Abstract

We investigate cooperative behavior of three and four quantum emitters coupled to a common nanophotonic structure. We theoretically demonstrate that strong dipole-dipole interaction is attainable for emitter distances on the order of the operating wavelength in a couple of judiciously designed systems, including epsilon-near-zero parallel plate waveguide, SOI microring resonator, and silicon microshell/silica core structure. We also show that a high-purity W state can be generated with high efficiency in such systems, making them promising candidates for the generation of long-range quantum entanglement between multiple qubits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling [Invited]

A. M. Mahmoud, I. Liberal, and N. Engheta
Opt. Mater. Express 7(2) 415-424 (2017)

Controlling collective spontaneous emission with plasmonic waveguides

Ying Li and Christos Argyropoulos
Opt. Express 24(23) 26696-26708 (2016)

Dipole-dipole interaction between molecules mediated by a chain of silver nanoparticles

J. Lindberg, K. Lindfors, T. Setälä, and M. Kaivola
J. Opt. Soc. Am. A 24(11) 3427-3431 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
    [Crossref] [PubMed]
  2. E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
    [Crossref]
  3. A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
    [Crossref]
  4. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
    [Crossref] [PubMed]
  5. A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342(6165), 1494–1496 (2013).
    [Crossref] [PubMed]
  6. A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
    [Crossref] [PubMed]
  7. J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
    [Crossref]
  8. M. A. Nielsen and I. A. Chuang, Quantum Computing and Quantum Information, 2nd ed. (Cambridge University, 2010).
  9. S. Haroche and J. M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University, 2006).
  10. Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
    [Crossref]
  11. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
    [Crossref] [PubMed]
  12. D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
    [Crossref]
  13. G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement,” Phys. Rev. B 84(4), 045310 (2011).
    [Crossref]
  14. P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
    [Crossref]
  15. M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89(24), 247902 (2002).
    [Crossref] [PubMed]
  16. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  17. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
    [Crossref] [PubMed]
  18. A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
    [Crossref]
  19. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
    [Crossref]
  20. D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
    [Crossref]
  21. Z. Ficek and R. Tanaś, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372(5), 369–443 (2002).
    [Crossref]
  22. D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics (Dover Publications, 1998).
  23. M. O. Scully, “Collective Lamb shift in single photon Dicke superradiance,” Phys. Rev. Lett. 102(14), 143601 (2009).
    [Crossref] [PubMed]
  24. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
    [Crossref]
  25. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
  26. R. Tanaś and Z. Ficek, “Entangling two atoms via spontaneous emission,” J. Opt. B 6(3), S90–S97 (2004).
    [Crossref]
  27. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85(11), 2392–2395 (2000).
    [Crossref] [PubMed]
  28. G.-Y. Chen, C.-M. Li, and Y.-N. Chen, “Generating maximum entanglement under asymmetric couplings to surface plasmons,” Opt. Lett. 37(8), 1337–1339 (2012).
    [Crossref] [PubMed]
  29. J. Hakami and M. S. Zubairy, “Nanoshell-mediated robust entanglement between coupled quantum dots,” Phys. Rev. A 93(2), 022320 (2016).
    [Crossref]
  30. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

2016 (2)

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
[Crossref]

J. Hakami and M. S. Zubairy, “Nanoshell-mediated robust entanglement between coupled quantum dots,” Phys. Rev. A 93(2), 022320 (2016).
[Crossref]

2015 (4)

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

2013 (1)

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

2012 (2)

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

G.-Y. Chen, C.-M. Li, and Y.-N. Chen, “Generating maximum entanglement under asymmetric couplings to surface plasmons,” Opt. Lett. 37(8), 1337–1339 (2012).
[Crossref] [PubMed]

2011 (2)

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement,” Phys. Rev. B 84(4), 045310 (2011).
[Crossref]

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

2010 (5)

D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[Crossref] [PubMed]

2009 (1)

M. O. Scully, “Collective Lamb shift in single photon Dicke superradiance,” Phys. Rev. Lett. 102(14), 143601 (2009).
[Crossref] [PubMed]

2008 (1)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

2007 (2)

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[Crossref] [PubMed]

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

2004 (1)

R. Tanaś and Z. Ficek, “Entangling two atoms via spontaneous emission,” J. Opt. B 6(3), S90–S97 (2004).
[Crossref]

2002 (2)

M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89(24), 247902 (2002).
[Crossref] [PubMed]

Z. Ficek and R. Tanaś, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372(5), 369–443 (2002).
[Crossref]

2000 (1)

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85(11), 2392–2395 (2000).
[Crossref] [PubMed]

1954 (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Amann, M.-C.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

Bauters, J. F.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
[Crossref]

Blais, A.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Böhm, G.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

Bouwmeester, D.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
[Crossref]

Bowers, J. E.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
[Crossref]

Bremner, M. J.

