Abstract

Liquid droplets cured at low temperatures or using ultraviolet light are primary approaches for fabricating refractive lenses without molds. Until now the performance of moldless lens fabrication process relied heavily on this step to precisely control the shape of each liquid droplet. Hence, a major hurdle in lenses fabricated from liquid droplets is the large variability of droplet shapes because they are sensitive to small amounts of interfacial forces. The shape of the final droplet critically affects the imaging performance of the lenses and cannot be reversed easily. Here, we aim to overcome this hurdle by performing in situ aberration correction using Fourier ptychography techniques. We demonstrate, for the first time, that computational optics can reverse high amounts of optical aberrations in moldless lenses and achieve high resolution imaging. In terms of imaging resolution, we successfully increased the resolving power of low powered moldless elastomer lenses by almost three-fold, from a numerical aperture of 0.035 to 0.099. The computational approach directly elucidates the spatially varying wavefront aberrations from each lens using the same imaging system. This provides direct feedback of droplet lens fabrication techniques without the need for advanced wavefront correction methods. The application of computational imaging onto moldless lenses, using consumer digital imaging systems, lends itself to the global efforts in decentralising high resolution image intensive scientific tools to the wider community.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabricating low cost and high performance elastomer lenses using hanging droplets

W. M. Lee, A. Upadhya, P. J. Reece, and Tri Giang Phan
Biomed. Opt. Express 5(5) 1626-1635 (2014)

Motion-corrected Fourier ptychography

Liheng Bian, Guoan Zheng, Kaikai Guo, Jinli Suo, Changhuei Yang, Feng Chen, and Qionghai Dai
Biomed. Opt. Express 7(11) 4543-4553 (2016)

Experimental robustness of Fourier ptychography phase retrieval algorithms

Li-Hao Yeh, Jonathan Dong, Jingshan Zhong, Lei Tian, Michael Chen, Gongguo Tang, Mahdi Soltanolkotabi, and Laura Waller
Opt. Express 23(26) 33214-33240 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Richards-Kortum and M. Oden, “Engineering. Devices for Low-Resource Health Care,” Science 342(6162), 1055–1057 (2013).
    [Crossref] [PubMed]
  2. R. Amarit, A. Kopwitthaya, P. Pongsoon, U. Jarujareet, K. Chaitavon, S. Porntheeraphat, S. Sumriddetchkajorn, and T. Koanantakool, “High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process,” PLoS One 11(1), e0146414 (2016).
    [Crossref] [PubMed]
  3. S. Ekgasit, N. Kaewmanee, P. Jangtawee, C. Thammacharoen, and M. Donphoongpri, “Elastomeric PDMS Planoconvex Lenses Fabricated by a Confined Sessile Drop Technique,” ACS Appl. Mater. Interfaces 8(31), 20474–20482 (2016).
    [Crossref] [PubMed]
  4. Z. Hong and R. Liang, “IR-laser assisted additive freeform optics manufacturing,” Sci. Rep. 7(1), 7145 (2017).
    [Crossref] [PubMed]
  5. T. Kamal, R. Watkins, Z. Cen, J. Rubinstein, G. Kong, and W. M. Lee, “Design and fabrication of a passive droplet dispenser for portable high resolution imaging system,” Sci. Rep. 7, 41482 (2017).
    [Crossref] [PubMed]
  6. W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Biomed. Opt. Express 5(5), 1626–1635 (2014).
    [Crossref] [PubMed]
  7. S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
    [Crossref] [PubMed]
  8. Y. Sung, F. Campa, and W.-C. Shih, “Open-source do-it-yourself multi-color fluorescence smartphone microscopy,” Biomed. Opt. Express 8(11), 5075–5086 (2017).
    [Crossref] [PubMed]
  9. Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
    [Crossref] [PubMed]
  10. A. C. Roy, M. Yadav, E. P. Arul, A. Khanna, and A. Ghatak, “Generation of Aspherical Optical Lenses via Arrested Spreading and Pinching of a Cross-Linkable Liquid,” Langmuir 32(21), 5356–5364 (2016).
    [Crossref] [PubMed]
  11. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [Crossref] [PubMed]
  12. R. W. Gerchberg and W. O. Saxton, “Phase determination from image, and diffraction plane pictures,” Optik (Stuttg.) 34, 237–246 (1972).
  13. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13(11), 2693–2703 (1974).
    [Crossref] [PubMed]
  14. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
    [PubMed]
  15. X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
    [Crossref] [PubMed]
  16. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref] [PubMed]
  17. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier Ptychography with an LED array microscope,” Biomed. Opt. Express 5(7), 2376–2389 (2014).
    [Crossref] [PubMed]
  18. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
    [Crossref] [PubMed]
  19. G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21(13), 15131–15143 (2013).
    [Crossref] [PubMed]
  20. S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Biomed. Opt. Express 5(10), 3305–3310 (2014).
    [Crossref] [PubMed]
  21. J. Kim, B. M. Henley, C. H. Kim, H. A. Lester, and C. Yang, “Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy,” Biomed. Opt. Express 7(8), 3097–3110 (2016).
    [Crossref] [PubMed]
  22. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3(1), 27–29 (1978).
    [Crossref] [PubMed]
  23. L.-H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen, G. Tang, M. Soltanolkotabi, and L. Waller, “Experimental robustness of Fourier ptychography phase retrieval algorithms,” Opt. Express 23(26), 33214–33240 (2015).
    [Crossref] [PubMed]
  24. L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2(2), 104–111 (2015).
    [Crossref]
  25. J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space,” Opt. Express 24(14), 15765–15781 (2016).
    [Crossref] [PubMed]
  26. S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
    [Crossref] [PubMed]
  27. G. Chavent and K. Kunisch, “Convergence of Tikhonov regularization for constrained ill-posed inverse problems,” Inverse Probl. 10(1), 63–76 (1994).
    [Crossref]
  28. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16(10), 7264–7278 (2008).
    [Crossref] [PubMed]
  29. R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
    [Crossref] [PubMed]

