Abstract

This article presents an innovative high spectral resolution waveguide spectrometer, from the concept to the prototype demonstration and the test results. The main goal is to build the smallest possible Fourier transform spectrometer (FTS) with state of the art technology. This waveguide FTS takes advantage of a customized pattern of nano-samplers fabricated on the surface of a planar waveguide that allows the increase of the measurement points necessary for increasing the spectral bandwidth of the FTS in a fully static way. The use of a planar waveguide on the other hand allows enhancing the throughput in a waveguide spectrometer compared to the conventional devices made of single-mode waveguides. A prototype is made in silicon oxynitride/silicon dioxide technology and characterized in the visible range. This waveguide spectrometer shows a nominal bandwidth of 256~nm at a central wavelength of 633~nm thanks to a custom pattern of nanodisks providing a μm sampling interval. The implementation of this innovative waveguide FTS for a real-case scenario is explored and further development of such device for the imaging FTS application is discussed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Athermal planar-waveguide Fourier-transform spectrometer for methane detection

Hugh Podmore, Alan Scott, Pavel Cheben, Chris Sioris, Peter Cameron, Jens H. Schmid, Andrew Lohmann, Zachary Corriveau, and Regina Lee
Opt. Express 25(26) 33018-33028 (2017)

CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform

Xiaomin Nie, Eva Ryckeboer, Gunther Roelkens, and Roel Baets
Opt. Express 25(8) A409-A418 (2017)

Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers

Mirosław Florjańczyk, Pavel Cheben, Siegfried Janz, Alan Scott, Brian Solheim, and Dan-Xia Xu
Opt. Express 15(26) 18176-18189 (2007)

References

  • View by:
  • |
  • |
  • |

  1. L. Mertz, “Fourier spectroscopy, past, present, and future,” Appl. Opt. 10, 386–389 (1971).
    [Crossref] [PubMed]
  2. T. Dohi and T. Suzuki, “Attainment of high resolution holographic fourier transform spectroscopy,” Appl. Opt. 10, 1137–1140 (1971).
    [Crossref] [PubMed]
  3. A. Delâge, P. Cheben, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Static Fourier-transform waveguide spectrometers,” in Proceedings of 11th International Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.
  4. G. Lippmann, La photographie des couleurs, vol. 7 of 2 (Bulletin Sté Française de Photographie, 1891).
  5. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
    [Crossref]
  6. J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
    [Crossref]
  7. F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
    [Crossref]
  8. C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
    [Crossref]
  9. C. Bonneville, “High-resolution spectrometers shrink down with SWIFTS,” Laser Focus World 50, 57–59 (2014).
  10. A. Scott, M. Florjańczyk, P. Cheben, S. Janz, B. Solheim, and D.-X. Xu, “Micro-interferometer with high throughput for remote sensing,” Proc. SPIE 7208, 72080G (2009).
    [Crossref]
  11. SpaceX, “SpaceX Capabilities & Services,” (SpaceX website, 2016), http://www.spacex.com/about/capabilities .
  12. L. Keesey, “Nasa goddard team to demonstrate miniaturized spectrometer-on-a-chip,” (NASA’s Goddard Space Flight Center website, 2012), http://www.nasa.gov/topics/technology/features/chip-spectrometer.html .
  13. P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
    [Crossref]
  14. K. A. Walker, P. E. Sheese, C. D. Boone, and P. F. Bernath, “Atmospheric chemistry experiment fourier transform spectrometer (ACE-FTS) Version 3.5 Validation,” in Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW1A.4.
  15. M.-A. A. Soucy, F. Chateauneuf, C. Deutsch, and N. Etienne, “ACE-FTS instrument detailed design,” Proc. SPIE 4814, Earth Observing Systems VII (SPIE, 2002).
  16. M.-L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier spectrometers,” J. Opt. Soc. Am. A 8, 1457–1462 (1991).
    [Crossref]
  17. L. Mertz, “Heterodyne interference spectroscopy,” In Proceedings of ICO Conference (Congres de Stockholm, 1959).
  18. J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
    [Crossref]
  19. J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, R. R. Conway, C. M. Brown, and J. Wimperis, “Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1,” Appl. Opt. 42, 2829–2834 (2003).
    [Crossref] [PubMed]
  20. P. Krippner, J. Mohr, C. Müller, and C. Van der Sel, “Microspectrometer for the infrared range,” Proc. SPIE 2783, Micro- and Nanotechnology for Biomedical and Environmental Applications (SPIE, 1996).
  21. R. V. Kruzelecky and A. K. Ghosh, “High-performance miniature integrated infrared spectrometers for industrial and biochemical sensing,” Proc. SPIE 4205, 25–34 (2001).
    [Crossref]
  22. S.-H. Kong, J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “Integrated silicon microspectrometers,” IEEE Instrum. Meas. Mag. 4, 34–38 (2001).
    [Crossref]
  23. S. Grabarnik, A. Emadi, H. Wu, G. De Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47, 6442–6447 (2008).
    [Crossref] [PubMed]
  24. H. Bovensmann, M. Buchwitz, and J. Burrows, “Carbon monitoring satellite (CarbonSat) as an Earth Explorer Opportunity Mission: mission overview,” (University of Bremen, 2010).
  25. O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. De Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437–1439 (2004).
    [Crossref] [PubMed]
  26. G. D. Osowiecki, M. Madi, I. Shorubalko, I. Philipoussis, E. Alberti, T. Scharf, and H. P. Herzig, “Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared,” Proc. SPIE 9611, 96110P (2015).
    [Crossref]
  27. F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).
  28. P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.
  29. D. S. Goldman, P. L. White, and N. C. Anheier, “Planar waveguide spectrometer,” Proc. SPIE 1338, Optoelectronic Devices and Applications (SPIE, 1990).
  30. M. L. Calvo and V. Lakshminarayanan, Optical Waveguides: From Theory to Applied Technologies, vol. 5 (CRC Press, 2007).
  31. M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
    [Crossref]
  32. K. Sinclair, P. Cheben, M. Florjańczyk, B. Quine, A. Scott, and B. Solheim, “Design of a slab waveguide multiaperture spectrometer for field observations,” Can. Aeronaut. Space J. 57, 53–58 (2011).
    [Crossref]
  33. M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
    [Crossref]
  34. M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
    [Crossref]
  35. B. Guldimann and S. Kraft, “Focal plane array spectrometer: miniaturization effort for space optical instruments,” Proc. SPIE 7930, 79300O (2011).
    [Crossref]
  36. T. Guan, F. Ceyssens, and R. Puers, “An EpoClad/EpoCore-based platform for MOEMS fabrication,” J. Micromech. Microeng. 23, 125005 (2013).
    [Crossref]
  37. M. Malak, I. Philipoussis, H. P. Herzig, and T. Scharf, “Polymer based single mode optical waveguide for spectroscopy applications,” Proc. SPIE 8846, 884615 (2013).
    [Crossref]
  38. E. Machlin, Materials Science in Microelectronics: The Relationships between Thin Film Processing and Structure (Cambridge University, 2006).
  39. A. Gaind, G. Ackermann, V. Lucarini, and R. Bratter, “Oxynitride deposition kinetics in a SiH4-CO 2-NH 3-H 2 system,” J. Electrochem. Soc. 124, 599–606 (1977).
    [Crossref]
  40. T. Kanata, H. Takakura, and Y. Hamakawa, “Preparation of composition-controlled silicon oxynitride films by sputtering; deposition mechanism, and optical and surface properties,” Appl. Phys. 49, 305–311 (1989).
    [Crossref]
  41. R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron. 4, 930–937 (1998).
    [Crossref]
  42. W. Knolle, “Correlation of refractive index and silicon content of silicon oxynitride films,” Thin Solid Films 168, 123–132 (1989).
    [Crossref]
  43. K. Wouters and R. Puers, “Design and measurement of stress indicator structures for the characterization of EpoClad negative photoresist,” J. Micromech. Microeng. 19, 074019 (2009).
    [Crossref]
  44. European Space Agency (ESA), ESCC Qualified Parts List, REP005 ed. (2016).
  45. M. Hussein, K. Worhoff, G. Sengo, and A. Driessen, “Stability of low refractive index PECVD silicon oxynitride layers,” In Proceedings of Symposium IEEE/LEOS Benelux (IEEE, 2003), pp. 77–80.
  46. K. Wörhoff, A. Driessen, P. Lambeck, L. Hilderink, P. Linders, and T. J. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuator A-Phys. 74, 9–12 (1999).
    [Crossref]
  47. M. Ordal, L. Long, R. Bell, S. Bell, R. Bell, R. Alexander, and C. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [Crossref] [PubMed]
  48. L. Schulz and F. Tangherlini, “Optical constants of silver, gold, copper, and aluminum. ii. the index of refraction n,” J. Opt. Soc. Am. 44, 362–368 (1954).
    [Crossref]
  49. L. Schulz, “The optical constants of silver, gold, copper, and aluminum. i. the absorption coefficient k,” J. Opt. Soc. Am. 44, 357–362 (1954).
    [Crossref]
  50. E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic press, 1998).
  51. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
    [Crossref]
  52. K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff, “Plasmon modes in single gold nanodiscs,” Opt. Express 22, 12189–12199 (2014).
    [Crossref] [PubMed]
  53. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  54. W. Johnson, S. Kim, Z. Utegulov, J. Shaw, and B. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113, 14651–14657 (2009).
    [Crossref]
  55. I. Zoric, M. Zach, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
    [Crossref] [PubMed]
  56. C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–129.
  57. R. Brown, “Absorption and scattering of light by small particles,” Optica Acta: International Journal of Optics 31, 3 (1984).
    [Crossref]
  58. J. van den Meerakker, J. Metsemakers, and J. Giesbers, “The etching of Ti adhesion layers in H2O2 solutions,” J. Electrochem. Soc 149, C256–C260 (2002).
    [Crossref]
  59. O. Scholder, “Fabrication, simulation and characterization of tunable plasmonic nano antennas,” Diss. eth no 21847, ETH Zurich (2014).