M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89(24), 247902 (2002).
[Crossref] [PubMed]

Calleja, J. M.

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

Chang, D. E.

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

Chen, G. Y.

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement,” Phys. Rev. B 84(4), 045310 (2011).
[Crossref]

Chen, G.-Y.

Chen, H.

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

Chen, Y. N.

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement,” Phys. Rev. B 84(4), 045310 (2011).
[Crossref]

Chen, Y.-N.

Childress, L.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[Crossref] [PubMed]

Chou, C. H.

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement,” Phys. Rev. B 84(4), 045310 (2011).
[Crossref]

Chow, J. M.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Dawson, C. M.

M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89(24), 247902 (2002).
[Crossref] [PubMed]

de Dood, M. J. A.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
[Crossref]

Devoret, M. H.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Dicke, R. H.

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Ding, D.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
[Crossref]

Dodd, J. L.

M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89(24), 247902 (2002).
[Crossref] [PubMed]

Douglas, J. S.

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

Dutt, M. V. G.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[Crossref] [PubMed]

Dzsotjan, D.

D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
[Crossref]

Fedorov, A.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Ficek, Z.

R. Tanaś and Z. Ficek, “Entangling two atoms via spontaneous emission,” J. Opt. B 6(3), S90–S97 (2004).
[Crossref]

Z. Ficek and R. Tanaś, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372(5), 369–443 (2002).
[Crossref]

Finley, J. J.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

Fleischhauer, M.

D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
[Crossref]

Frunzio, L.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Gallardo, E.

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

Gambetta, J. M.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

García, J. M.

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

Garcia-Vidal, F. J.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

García-Vidal, F. J.

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Gilchrist, A.

M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89(24), 247902 (2002).
[Crossref] [PubMed]

Gill, A. T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[Crossref] [PubMed]

Girvin, S. M.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Goban, A.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

González-Ballestero, C.

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Gonzalez-Tudela, A.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Gorshkov, V.

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

Granados, D.

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

Guo, G. C.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85(11), 2392–2395 (2000).
[Crossref] [PubMed]

Habibian, H.

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

Hakami, J.

J. Hakami and M. S. Zubairy, “Nanoshell-mediated robust entanglement between coupled quantum dots,” Phys. Rev. A 93(2), 022320 (2016).
[Crossref]

Harrow, A. W.

M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89(24), 247902 (2002).
[Crossref] [PubMed]

Hauke, N.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

Heck, M. J. R.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
[Crossref]

Hemmer, P. R.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[Crossref] [PubMed]

Henage, T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[Crossref] [PubMed]

Hofbauer, F.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

Hood, J. D.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

Houck, A. A.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Huidobro, P. A.

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Hung, C.-L.

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

Isenhower, L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[Crossref] [PubMed]

Jelezko, F.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[Crossref] [PubMed]

Jiang, L.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[Crossref] [PubMed]

Johnson, B. R.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Johnson, T. A.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[Crossref] [PubMed]

Kaniber, M.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

Kimble, H. J.

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Koch, J.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Lalumière, K.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Lambert, N.

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement,” Phys. Rev. B 84(4), 045310 (2011).
[Crossref]

Laucht, A.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

Li, C.-M.

Lodahl, P.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

Lukin, M. D.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[Crossref] [PubMed]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Majer, J.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Martin-Cano, D.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Martínez, L. J.

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

Martin-Moreno, L.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Martín-Moreno, L.

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Maze, J.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[Crossref] [PubMed]

Moreno, E.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

Mortimer, D.

M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89(24), 247902 (2002).
[Crossref] [PubMed]

Muniz, J. A.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

Nielsen, M. A.

M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89(24), 247902 (2002).
[Crossref] [PubMed]

Nikitin, A. Y.

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Nori, F.

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement,” Phys. Rev. B 84(4), 045310 (2011).
[Crossref]

Nowak, A. K.

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

Osborne, T. J.

M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89(24), 247902 (2002).
[Crossref] [PubMed]

Painter, O.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

Pereira, L. M. C.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
[Crossref]

Postigo, P. A.

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

Prieto, I.

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

Reiserer, A.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

Rempe, G.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

Saffman, M.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[Crossref] [PubMed]

Sanders, B. C.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Sarkar, D.

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

Schoelkopf, R. J.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Schreier, J. A.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Schuster, D. I.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Scully, M. O.