2017 (4)

Z. Hong and R. Liang, “IR-laser assisted additive freeform optics manufacturing,” Sci. Rep. 7(1), 7145 (2017).
[Crossref] [PubMed]

T. Kamal, R. Watkins, Z. Cen, J. Rubinstein, G. Kong, and W. M. Lee, “Design and fabrication of a passive droplet dispenser for portable high resolution imaging system,” Sci. Rep. 7, 41482 (2017).
[Crossref] [PubMed]

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Y. Sung, F. Campa, and W.-C. Shih, “Open-source do-it-yourself multi-color fluorescence smartphone microscopy,” Biomed. Opt. Express 8(11), 5075–5086 (2017).
[Crossref] [PubMed]

2016 (5)

A. C. Roy, M. Yadav, E. P. Arul, A. Khanna, and A. Ghatak, “Generation of Aspherical Optical Lenses via Arrested Spreading and Pinching of a Cross-Linkable Liquid,” Langmuir 32(21), 5356–5364 (2016).
[Crossref] [PubMed]

R. Amarit, A. Kopwitthaya, P. Pongsoon, U. Jarujareet, K. Chaitavon, S. Porntheeraphat, S. Sumriddetchkajorn, and T. Koanantakool, “High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process,” PLoS One 11(1), e0146414 (2016).
[Crossref] [PubMed]

S. Ekgasit, N. Kaewmanee, P. Jangtawee, C. Thammacharoen, and M. Donphoongpri, “Elastomeric PDMS Planoconvex Lenses Fabricated by a Confined Sessile Drop Technique,” ACS Appl. Mater. Interfaces 8(31), 20474–20482 (2016).
[Crossref] [PubMed]

J. Kim, B. M. Henley, C. H. Kim, H. A. Lester, and C. Yang, “Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy,” Biomed. Opt. Express 7(8), 3097–3110 (2016).
[Crossref] [PubMed]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space,” Opt. Express 24(14), 15765–15781 (2016).
[Crossref] [PubMed]

2015 (4)

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
[Crossref] [PubMed]

L.-H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen, G. Tang, M. Soltanolkotabi, and L. Waller, “Experimental robustness of Fourier ptychography phase retrieval algorithms,” Opt. Express 23(26), 33214–33240 (2015).
[Crossref] [PubMed]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2(2), 104–111 (2015).
[Crossref]

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (4)

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21(13), 15131–15143 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

R. Richards-Kortum and M. Oden, “Engineering. Devices for Low-Resource Health Care,” Science 342(6162), 1055–1057 (2013).
[Crossref] [PubMed]

2008 (1)

2001 (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

1994 (1)

G. Chavent and K. Kunisch, “Convergence of Tikhonov regularization for constrained ill-posed inverse problems,” Inverse Probl. 10(1), 63–76 (1994).
[Crossref]

1982 (1)

1978 (1)

1974 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “Phase determination from image, and diffraction plane pictures,” Optik (Stuttg.) 34, 237–246 (1972).