2015 (2)

G. D. Osowiecki, M. Madi, I. Shorubalko, I. Philipoussis, E. Alberti, T. Scharf, and H. P. Herzig, “Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared,” Proc. SPIE 9611, 96110P (2015).
[Crossref]

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

2014 (3)

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

C. Bonneville, “High-resolution spectrometers shrink down with SWIFTS,” Laser Focus World 50, 57–59 (2014).

K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff, “Plasmon modes in single gold nanodiscs,” Opt. Express 22, 12189–12199 (2014).
[Crossref] [PubMed]

2013 (3)

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

T. Guan, F. Ceyssens, and R. Puers, “An EpoClad/EpoCore-based platform for MOEMS fabrication,” J. Micromech. Microeng. 23, 125005 (2013).
[Crossref]

M. Malak, I. Philipoussis, H. P. Herzig, and T. Scharf, “Polymer based single mode optical waveguide for spectroscopy applications,” Proc. SPIE 8846, 884615 (2013).
[Crossref]

2012 (1)

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

2011 (3)

K. Sinclair, P. Cheben, M. Florjańczyk, B. Quine, A. Scott, and B. Solheim, “Design of a slab waveguide multiaperture spectrometer for field observations,” Can. Aeronaut. Space J. 57, 53–58 (2011).
[Crossref]

B. Guldimann and S. Kraft, “Focal plane array spectrometer: miniaturization effort for space optical instruments,” Proc. SPIE 7930, 79300O (2011).
[Crossref]

I. Zoric, M. Zach, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref] [PubMed]

2010 (1)

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

2009 (3)

A. Scott, M. Florjańczyk, P. Cheben, S. Janz, B. Solheim, and D.-X. Xu, “Micro-interferometer with high throughput for remote sensing,” Proc. SPIE 7208, 72080G (2009).
[Crossref]

K. Wouters and R. Puers, “Design and measurement of stress indicator structures for the characterization of EpoClad negative photoresist,” J. Micromech. Microeng. 19, 074019 (2009).
[Crossref]

W. Johnson, S. Kim, Z. Utegulov, J. Shaw, and B. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113, 14651–14657 (2009).
[Crossref]

2008 (1)

2007 (3)

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
[Crossref]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

2005 (1)

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

2004 (1)

