, “Deterministic reshaping of single-photon spectra using cross-phase modulation,” Sci. Adv. 2(3), e1501223 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Heralded source of temporally shaped single-photons. (a) The desired temporal mode can be carved out of PDC photons after the generation, which inevitably reduces the heralding efficiency. (b) With an appropriately designed pump field and group-velocity engineered nonlinear medium, the PDC photons are emitted directly in a desired temporal shape. In both scenarios the purity of heralded single photon rely on the separability of the PDC state in terms of signal and herald fields.
Fig. 2
Fig. 2 (a) Birefringent phasematched type-II PDC processes in the KTP waveguide versus pump wavelength. The pump and idler photons are TE polarised and the signal photon is TM polarised. The dots correspond to experimentally measured PDC photons with a tunable pulsed pump laser and a single-photon sensitive spectrometer. The data point at the degeneracy point, however, is measured by means of second harmonic generation with a pulsed pump at the central wavelength of 1275 nm. The error bars are smaller than the markers. To generate a single-mode JSA we use the AGVM condition which holds for a pump wavelength of 670 nm (indicated with the vertical dashed line) and a signal and idler wavelengths of 1411 nm and 1276 nm, respectively (star markers). (b) Theoretical spectral purity of the JSA for different pump bandwidths Δλp and crystal lengths L.
Fig. 3
Fig. 3 (a) The absolute value of the pump spectrum |α(ωp = ωs + ωi)| with the first-order Hermite-Gaussian profile with FWHM of 2 nm. (b) Phasematching function |ϕ(ωs, ωi)| of a KTP waveguide with a length of 16 mm. (c) Theoretical joint spectral amplitude |f(ωs, ωi)| of the PDC state and its marginal distributions. The modelled JSA shows a Schmidt number of K = 1.087 and a spectral purity of P = 0.919. All functions are plotted against wavelengths (instead of angular frequencies ωj) to provide a convenient comparison with the experimental data.
Fig. 4
Fig. 4 Experimental setup. To prepare ultrashort pump pulses at 670 nm we take second harmonics (SHG) of an optical parametric oscillator (OPO). In the spectral shaping setup, we use a reflective spatial light modulator (SLM) in a folded 4f-setup to shape the spectral amplitude and phase of the pump field. A telescope is used to match the size of each frequency component with SLM’s pixels to get an optimum resolution. The SLM reflects the beam at a slightly different angle which displaces the reflected beam vertically and allows us to collect the reflected beam with a d-shaped mirror. The generated PDC photons are separated on a broadband polarising beamsplitter (PBS). We use 4f-setups for both PDC photons to filter the undesirable background. Finally each beam is coupled into single-mode fibres (SMF) for telecom wavelengths.
Fig. 5
Fig. 5 Mean photon number N of one PDC arm versus pump pulse energy. The pump pulse energy is measured after the waveguide to account for the incoupling loss. The only fit parameter used for the fitting function sinh 2 ( α P ) is α = 0.28.
Fig. 6
Fig. 6 (a) Theoretical and experimentally measured phasematching functions phasematching function |ϕ(ωs, ωi)|. (b) A contour plot of the theoretical JSA function and the bandpass filters to remove the phasematching sidelobes. The widths of filters in signal and idler arms are 45 nm and 3 nm, respectively. Without any spectral filtering, the JSA features a Schmidt number K = 1.12 which increases to K = 1.03 when the idler filter is applied. Due to the specific distribution of JSA, filtering the signal photons cannot remove the phasematching sidelobes.
Fig. 7
Fig. 7 A few examples of the measured joint spectral intensities (JSIs), with the marginal spectral distribution of signal photon above in grey. The pump mode for each JSI is shown on the right side, where the grey shaded area is the spectral amplitude and the green line is the spectral phase. The pump modes are as the following: (a) Gaussian, (b) 1st-order Hermite-Gaussian, (c) 2nd-order Hermite-Gaussian, (d) 3rd-order Hermite-Gaussian, (e) frequency bins, with Schmidt numbers: Ka = 1.01, Kb = 1.01, Kc = 1.02, Kd = 1.02, Ke = 1.02.
Fig. 8
Fig. 8 The second-order correlation measurements of the idler and signal photons with the pump set to different bandwidths and different orders of Hermite-Gaussian modes. The error bars for the g signal ( 2 ) ( τ = 0 ) are smaller than the markers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H ^ PDC f ( ω s , ω i ) a ^ TM ( ω s ) a ^ TE ( ω i ) d ω s d ω i + h . c . ,
f ( ω s , ω i ) = α ( ω s + ω i ) ϕ ( ω s , ω i ) ,
f ( ω s , ω i ) g ( ω s ) h ( ω i ) ,
P = 1 K = g ( 2 ) ( 0 ) 1 .

Metrics