Amarit, R.

R. Amarit, A. Kopwitthaya, P. Pongsoon, U. Jarujareet, K. Chaitavon, S. Porntheeraphat, S. Sumriddetchkajorn, and T. Koanantakool, “High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process,” PLoS One 11(1), e0146414 (2016).
[Crossref] [PubMed]

Arul, E. P.

A. C. Roy, M. Yadav, E. P. Arul, A. Khanna, and A. Ghatak, “Generation of Aspherical Optical Lenses via Arrested Spreading and Pinching of a Cross-Linkable Liquid,” Langmuir 32(21), 5356–5364 (2016).
[Crossref] [PubMed]

Barbastathis, G.

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Bian, Z.

Blankschtein, D.

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Brangaccio, D. J.

Bruning, J. H.

Campa, F.

Cen, Z.

T. Kamal, R. Watkins, Z. Cen, J. Rubinstein, G. Kong, and W. M. Lee, “Design and fabrication of a passive droplet dispenser for portable high resolution imaging system,” Sci. Rep. 7, 41482 (2017).
[Crossref] [PubMed]

Chaitavon, K.

R. Amarit, A. Kopwitthaya, P. Pongsoon, U. Jarujareet, K. Chaitavon, S. Porntheeraphat, S. Sumriddetchkajorn, and T. Koanantakool, “High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process,” PLoS One 11(1), e0146414 (2016).
[Crossref] [PubMed]

Chavent, G.

G. Chavent and K. Kunisch, “Convergence of Tikhonov regularization for constrained ill-posed inverse problems,” Inverse Probl. 10(1), 63–76 (1994).
[Crossref]

Chen, M.

Chen, Q.

Dong, J.

Dong, S.

Donphoongpri, M.

S. Ekgasit, N. Kaewmanee, P. Jangtawee, C. Thammacharoen, and M. Donphoongpri, “Elastomeric PDMS Planoconvex Lenses Fabricated by a Confined Sessile Drop Technique,” ACS Appl. Mater. Interfaces 8(31), 20474–20482 (2016).
[Crossref] [PubMed]

Ekgasit, S.

S. Ekgasit, N. Kaewmanee, P. Jangtawee, C. Thammacharoen, and M. Donphoongpri, “Elastomeric PDMS Planoconvex Lenses Fabricated by a Confined Sessile Drop Technique,” ACS Appl. Mater. Interfaces 8(31), 20474–20482 (2016).
[Crossref] [PubMed]

Fienup, J. R.

Gallagher, J. E.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “Phase determination from image, and diffraction plane pictures,” Optik (Stuttg.) 34, 237–246 (1972).

Ghatak, A.

A. C. Roy, M. Yadav, E. P. Arul, A. Khanna, and A. Ghatak, “Generation of Aspherical Optical Lenses via Arrested Spreading and Pinching of a Cross-Linkable Liquid,” Langmuir 32(21), 5356–5364 (2016).
[Crossref] [PubMed]

Guizar-Sicairos, M.

Guo, K.

Henley, B. M.

Herriott, D. R.

Hong, Z.

Z. Hong and R. Liang, “IR-laser assisted additive freeform optics manufacturing,” Sci. Rep. 7(1), 7145 (2017).
[Crossref] [PubMed]

Horstmeyer, R.

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21(13), 15131–15143 (2013).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

Jangtawee, P.

S. Ekgasit, N. Kaewmanee, P. Jangtawee, C. Thammacharoen, and M. Donphoongpri, “Elastomeric PDMS Planoconvex Lenses Fabricated by a Confined Sessile Drop Technique,” ACS Appl. Mater. Interfaces 8(31), 20474–20482 (2016).
[Crossref] [PubMed]

Jarujareet, U.

R. Amarit, A. Kopwitthaya, P. Pongsoon, U. Jarujareet, K. Chaitavon, S. Porntheeraphat, S. Sumriddetchkajorn, and T. Koanantakool, “High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process,” PLoS One 11(1), e0146414 (2016).
[Crossref] [PubMed]

Jeang, J.

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

Kaewmanee, N.