2003 (2)

J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, R. R. Conway, C. M. Brown, and J. Wimperis, “Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1,” Appl. Opt. 42, 2829–2834 (2003).
[Crossref] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

2002 (1)

J. van den Meerakker, J. Metsemakers, and J. Giesbers, “The etching of Ti adhesion layers in H2O2 solutions,” J. Electrochem. Soc 149, C256–C260 (2002).
[Crossref]

2001 (2)

R. V. Kruzelecky and A. K. Ghosh, “High-performance miniature integrated infrared spectrometers for industrial and biochemical sensing,” Proc. SPIE 4205, 25–34 (2001).
[Crossref]

S.-H. Kong, J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “Integrated silicon microspectrometers,” IEEE Instrum. Meas. Mag. 4, 34–38 (2001).
[Crossref]

1999 (1)

K. Wörhoff, A. Driessen, P. Lambeck, L. Hilderink, P. Linders, and T. J. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuator A-Phys. 74, 9–12 (1999).
[Crossref]

1998 (1)

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron. 4, 930–937 (1998).
[Crossref]

1997 (1)

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

1992 (1)

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

1991 (1)

1989 (2)

W. Knolle, “Correlation of refractive index and silicon content of silicon oxynitride films,” Thin Solid Films 168, 123–132 (1989).
[Crossref]

T. Kanata, H. Takakura, and Y. Hamakawa, “Preparation of composition-controlled silicon oxynitride films by sputtering; deposition mechanism, and optical and surface properties,” Appl. Phys. 49, 305–311 (1989).
[Crossref]

1984 (1)

R. Brown, “Absorption and scattering of light by small particles,” Optica Acta: International Journal of Optics 31, 3 (1984).
[Crossref]

1983 (1)

1977 (1)

A. Gaind, G. Ackermann, V. Lucarini, and R. Bratter, “Oxynitride deposition kinetics in a SiH4-CO 2-NH 3-H 2 system,” J. Electrochem. Soc. 124, 599–606 (1977).
[Crossref]

1971 (2)

1954 (2)

Abrams, M.

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

Ackermann, G.

A. Gaind, G. Ackermann, V. Lucarini, and R. Bratter, “Oxynitride deposition kinetics in a SiH4-CO 2-NH 3-H 2 system,” J. Electrochem. Soc. 124, 599–606 (1977).
[Crossref]

Albers, H.

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron. 4, 930–937 (1998).
[Crossref]

Albert, J.

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

Alberti, E.

G. D. Osowiecki, M. Madi, I. Shorubalko, I. Philipoussis, E. Alberti, T. Scharf, and H. P. Herzig, “Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared,” Proc. SPIE 9611, 96110P (2015).
[Crossref]

Alexander, R.

Alonso-Ramos, C.

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

Anheier, N. C.

D. S. Goldman, P. L. White, and N. C. Anheier, “Planar waveguide spectrometer,” Proc. SPIE 1338, Optoelectronic Devices and Applications (SPIE, 1990).

Bartek, M.

S.-H. Kong, J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “Integrated silicon microspectrometers,” IEEE Instrum. Meas. Mag. 4, 34–38 (2001).
[Crossref]

Bell, R.

Bell, S.

Benech, P.

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

Bernath, P. F.

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

K. A. Walker, P. E. Sheese, C. D. Boone, and P. F. Bernath, “Atmospheric chemistry experiment fourier transform spectrometer (ACE-FTS) Version 3.5 Validation,” in Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW1A.4.

Blaize, S.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

Bock, P.

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

Bock, P. J.

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

Bogdanov, A.

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–129.

Bonneville, C.

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

C. Bonneville, “High-resolution spectrometers shrink down with SWIFTS,” Laser Focus World 50, 57–59 (2014).

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

Boone, C. D.

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

K. A. Walker, P. E. Sheese, C. D. Boone, and P. F. Bernath, “Atmospheric chemistry experiment fourier transform spectrometer (ACE-FTS) Version 3.5 Validation,” in Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW1A.4.

Bovensmann, H.

H. Bovensmann, M. Buchwitz, and J. Burrows, “Carbon monitoring satellite (CarbonSat) as an Earth Explorer Opportunity Mission: mission overview,” (University of Bremen, 2010).

Bratter, R.

A. Gaind, G. Ackermann, V. Lucarini, and R. Bratter, “Oxynitride deposition kinetics in a SiH4-CO 2-NH 3-H 2 system,” J. Electrochem. Soc. 124, 599–606 (1977).
[Crossref]

Brown, C. M.

Brown, R.

R. Brown, “Absorption and scattering of light by small particles,” Optica Acta: International Journal of Optics 31, 3 (1984).
[Crossref]

Buchwitz, M.

H. Bovensmann, M. Buchwitz, and J. Burrows, “Carbon monitoring satellite (CarbonSat) as an Earth Explorer Opportunity Mission: mission overview,” (University of Bremen, 2010).

Burrows, J.

H. Bovensmann, M. Buchwitz, and J. Burrows, “Carbon monitoring satellite (CarbonSat) as an Earth Explorer Opportunity Mission: mission overview,” (University of Bremen, 2010).

Butler, M.

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

Calvo, M. L.

M. L. Calvo and V. Lakshminarayanan, Optical Waveguides: From Theory to Applied Technologies, vol. 5 (CRC Press, 2007).

Camy-Peyret, C.

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

Cardon, J. G.

Carleer, M.

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

Ceyssens, F.

T. Guan, F. Ceyssens, and R. Puers, “An EpoClad/EpoCore-based platform for MOEMS fabrication,” J. Micromech. Microeng. 23, 125005 (2013).
[Crossref]

Chang, S.-S.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Chateauneuf, F.

M.-A. A. Soucy, F. Chateauneuf, C. Deutsch, and N. Etienne, “ACE-FTS instrument detailed design,” Proc. SPIE 4814, Earth Observing Systems VII (SPIE, 2002).

Cheben, P.