M. O. Scully, “Collective Lamb shift in single photon Dicke superradiance,” Phys. Rev. Lett. 102(14), 143601 (2009).
[Crossref] [PubMed]

Sørensen, A. S.

D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
[Crossref]

Stobbe, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

Taboada, A. G.

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

Tanas, R.

R. Tanaś and Z. Ficek, “Entangling two atoms via spontaneous emission,” J. Opt. B 6(3), S90–S97 (2004).
[Crossref]

Z. Ficek and R. Tanaś, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372(5), 369–443 (2002).
[Crossref]

Tejedor, C.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

Togan, E.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[Crossref] [PubMed]

Urban, E.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[Crossref] [PubMed]

van der Meulen, H. P.

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

van Loo, A. F.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Vantomme, A.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
[Crossref]

Villas-Bôas, J. M.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

Walker, T. G.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[Crossref] [PubMed]

Wallraff, A.

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

Welker, G.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
[Crossref]

Xu, J.

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

Yang, Y.

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

Yu, S.-P.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

Zhang, X. L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[Crossref] [PubMed]

Zheng, S. B.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85(11), 2392–2395 (2000).
[Crossref] [PubMed]

Zhu, S.-Y.

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

Zibrov, A. S.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[Crossref] [PubMed]

Zubairy, M. S.

J. Hakami and M. S. Zubairy, “Nanoshell-mediated robust entanglement between coupled quantum dots,” Phys. Rev. A 93(2), 022320 (2016).
[Crossref]

J. Opt. B (1)

R. Tanaś and Z. Ficek, “Entangling two atoms via spontaneous emission,” J. Opt. B 6(3), S90–S97 (2004).
[Crossref]

Nat. Photonics (2)

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photonics 10(6), 385–388 (2016).
[Crossref]

J. S. Douglas, H. Habibian, C.-L. Hung, V. Gorshkov, H. J. Kimble, and D. E. Chang, “Quantum many-body models with cold atoms coupled to photonic crystals,” Nat. Photonics 9(5), 326–331 (2015).
[Crossref]

Nature (2)

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature 449(7161), 443–447 (2007).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rep. (1)

Z. Ficek and R. Tanaś, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372(5), 369–443 (2002).
[Crossref]

Phys. Rev. (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Phys. Rev. A (2)

J. Hakami and M. S. Zubairy, “Nanoshell-mediated robust entanglement between coupled quantum dots,” Phys. Rev. A 93(2), 022320 (2016).
[Crossref]

Y. Yang, J. Xu, H. Chen, and S.-Y. Zhu, “Long-lived entanglement between two distant atoms via left-handed materials,” Phys. Rev. A 82(3), 030304 (2010).
[Crossref]

Phys. Rev. B (5)

E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. García, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81(19), 193301 (2010).
[Crossref]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82(7), 075305 (2010).
[Crossref]

D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach,” Phys. Rev. B 82(7), 075427 (2010).
[Crossref]

G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori, “Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement,” Phys. Rev. B 84(4), 045310 (2011).
[Crossref]

P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Phys. Rev. Lett. (6)

M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89(24), 247902 (2002).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010).
[Crossref] [PubMed]

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[Crossref] [PubMed]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85(11), 2392–2395 (2000).
[Crossref] [PubMed]

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115(6), 063601 (2015).
[Crossref] [PubMed]

M. O. Scully, “Collective Lamb shift in single photon Dicke superradiance,” Phys. Rev. Lett. 102(14), 143601 (2009).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Science (2)

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[Crossref] [PubMed]

A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342(6165), 1494–1496 (2013).
[Crossref] [PubMed]

Other (5)

M. A. Nielsen and I. A. Chuang, Quantum Computing and Quantum Information, 2nd ed. (Cambridge University, 2010).

S. Haroche and J. M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University, 2006).

D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics (Dover Publications, 1998).