S. Ekgasit, N. Kaewmanee, P. Jangtawee, C. Thammacharoen, and M. Donphoongpri, “Elastomeric PDMS Planoconvex Lenses Fabricated by a Confined Sessile Drop Technique,” ACS Appl. Mater. Interfaces 8(31), 20474–20482 (2016).
[Crossref] [PubMed]

Kalow, J. A.

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Kamal, T.

T. Kamal, R. Watkins, Z. Cen, J. Rubinstein, G. Kong, and W. M. Lee, “Design and fabrication of a passive droplet dispenser for portable high resolution imaging system,” Sci. Rep. 7, 41482 (2017).
[Crossref] [PubMed]

Khanna, A.

A. C. Roy, M. Yadav, E. P. Arul, A. Khanna, and A. Ghatak, “Generation of Aspherical Optical Lenses via Arrested Spreading and Pinching of a Cross-Linkable Liquid,” Langmuir 32(21), 5356–5364 (2016).
[Crossref] [PubMed]

Kim, C. H.

Kim, J.

Koanantakool, T.

R. Amarit, A. Kopwitthaya, P. Pongsoon, U. Jarujareet, K. Chaitavon, S. Porntheeraphat, S. Sumriddetchkajorn, and T. Koanantakool, “High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process,” PLoS One 11(1), e0146414 (2016).
[Crossref] [PubMed]

Kolle, M.

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Kong, G.

T. Kamal, R. Watkins, Z. Cen, J. Rubinstein, G. Kong, and W. M. Lee, “Design and fabrication of a passive droplet dispenser for portable high resolution imaging system,” Sci. Rep. 7, 41482 (2017).
[Crossref] [PubMed]

Kopwitthaya, A.

R. Amarit, A. Kopwitthaya, P. Pongsoon, U. Jarujareet, K. Chaitavon, S. Porntheeraphat, S. Sumriddetchkajorn, and T. Koanantakool, “High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process,” PLoS One 11(1), e0146414 (2016).
[Crossref] [PubMed]

Kreysing, M.

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Kunisch, K.

G. Chavent and K. Kunisch, “Convergence of Tikhonov regularization for constrained ill-posed inverse problems,” Inverse Probl. 10(1), 63–76 (1994).
[Crossref]

Lee, C. H.

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

Lee, W. M.

T. Kamal, R. Watkins, Z. Cen, J. Rubinstein, G. Kong, and W. M. Lee, “Design and fabrication of a passive droplet dispenser for portable high resolution imaging system,” Sci. Rep. 7, 41482 (2017).
[Crossref] [PubMed]

W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Biomed. Opt. Express 5(5), 1626–1635 (2014).
[Crossref] [PubMed]

Lester, H. A.

Li, X.

Liang, R.

Z. Hong and R. Liang, “IR-laser assisted additive freeform optics manufacturing,” Sci. Rep. 7(1), 7145 (2017).
[Crossref] [PubMed]

Nagelberg, S.

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Nanda, P.

Nicolas, N.

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Oden, M.

R. Richards-Kortum and M. Oden, “Engineering. Devices for Low-Resource Health Care,” Science 342(6162), 1055–1057 (2013).
[Crossref] [PubMed]

Ou, X.

Phan, T. G.

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

Pongsoon, P.

R. Amarit, A. Kopwitthaya, P. Pongsoon, U. Jarujareet, K. Chaitavon, S. Porntheeraphat, S. Sumriddetchkajorn, and T. Koanantakool, “High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process,” PLoS One 11(1), e0146414 (2016).
[Crossref] [PubMed]

Porntheeraphat, S.

R. Amarit, A. Kopwitthaya, P. Pongsoon, U. Jarujareet, K. Chaitavon, S. Porntheeraphat, S. Sumriddetchkajorn, and T. Koanantakool, “High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process,” PLoS One 11(1), e0146414 (2016).
[Crossref] [PubMed]

Ramchandran, K.

Reece, P. J.

Richards-Kortum, R.

R. Richards-Kortum and M. Oden, “Engineering. Devices for Low-Resource Health Care,” Science 342(6162), 1055–1057 (2013).
[Crossref] [PubMed]

Rosenfeld, D. P.

Roy, A. C.

A. C. Roy, M. Yadav, E. P. Arul, A. Khanna, and A. Ghatak, “Generation of Aspherical Optical Lenses via Arrested Spreading and Pinching of a Cross-Linkable Liquid,” Langmuir 32(21), 5356–5364 (2016).
[Crossref] [PubMed]

Rubinstein, J.