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

K. Sinclair, P. Cheben, M. Florjańczyk, B. Quine, A. Scott, and B. Solheim, “Design of a slab waveguide multiaperture spectrometer for field observations,” Can. Aeronaut. Space J. 57, 53–58 (2011).
[Crossref]

A. Scott, M. Florjańczyk, P. Cheben, S. Janz, B. Solheim, and D.-X. Xu, “Micro-interferometer with high throughput for remote sensing,” Proc. SPIE 7208, 72080G (2009).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
[Crossref]

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

A. Delâge, P. Cheben, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Static Fourier-transform waveguide spectrometers,” in Proceedings of 11th International Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.

Clerbaux, C.

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

Coheur, P.-F.

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

Colin, R.

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

Conway, R. R.

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Correia, J. H.

S.-H. Kong, J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “Integrated silicon microspectrometers,” IEEE Instrum. Meas. Mag. 4, 34–38 (2001).
[Crossref]

Coutant, O.

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

Custillon, G.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

De Graaf, G.

S. Grabarnik, A. Emadi, H. Wu, G. De Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47, 6442–6447 (2008).
[Crossref] [PubMed]

S.-H. Kong, J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “Integrated silicon microspectrometers,” IEEE Instrum. Meas. Mag. 4, 34–38 (2001).
[Crossref]

De Mengin, M.

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

de Mengin Poirier, M.

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

De Ridder, R. M.

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron. 4, 930–937 (1998).
[Crossref]

De Rooij, N.

Delâge, A.

A. Delâge, P. Cheben, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Static Fourier-transform waveguide spectrometers,” in Proceedings of 11th International Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

Densmore, A.

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

Deutsch, C.

M.-A. A. Soucy, F. Chateauneuf, C. Deutsch, and N. Etienne, “ACE-FTS instrument detailed design,” Proc. SPIE 4814, Earth Observing Systems VII (SPIE, 2002).

Dherbecourt, J.-B.

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

Dohi, T.

Draine, B.

W. Johnson, S. Kim, Z. Utegulov, J. Shaw, and B. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113, 14651–14657 (2009).
[Crossref]

Driessen, A.

K. Wörhoff, A. Driessen, P. Lambeck, L. Hilderink, P. Linders, and T. J. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuator A-Phys. 74, 9–12 (1999).
[Crossref]

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron. 4, 930–937 (1998).
[Crossref]

M. Hussein, K. Worhoff, G. Sengo, and A. Driessen, “Stability of low refractive index PECVD silicon oxynitride layers,” In Proceedings of Symposium IEEE/LEOS Benelux (IEEE, 2003), pp. 77–80.

Duchemin, C.

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

Emadi, A.

Englert, C. R.

Etienne, N.

M.-A. A. Soucy, F. Chateauneuf, C. Deutsch, and N. Etienne, “ACE-FTS instrument detailed design,” Proc. SPIE 4814, Earth Observing Systems VII (SPIE, 2002).

Fedeli, J. M.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

Ferrand, J.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

Florjanczyk, M.

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

K. Sinclair, P. Cheben, M. Florjańczyk, B. Quine, A. Scott, and B. Solheim, “Design of a slab waveguide multiaperture spectrometer for field observations,” Can. Aeronaut. Space J. 57, 53–58 (2011).
[Crossref]

A. Scott, M. Florjańczyk, P. Cheben, S. Janz, B. Solheim, and D.-X. Xu, “Micro-interferometer with high throughput for remote sensing,” Proc. SPIE 7208, 72080G (2009).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
[Crossref]

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

A. Delâge, P. Cheben, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Static Fourier-transform waveguide spectrometers,” in Proceedings of 11th International Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.

Gaind, A.

A. Gaind, G. Ackermann, V. Lucarini, and R. Bratter, “Oxynitride deposition kinetics in a SiH4-CO 2-NH 3-H 2 system,” J. Electrochem. Soc. 124, 599–606 (1977).
[Crossref]

Ghosh, A. K.

R. V. Kruzelecky and A. K. Ghosh, “High-performance miniature integrated infrared spectrometers for industrial and biochemical sensing,” Proc. SPIE 4205, 25–34 (2001).
[Crossref]

Giesbers, J.

J. van den Meerakker, J. Metsemakers, and J. Giesbers, “The etching of Ti adhesion layers in H2O2 solutions,” J. Electrochem. Soc 149, C256–C260 (2002).
[Crossref]

Goldman, D. S.

D. S. Goldman, P. L. White, and N. C. Anheier, “Planar waveguide spectrometer,” Proc. SPIE 1338, Optoelectronic Devices and Applications (SPIE, 1990).

Gonthiez, T.

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

Grabarnik, S.

Guan, T.

T. Guan, F. Ceyssens, and R. Puers, “An EpoClad/EpoCore-based platform for MOEMS fabrication,” J. Micromech. Microeng. 23, 125005 (2013).
[Crossref]

Guldimann, B.

B. Guldimann and S. Kraft, “Focal plane array spectrometer: miniaturization effort for space optical instruments,” Proc. SPIE 7930, 79300O (2011).
[Crossref]

Hall, T. J.

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

Hamakawa, Y.

T. Kanata, H. Takakura, and Y. Hamakawa, “Preparation of composition-controlled silicon oxynitride films by sputtering; deposition mechanism, and optical and surface properties,” Appl. Phys. 49, 305–311 (1989).
[Crossref]

Hardy, E.

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

Harlander, J.

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

Harlander, J. M.

Heidmann, S.

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

Herzig, H. P.

G. D. Osowiecki, M. Madi, I. Shorubalko, I. Philipoussis, E. Alberti, T. Scharf, and H. P. Herzig, “Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared,” Proc. SPIE 9611, 96110P (2015).
[Crossref]

M. Malak, I. Philipoussis, H. P. Herzig, and T. Scharf, “Polymer based single mode optical waveguide for spectroscopy applications,” Proc. SPIE 8846, 884615 (2013).
[Crossref]

O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. De Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29, 1437–1439 (2004).
[Crossref] [PubMed]

Hilderink, L.

K. Wörhoff, A. Driessen, P. Lambeck, L. Hilderink, P. Linders, and T. J. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuator A-Phys. 74, 9–12 (1999).
[Crossref]

Hourahine, B.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–129.

Hussein, M.

M. Hussein, K. Worhoff, G. Sengo, and A. Driessen, “Stability of low refractive index PECVD silicon oxynitride layers,” In Proceedings of Symposium IEEE/LEOS Benelux (IEEE, 2003), pp. 77–80.