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Coupling of (a) three and (b) four quantum emitters through the vacuum field. Each emitter has two energy levels and can be viewed as a qubit. Scheme of the quantum states involved and transitions between them (red dashed line with double arrows) in the case of (c) three and (d) four emitters.
Fig. 2
Fig. 2 Configurations of three quantum emitters with their dipole orientations (a) in and (b) out of the plane of equilateral triangle. (c) Configuration of four quantum emitters with equal DDIs. (d) Noncoherent mutual interaction strength in free space (normalized to individual spontaneous emission rate) as a function of dipole-dipole distance (normalized to free space wavelength). The red, blue and green solid lines correspond to the configurations in Figs. 2(a), 2(b) and 2(c), respectively.
Fig. 3
Fig. 3 (a) Schematic of three dipoles placing in a PPW composed of PEC or silver. The width of the air gap is denoted as d. The cross section of the system in the YOZ plane is shown in the inset. (b) Noncoherent mutual interaction strength in PPW (normalized to individual spontaneous emission rate) as a function of dipole-dipole distance (normalized to free space wavelength). The dipole configuration is illustrated in Fig. 2(a). The red solid, blue dashed and green dotted lines represent the PEC ENZ, silver ENZ and silver propagating operation, respectively. (c) Phase progression of the in-plane electric field in the XOY plane of a silver PPW operating at its ENZ wavelength. The orientation of the dipole is indicated in the figure. (d) Counterpart of Fig. 3(b) with z-oriented dipoles. The configuration is shown in Fig. 2(b). All the waveguide parameters are the same as in Fig. 3(b).
Fig. 4
Fig. 4 (a) Schematic of three dipoles embedded in a SOI microring resonator. The ring radius, width and height are R, w and h, respectively. Mode profile in (b) the microring designed for the configuration in Fig. 2(a) and (c) the counterpart microring designed for the configuration in Fig. 2(b). The dipole orientations are indicated in the figures. (d) Spectrum of the noncoherent mutual interaction strength γi/γ0 (red dashed line) and Purcell factor (blue solid line) in the SOI microring resonator shown in Fig. 4(b). (e) Counterpart of Fig. 4(d) but in the SOI microring resonator shown in Fig. 4(c).
Fig. 5
Fig. 5 (a) Schematic of four dipoles embedded in the silicon microshell layer on the silica core. The core sphere radius is R, and the thickness of shell layer is t. The dipole orientations are indicated in the figure. (b) Spectrum of the noncoherent mutual interaction strength γi/γ0 (red dashed line) and Purcell factor (blue solid line) in the silicon microshell/silica core structure. The configuration of four dipoles is shown in Fig. 2(c).
Fig. 6
Fig. 6 (a) Time evolution of the state populations ρWW (red solid line) and ρAA + ρBB (blue dashed line) as well as the purity of W state P (green dashed line) . The initial state is | 001and γi/γ0 = −0.486. (b) Purity of W state P as a function of noncoherent mutual interaction strength γi/γ0 at t = 3γ0−1 (red solid line) and 5γ0−1 (blue dashed line).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ρ ˙ = i [ρ,H]+ j,k γ jk 2 (2 σ j ρ σ k + σ j + σ k ρρ σ j + σ k )
H= ω 0 j σ j + σ j + j<k g jk ( σ j + σ k + σ k + σ j )
γ jk = 2 ω 0 2 ε 0 c 2 Im[ μ j * G ( ω 0 , r j , r k ) μ k ], g jk = 1 π ε 0 Ρ 0 ω 2 Im[ μ j * G (ω, r j , r k ) μ k ] c 2 (ω ω 0 ) dω
ρ ˙ 11 = ig ( ρ 12 + ρ 13 ρ 21 ρ 31 ) γ 0 ρ 11 γ i 2 ( ρ 12 + ρ 13 + ρ 21 + ρ 31 ), ρ ˙ 22 = ig ( ρ 21 + ρ 23 ρ 12 ρ 32 ) γ 0 ρ 22 γ i 2 ( ρ 21 + ρ 23 + ρ 12 + ρ 32 ), ρ ˙ 33 = ig ( ρ 31 + ρ 32 ρ 13 ρ 23 ) γ 0 ρ 33 γ i 2 ( ρ 31 + ρ 32 + ρ 13 + ρ 23 ), ρ 00 + ρ 11 + ρ 22 + ρ 33 =1
ρ ˙ WW =(2 γ i γ 0 ) ρ WW , ρ ˙ AA =( γ i γ 0 ) ρ AA , ρ ˙ BB =( γ i γ 0 ) ρ BB , ρ 00 + ρ AA + ρ BB + ρ WW =1
ρ ˙ WW =(3 γ i γ 0 ) ρ WW , ρ ˙ AA =( γ i γ 0 ) ρ AA , ρ ˙ BB =( γ i γ 0 ) ρ BB , ρ ˙ CC =( γ i γ 0 ) ρ CC , ρ 00 + ρ AA + ρ BB + ρ CC + ρ WW =1
G ( r 0 +r, r 0 )= e ikr 4πr [ ( 1+ ikr1 k 2 r 2 ) I + 33ikr k 2 r 2 k 2 r 2 rr r 2 ]
γ i = γ 0 β e αr cos(kπR)cos(kπRkr)

Metrics