T. Kamal, R. Watkins, Z. Cen, J. Rubinstein, G. Kong, and W. M. Lee, “Design and fabrication of a passive droplet dispenser for portable high resolution imaging system,” Sci. Rep. 7, 41482 (2017).
[Crossref] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “Phase determination from image, and diffraction plane pictures,” Optik (Stuttg.) 34, 237–246 (1972).

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

Shih, W. C.

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

Shih, W.-C.

Shiradkar, R.

Soltanolkotabi, M.

Sresht, V.

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Subramanian, K.

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Sumriddetchkajorn, S.

R. Amarit, A. Kopwitthaya, P. Pongsoon, U. Jarujareet, K. Chaitavon, S. Porntheeraphat, S. Sumriddetchkajorn, and T. Koanantakool, “High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process,” PLoS One 11(1), e0146414 (2016).
[Crossref] [PubMed]

Sun, J.

Sung, Y.

Sung, Y. L.

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

Swager, T. M.

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Tang, G.

Thammacharoen, C.

S. Ekgasit, N. Kaewmanee, P. Jangtawee, C. Thammacharoen, and M. Donphoongpri, “Elastomeric PDMS Planoconvex Lenses Fabricated by a Confined Sessile Drop Technique,” ACS Appl. Mater. Interfaces 8(31), 20474–20482 (2016).
[Crossref] [PubMed]

Tian, L.

Upadhya, A.

Waller, L.

Watkins, R.

T. Kamal, R. Watkins, Z. Cen, J. Rubinstein, G. Kong, and W. M. Lee, “Design and fabrication of a passive droplet dispenser for portable high resolution imaging system,” Sci. Rep. 7, 41482 (2017).
[Crossref] [PubMed]

White, A. D.

Willems, P.

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
[Crossref] [PubMed]

Yadav, M.

A. C. Roy, M. Yadav, E. P. Arul, A. Khanna, and A. Ghatak, “Generation of Aspherical Optical Lenses via Arrested Spreading and Pinching of a Cross-Linkable Liquid,” Langmuir 32(21), 5356–5364 (2016).
[Crossref] [PubMed]

Yang, C.

Yeh, L.-H.

Zarzar, L. D.

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Zhang, Y.

Zheng, G.

Zhong, J.

Zuo, C.

ACS Appl. Mater. Interfaces (1)

S. Ekgasit, N. Kaewmanee, P. Jangtawee, C. Thammacharoen, and M. Donphoongpri, “Elastomeric PDMS Planoconvex Lenses Fabricated by a Confined Sessile Drop Technique,” ACS Appl. Mater. Interfaces 8(31), 20474–20482 (2016).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (5)

Comput. Med. Imaging Graph. (1)

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with Fourier ptychography,” Comput. Med. Imaging Graph. 42, 38–43 (2015).
[Crossref] [PubMed]

Inverse Probl. (1)

G. Chavent and K. Kunisch, “Convergence of Tikhonov regularization for constrained ill-posed inverse problems,” Inverse Probl. 10(1), 63–76 (1994).
[Crossref]

J. Biomed. Opt. (1)

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

J. Refract. Surg. (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

Langmuir (1)

A. C. Roy, M. Yadav, E. P. Arul, A. Khanna, and A. Ghatak, “Generation of Aspherical Optical Lenses via Arrested Spreading and Pinching of a Cross-Linkable Liquid,” Langmuir 32(21), 5356–5364 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Nagelberg, L. D. Zarzar, N. Nicolas, K. Subramanian, J. A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T. M. Swager, and M. Kolle, “Reconfigurable and responsive droplet-based compound micro-lenses,” Nat. Commun. 8, 14673 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Optica (1)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “Phase determination from image, and diffraction plane pictures,” Optik (Stuttg.) 34, 237–246 (1972).