Ikonen, E.

Imura, K.

Janz, S.

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

A. Scott, M. Florjańczyk, P. Cheben, S. Janz, B. Solheim, and D.-X. Xu, “Micro-interferometer with high throughput for remote sensing,” Proc. SPIE 7208, 72080G (2009).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
[Crossref]

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

A. Delâge, P. Cheben, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Static Fourier-transform waveguide spectrometers,” in Proceedings of 11th International Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.

Johnson, W.

W. Johnson, S. Kim, Z. Utegulov, J. Shaw, and B. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113, 14651–14657 (2009).
[Crossref]

Junttila, M.-L.

Kanata, T.

T. Kanata, H. Takakura, and Y. Hamakawa, “Preparation of composition-controlled silicon oxynitride films by sputtering; deposition mechanism, and optical and surface properties,” Appl. Phys. 49, 305–311 (1989).
[Crossref]

Kasemo, B.

I. Zoric, M. Zach, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref] [PubMed]

Kauppinen, J.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Kern, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

Kim, S.

W. Johnson, S. Kim, Z. Utegulov, J. Shaw, and B. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113, 14651–14657 (2009).
[Crossref]

Knolle, W.

W. Knolle, “Correlation of refractive index and silicon content of silicon oxynitride films,” Thin Solid Films 168, 123–132 (1989).
[Crossref]

Kong, S.-H.

S.-H. Kong, J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “Integrated silicon microspectrometers,” IEEE Instrum. Meas. Mag. 4, 34–38 (2001).
[Crossref]

Kraft, S.

B. Guldimann and S. Kraft, “Focal plane array spectrometer: miniaturization effort for space optical instruments,” Proc. SPIE 7930, 79300O (2011).
[Crossref]

Krippner, P.

P. Krippner, J. Mohr, C. Müller, and C. Van der Sel, “Microspectrometer for the infrared range,” Proc. SPIE 2783, Micro- and Nanotechnology for Biomedical and Environmental Applications (SPIE, 1996).

Kruzelecky, R. V.

R. V. Kruzelecky and A. K. Ghosh, “High-performance miniature integrated infrared spectrometers for industrial and biochemical sensing,” Proc. SPIE 4205, 25–34 (2001).
[Crossref]

Lakshminarayanan, V.

M. L. Calvo and V. Lakshminarayanan, Optical Waveguides: From Theory to Applied Technologies, vol. 5 (CRC Press, 2007).

Lambeck, P.

K. Wörhoff, A. Driessen, P. Lambeck, L. Hilderink, P. Linders, and T. J. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuator A-Phys. 74, 9–12 (1999).
[Crossref]

Lambeck, P. V.

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron. 4, 930–937 (1998).
[Crossref]

Lamontagne, B.

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

A. Delâge, P. Cheben, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Static Fourier-transform waveguide spectrometers,” in Proceedings of 11th International Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.

Langhammer, C.

I. Zoric, M. Zach, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref] [PubMed]

Lapointe, J.

A. Delâge, P. Cheben, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Static Fourier-transform waveguide spectrometers,” in Proceedings of 11th International Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

Le Coarer, E.

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

Le Coarer, E. P.

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

Leblond, G.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

Lee, C.-L.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Lérondel, G.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

Linders, P.

K. Wörhoff, A. Driessen, P. Lambeck, L. Hilderink, P. Linders, and T. J. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuator A-Phys. 74, 9–12 (1999).
[Crossref]

Lippmann, G.

G. Lippmann, La photographie des couleurs, vol. 7 of 2 (Bulletin Sté Française de Photographie, 1891).

Long, L.

Loridat, J.

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

Lucarini, V.

A. Gaind, G. Ackermann, V. Lucarini, and R. Bratter, “Oxynitride deposition kinetics in a SiH4-CO 2-NH 3-H 2 system,” J. Electrochem. Soc. 124, 599–606 (1977).
[Crossref]

Machlin, E.

E. Machlin, Materials Science in Microelectronics: The Relationships between Thin Film Processing and Structure (Cambridge University, 2006).

Madi, M.

G. D. Osowiecki, M. Madi, I. Shorubalko, I. Philipoussis, E. Alberti, T. Scharf, and H. P. Herzig, “Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared,” Proc. SPIE 9611, 96110P (2015).
[Crossref]

Malak, M.

M. Malak, I. Philipoussis, H. P. Herzig, and T. Scharf, “Polymer based single mode optical waveguide for spectroscopy applications,” Proc. SPIE 8846, 884615 (2013).
[Crossref]

Manzardo, O.

Martin, G.

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

McArthur, D.

McElroy, C. T.

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

Mertz, L.

L. Mertz, “Fourier spectroscopy, past, present, and future,” Appl. Opt. 10, 386–389 (1971).
[Crossref] [PubMed]

L. Mertz, “Heterodyne interference spectroscopy,” In Proceedings of ICO Conference (Congres de Stockholm, 1959).

Metsemakers, J.

J. van den Meerakker, J. Metsemakers, and J. Giesbers, “The etching of Ti adhesion layers in H2O2 solutions,” J. Electrochem. Soc 149, C256–C260 (2002).
[Crossref]

Michaely, R.

Misawa, H.

Mohr, J.

P. Krippner, J. Mohr, C. Müller, and C. Van der Sel, “Microspectrometer for the infrared range,” Proc. SPIE 2783, Micro- and Nanotechnology for Biomedical and Environmental Applications (SPIE, 1996).

Molina-Fernández, Í.

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

Morand, A.

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

Morino, E.

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

Moulin, T.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

Müller, C.

P. Krippner, J. Mohr, C. Müller, and C. Van der Sel, “Microspectrometer for the infrared range,” Proc. SPIE 2783, Micro- and Nanotechnology for Biomedical and Environmental Applications (SPIE, 1996).

Noell, W.

Okamoto, H.

Ordal, M.

Ortega-Moñux, A.

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

Osowiecki, G. D.

G. D. Osowiecki, M. Madi, I. Shorubalko, I. Philipoussis, E. Alberti, T. Scharf, and H. P. Herzig, “Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared,” Proc. SPIE 9611, 96110P (2015).
[Crossref]

Overstolz, T.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic press, 1998).

Papoff, F.

Philipoussis, I.

G. D. Osowiecki, M. Madi, I. Shorubalko, I. Philipoussis, E. Alberti, T. Scharf, and H. P. Herzig, “Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared,” Proc. SPIE 9611, 96110P (2015).
[Crossref]

M. Malak, I. Philipoussis, H. P. Herzig, and T. Scharf, “Polymer based single mode optical waveguide for spectroscopy applications,” Proc. SPIE 8846, 884615 (2013).
[Crossref]

Popma, T. J.

K. Wörhoff, A. Driessen, P. Lambeck, L. Hilderink, P. Linders, and T. J. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuator A-Phys. 74, 9–12 (1999).
[Crossref]

Post, E.

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

Puers, R.

T. Guan, F. Ceyssens, and R. Puers, “An EpoClad/EpoCore-based platform for MOEMS fabrication,” J. Micromech. Microeng. 23, 125005 (2013).
[Crossref]

K. Wouters and R. Puers, “Design and measurement of stress indicator structures for the characterization of EpoClad negative photoresist,” J. Micromech. Microeng. 19, 074019 (2009).
[Crossref]

Puget, R.

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

Quine, B.

K. Sinclair, P. Cheben, M. Florjańczyk, B. Quine, A. Scott, and B. Solheim, “Design of a slab waveguide multiaperture spectrometer for field observations,” Can. Aeronaut. Space J. 57, 53–58 (2011).
[Crossref]

Reynolds, R. J.

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

Roesler, F. L.

J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, R. R. Conway, C. M. Brown, and J. Wimperis, “Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1,” Appl. Opt. 42, 2829–2834 (2003).
[Crossref] [PubMed]

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

Royer, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

Schädelin, F.

Scharf, T.

G. D. Osowiecki, M. Madi, I. Shorubalko, I. Philipoussis, E. Alberti, T. Scharf, and H. P. Herzig, “Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared,” Proc. SPIE 9611, 96110P (2015).
[Crossref]

M. Malak, I. Philipoussis, H. P. Herzig, and T. Scharf, “Polymer based single mode optical waveguide for spectroscopy applications,” Proc. SPIE 8846, 884615 (2013).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Schmid, J. H.

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

Scholder, O.

O. Scholder, “Fabrication, simulation and characterization of tunable plasmonic nano antennas,” Diss. eth no 21847, ETH Zurich (2014).

Schulz, L.

Scott, A.

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

K. Sinclair, P. Cheben, M. Florjańczyk, B. Quine, A. Scott, and B. Solheim, “Design of a slab waveguide multiaperture spectrometer for field observations,” Can. Aeronaut. Space J. 57, 53–58 (2011).
[Crossref]

A. Scott, M. Florjańczyk, P. Cheben, S. Janz, B. Solheim, and D.-X. Xu, “Micro-interferometer with high throughput for remote sensing,” Proc. SPIE 7208, 72080G (2009).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
[Crossref]

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

A. Delâge, P. Cheben, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Static Fourier-transform waveguide spectrometers,” in Proceedings of 11th International Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.

Sengo, G.

M. Hussein, K. Worhoff, G. Sengo, and A. Driessen, “Stability of low refractive index PECVD silicon oxynitride layers,” In Proceedings of Symposium IEEE/LEOS Benelux (IEEE, 2003), pp. 77–80.

Shaw, J.

W. Johnson, S. Kim, Z. Utegulov, J. Shaw, and B. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113, 14651–14657 (2009).
[Crossref]

Sheese, P. E.

K. A. Walker, P. E. Sheese, C. D. Boone, and P. F. Bernath, “Atmospheric chemistry experiment fourier transform spectrometer (ACE-FTS) Version 3.5 Validation,” in Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW1A.4.

Shorubalko, I.

G. D. Osowiecki, M. Madi, I. Shorubalko, I. Philipoussis, E. Alberti, T. Scharf, and H. P. Herzig, “Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared,” Proc. SPIE 9611, 96110P (2015).
[Crossref]

Sinclair, K.

K. Sinclair, P. Cheben, M. Florjańczyk, B. Quine, A. Scott, and B. Solheim, “Design of a slab waveguide multiaperture spectrometer for field observations,” Can. Aeronaut. Space J. 57, 53–58 (2011).
[Crossref]

Solheim, B.

K. Sinclair, P. Cheben, M. Florjańczyk, B. Quine, A. Scott, and B. Solheim, “Design of a slab waveguide multiaperture spectrometer for field observations,” Can. Aeronaut. Space J. 57, 53–58 (2011).
[Crossref]

A. Scott, M. Florjańczyk, P. Cheben, S. Janz, B. Solheim, and D.-X. Xu, “Micro-interferometer with high throughput for remote sensing,” Proc. SPIE 7208, 72080G (2009).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
[Crossref]

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

A. Delâge, P. Cheben, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Static Fourier-transform waveguide spectrometers,” in Proceedings of 11th International Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.

Soucy, M.-A. A.

M.-A. A. Soucy, F. Chateauneuf, C. Deutsch, and N. Etienne, “ACE-FTS instrument detailed design,” Proc. SPIE 4814, Earth Observing Systems VII (SPIE, 2002).

Stefanon, I.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

Suzuki, T.

Takakura, H.

T. Kanata, H. Takakura, and Y. Hamakawa, “Preparation of composition-controlled silicon oxynitride films by sputtering; deposition mechanism, and optical and surface properties,” Appl. Phys. 49, 305–311 (1989).
[Crossref]

Tangherlini, F.

Thomas, F.

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

Ueno, K.

Utegulov, Z.

W. Johnson, S. Kim, Z. Utegulov, J. Shaw, and B. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113, 14651–14657 (2009).
[Crossref]

van den Meerakker, J.

J. van den Meerakker, J. Metsemakers, and J. Giesbers, “The etching of Ti adhesion layers in H2O2 solutions,” J. Electrochem. Soc 149, C256–C260 (2002).
[Crossref]

Van der Sel, C.

P. Krippner, J. Mohr, C. Müller, and C. Van der Sel, “Microspectrometer for the infrared range,” Proc. SPIE 2783, Micro- and Nanotechnology for Biomedical and Environmental Applications (SPIE, 1996).