PLoS One (1)

R. Amarit, A. Kopwitthaya, P. Pongsoon, U. Jarujareet, K. Chaitavon, S. Porntheeraphat, S. Sumriddetchkajorn, and T. Koanantakool, “High-Quality Large-Magnification Polymer Lens from Needle Moving Technique and Thermal Assisted Moldless Fabrication Process,” PLoS One 11(1), e0146414 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

Z. Hong and R. Liang, “IR-laser assisted additive freeform optics manufacturing,” Sci. Rep. 7(1), 7145 (2017).
[Crossref] [PubMed]

T. Kamal, R. Watkins, Z. Cen, J. Rubinstein, G. Kong, and W. M. Lee, “Design and fabrication of a passive droplet dispenser for portable high resolution imaging system,” Sci. Rep. 7, 41482 (2017).
[Crossref] [PubMed]

Science (1)

R. Richards-Kortum and M. Oden, “Engineering. Devices for Low-Resource Health Care,” Science 342(6162), 1055–1057 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Optical setup for digital imaging with moldless lens. a) Schematic of imaging setup, a LED matrix used for illumination, a USAF target card is used as the sample, L1 is the imaging objective lens, L2 is the tube lens. The lenses (L1 and L2) are manufactured with polydimethylsiloxane (PDMS) droplets using passive droplet lenses dispensing process and the CMOS is a Raspberry Pi camera (without the camera lens). c) and d) are cropped images of USAF target card 1951 using two different moldless lenses as L1 lens (scale bars indicate 1 mm and 2 mm). Lens in Fig. 1(c) possesses a clear aperture of width 3 mm and focal length of 12 mm and lens in Fig. 1(d) has a diameter of ~2.8 mm and focal length of ~13 mm. e) shows the wider field of view of image shown in Fig. 1(d) that exhibits significant image distortions.
Fig. 2
Fig. 2 FP imaging methodology using commercial aspheric lens. a) A circular grid of LEDs (n = 293) is digitally controlled and turned on sequentially. Here we have shown three separate LEDs (1, 2, 3). b) Individual images acquired using the imaging setup described in Fig. 1(a) with the three LEDs. c) A schematic overview of the Fourier Ptychography (FP) process being applied to all the 293 intensity images acquired over multiple iterations. FP works by alternating between spatial and frequency domain through fast Fourier transforms (FFT) to overcome inverse problems. d) Reconstructed object. i) After optimizing for all regions of interest, the full field of view is digitally stitched together as a single image. (ii) Comparison of improvement in image contrast by highlighting elements 5-6 of group 7 on the USAF target card. (iii) Line plots to quantify the improvement of resolution and contrast.
Fig. 3
Fig. 3 FP retrieval and aberration correction of moldless lenses. a) Imaging setup using a single moldless lens (focal length ~12 mm). b) and c) show the images acquired at two different image planes respectively. d) Completed reconstruction of the optimized full FOV after digital stitching. e) Comparison between the image contrast of element 1 of group 7. f) Quantification of the image contrast improvement with a line plot. g) Setup to image through two moldless lenses as a compound microscope. h) Single image acquired using center LED. i) Completed reconstruction of the optimized full FOV after digital stitching. j) Comparison between the image contrast of element 3 of group 7. k) Quantification of the image contrast improvement with a line plot.
Fig. 4
Fig. 4 Analysis of local aberrations. a) and b) show the recovered pupil functions from five different positions across the full FOV. We chose 1 centre and 4 off-axis regions to showcase the variations of the wavefront aberrations across the lens. c) Comparison of the peak-valley magnitudes of different Zernike modes from the retrieved pupil functions of single moldless lens (Fig. 3(a)), compound lenses (a pair of moldless lenses- Fig. 3(g)), aspheric lens (shown in Fig. 2) and an objective 5x lens (not shown).
Fig. 5
Fig. 5 Aberrations in terms of Zernike modes. Demonstration of presence of higher-order aberrations through the distribution of the Zernike modes across the different field of views.
Fig. 6
Fig. 6 Demonstration of impact of various initial guesses for FP reconstruction on moldless lenses. a) large field of view of USAF 1951 target card using centre LED b) Different initial guesses from different LED illumination positions. c) MTF demonstrating the improvement in contrast post-FP.

Tables (1)

Tables Icon

Table 1 Parameters (RL and Roverlap)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R overlap = 1 π [ 2 cos 1 ( 1 2 R L ) 1 R L 1 ( 1 2 R L ) 2 ]
O i+1 ( k )= O i ( k )+ 1 max( | P i ( k ) | ) | P i ( k+ k q ) | | P i ( k+ k q ) | * ( φ q i ( k+ k q ) O i ( k ) P i ( k+ k q ) ) | P i ( k ) | 2 +α
P i+1 ( k )= P i ( k )+ 1 max( | O i ( k k q ) | ) | O i ( k k q ) | * ( φ q i ( k ) O i ( k k q ) P i ( k ) ) | O i ( k k q ) | 2 +β

Metrics