Walker, K. A.

K. A. Walker, P. E. Sheese, C. D. Boone, and P. F. Bernath, “Atmospheric chemistry experiment fourier transform spectrometer (ACE-FTS) Version 3.5 Validation,” in Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW1A.4.

Wang, C. C.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Ward, C.

Warhoff, K.

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron. 4, 930–937 (1998).
[Crossref]

White, P. L.

D. S. Goldman, P. L. White, and N. C. Anheier, “Planar waveguide spectrometer,” Proc. SPIE 1338, Optoelectronic Devices and Applications (SPIE, 1990).

Wimperis, J.

Wolffenbuttel, R. F.

S. Grabarnik, A. Emadi, H. Wu, G. De Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47, 6442–6447 (2008).
[Crossref] [PubMed]

S.-H. Kong, J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “Integrated silicon microspectrometers,” IEEE Instrum. Meas. Mag. 4, 34–38 (2001).
[Crossref]

Worhoff, K.

M. Hussein, K. Worhoff, G. Sengo, and A. Driessen, “Stability of low refractive index PECVD silicon oxynitride layers,” In Proceedings of Symposium IEEE/LEOS Benelux (IEEE, 2003), pp. 77–80.

Wörhoff, K.

K. Wörhoff, A. Driessen, P. Lambeck, L. Hilderink, P. Linders, and T. J. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuator A-Phys. 74, 9–12 (1999).
[Crossref]

Wouters, K.

K. Wouters and R. Puers, “Design and measurement of stress indicator structures for the characterization of EpoClad negative photoresist,” J. Micromech. Microeng. 19, 074019 (2009).
[Crossref]

Wu, H.

Xu, D. X.

A. Delâge, P. Cheben, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Static Fourier-transform waveguide spectrometers,” in Proceedings of 11th International Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.

Xu, D.-X.

A. Scott, M. Florjańczyk, P. Cheben, S. Janz, B. Solheim, and D.-X. Xu, “Micro-interferometer with high throughput for remote sensing,” Proc. SPIE 7208, 72080G (2009).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
[Crossref]

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

Yu, Y.-Y.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Zach, M.

I. Zoric, M. Zach, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Zoric, I.

I. Zoric, M. Zach, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref] [PubMed]

ACS Nano (1)

I. Zoric, M. Zach, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano 5, 2535–2546 (2011).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. (1)

T. Kanata, H. Takakura, and Y. Hamakawa, “Preparation of composition-controlled silicon oxynitride films by sputtering; deposition mechanism, and optical and surface properties,” Appl. Phys. 49, 305–311 (1989).
[Crossref]

Astrophys. J. (1)

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

Can. Aeronaut. Space J. (1)

K. Sinclair, P. Cheben, M. Florjańczyk, B. Quine, A. Scott, and B. Solheim, “Design of a slab waveguide multiaperture spectrometer for field observations,” Can. Aeronaut. Space J. 57, 53–58 (2011).
[Crossref]

Geophys. Res. Lett. (1)

P. F. Bernath, C. T. McElroy, M. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Clerbaux, P.-F. Coheur, and R. Colin, “Atmospheric chemistry experiment (ACE): mission overview,” Geophys. Res. Lett. 32, L15S01 (2005).
[Crossref]

IEEE Instrum. Meas. Mag. (1)

S.-H. Kong, J. H. Correia, G. De Graaf, M. Bartek, and R. F. Wolffenbuttel, “Integrated silicon microspectrometers,” IEEE Instrum. Meas. Mag. 4, 34–38 (2001).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Topics Quantum Electron. 4, 930–937 (1998).
[Crossref]

J. Electrochem. Soc (1)

J. van den Meerakker, J. Metsemakers, and J. Giesbers, “The etching of Ti adhesion layers in H2O2 solutions,” J. Electrochem. Soc 149, C256–C260 (2002).
[Crossref]

J. Electrochem. Soc. (1)

A. Gaind, G. Ackermann, V. Lucarini, and R. Bratter, “Oxynitride deposition kinetics in a SiH4-CO 2-NH 3-H 2 system,” J. Electrochem. Soc. 124, 599–606 (1977).
[Crossref]

J. Micromech. Microeng. (2)

K. Wouters and R. Puers, “Design and measurement of stress indicator structures for the characterization of EpoClad negative photoresist,” J. Micromech. Microeng. 19, 074019 (2009).
[Crossref]

T. Guan, F. Ceyssens, and R. Puers, “An EpoClad/EpoCore-based platform for MOEMS fabrication,” J. Micromech. Microeng. 23, 125005 (2013).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (2)

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

J. Phys. Chem. C (1)

W. Johnson, S. Kim, Z. Utegulov, J. Shaw, and B. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113, 14651–14657 (2009).
[Crossref]

Laser Focus World (1)

C. Bonneville, “High-resolution spectrometers shrink down with SWIFTS,” Laser Focus World 50, 57–59 (2014).

Nature Photonics (1)

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics 1, 473–478 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica Acta: International Journal of Optics (1)

R. Brown, “Absorption and scattering of light by small particles,” Optica Acta: International Journal of Optics 31, 3 (1984).
[Crossref]

Optical and Quantum Electronics (1)

M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, and A. Scott, “Development of a Fourier-transform waveguide spectrometer for space applications,” Optical and Quantum Electronics 44, 549–556 (2012).
[Crossref]

Proc. SPIE (10)

B. Guldimann and S. Kraft, “Focal plane array spectrometer: miniaturization effort for space optical instruments,” Proc. SPIE 7930, 79300O (2011).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

G. D. Osowiecki, M. Madi, I. Shorubalko, I. Philipoussis, E. Alberti, T. Scharf, and H. P. Herzig, “Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared,” Proc. SPIE 9611, 96110P (2015).
[Crossref]

F. Thomas, S. Heidmann, J. Loridat, M. de Mengin Poirier, A. Morand, P. Benech, C. Bonneville, T. Gonthiez, E. P. Le Coarer, and G. Martin, “Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator,” Proc. SPIE 9516, 95160B (2015).

R. V. Kruzelecky and A. K. Ghosh, “High-performance miniature integrated infrared spectrometers for industrial and biochemical sensing,” Proc. SPIE 4205, 25–34 (2001).
[Crossref]

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (SWIFTS),” Proc. SPIE 7604, 760414 (2010).
[Crossref]

F. Thomas, M. De Mengin, C. Duchemin, E. Le Coarer, C. Bonneville, T. Gonthiez, A. Morand, P. Benech, J.-B. Dherbecourt, and E. Hardy, “High-performance high-speed spectrum analysis of laser sources with SWIFTS technology,” Proc. SPIE 8992, 89920I (2014).
[Crossref]

C. Bonneville, F. Thomas, M. de Mengin Poirier, E. Le Coarer, P. Benech, T. Gonthiez, A. Morand, O. Coutant, E. Morino, and R. Puget, “SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors,” Proc. SPIE 8616, 86160M (2013).
[Crossref]

A. Scott, M. Florjańczyk, P. Cheben, S. Janz, B. Solheim, and D.-X. Xu, “Micro-interferometer with high throughput for remote sensing,” Proc. SPIE 7208, 72080G (2009).
[Crossref]

M. Malak, I. Philipoussis, H. P. Herzig, and T. Scharf, “Polymer based single mode optical waveguide for spectroscopy applications,” Proc. SPIE 8846, 884615 (2013).
[Crossref]

Sens. Actuator A-Phys. (1)

K. Wörhoff, A. Driessen, P. Lambeck, L. Hilderink, P. Linders, and T. J. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuator A-Phys. 74, 9–12 (1999).
[Crossref]

Thin Solid Films (1)

W. Knolle, “Correlation of refractive index and silicon content of silicon oxynitride films,” Thin Solid Films 168, 123–132 (1989).
[Crossref]

Other (18)

E. Machlin, Materials Science in Microelectronics: The Relationships between Thin Film Processing and Structure (Cambridge University, 2006).

European Space Agency (ESA), ESCC Qualified Parts List, REP005 ed. (2016).

M. Hussein, K. Worhoff, G. Sengo, and A. Driessen, “Stability of low refractive index PECVD silicon oxynitride layers,” In Proceedings of Symposium IEEE/LEOS Benelux (IEEE, 2003), pp. 77–80.

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic press, 1998).

O. Scholder, “Fabrication, simulation and characterization of tunable plasmonic nano antennas,” Diss. eth no 21847, ETH Zurich (2014).

C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–129.

SpaceX, “SpaceX Capabilities & Services,” (SpaceX website, 2016), http://www.spacex.com/about/capabilities .

L. Keesey, “Nasa goddard team to demonstrate miniaturized spectrometer-on-a-chip,” (NASA’s Goddard Space Flight Center website, 2012), http://www.nasa.gov/topics/technology/features/chip-spectrometer.html .

L. Mertz, “Heterodyne interference spectroscopy,” In Proceedings of ICO Conference (Congres de Stockholm, 1959).

K. A. Walker, P. E. Sheese, C. D. Boone, and P. F. Bernath, “Atmospheric chemistry experiment fourier transform spectrometer (ACE-FTS) Version 3.5 Validation,” in Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW1A.4.

M.-A. A. Soucy, F. Chateauneuf, C. Deutsch, and N. Etienne, “ACE-FTS instrument detailed design,” Proc. SPIE 4814, Earth Observing Systems VII (SPIE, 2002).

A. Delâge, P. Cheben, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, A. Scott, B. Solheim, and D. X. Xu, “Static Fourier-transform waveguide spectrometers,” in Proceedings of 11th International Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.

G. Lippmann, La photographie des couleurs, vol. 7 of 2 (Bulletin Sté Française de Photographie, 1891).

P. Krippner, J. Mohr, C. Müller, and C. Van der Sel, “Microspectrometer for the infrared range,” Proc. SPIE 2783, Micro- and Nanotechnology for Biomedical and Environmental Applications (SPIE, 1996).

P. Cheben, J. H. Schmid, M. Florjańczyk, P. J. Bock, D.-X. Xu, S. Janz, A. Delâge, J. Lapointe, B. Lamontagne, E. Post, A. Densmore, J. Albert, T. J. Hall, B. Solheim, and A. Scott, “Recent progress in Planar Waveguide Spectrometers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMD4.

D. S. Goldman, P. L. White, and N. C. Anheier, “Planar waveguide spectrometer,” Proc. SPIE 1338, Optoelectronic Devices and Applications (SPIE, 1990).

M. L. Calvo and V. Lakshminarayanan, Optical Waveguides: From Theory to Applied Technologies, vol. 5 (CRC Press, 2007).

H. Bovensmann, M. Buchwitz, and J. Burrows, “Carbon monitoring satellite (CarbonSat) as an Earth Explorer Opportunity Mission: mission overview,” (University of Bremen, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (26)

Fig. 1
Fig. 1 Subsystems of a waveguide spectrometer prototype.
Fig. 2
Fig. 2 Illustration of two waveguide spectrometers. (a) Single-mode waveguide spectrometer here based on a channel waveguide. (b) Lippmann-based Planar Waveguide Spectrometer (LiPWS) based on planar waveguide. In the planar waveguide, a beam expansion is achieved in horizontal direction (along y-axis) at the exit of optical element in object space. The black waves in the waveguides represent polychromatic interferogram patterns.
Fig. 3
Fig. 3 Comparison of interferogram spatial sampling method in channel waveguide and planar waveguide. (a) Top surface of channel waveguide showing the configuration of nano-samplers (here nanorods) with the pitch and sampling interval of 4 μm. (b) An innovative customized sampling pattern including nano-samplers (here nanodisks) on planar waveguide providing 1 μm spatial sampling interval.
Fig. 4
Fig. 4 Different custom sampling patterns taking advantage of the beam expansion in planar waveguides. (a) Pitch 4 μm, sampling interval 1 μm, beam expansion 16 μm, LiPWS bandwidth 66 nm at 633 nm. (b) Pitch 4 μm, sampling interval 0.5 μm, beam expansion 32 μm, LiPWS bandwidth 132 nm at 633 nm. (c) Pitch 4 μm, sampling interval 0.25 μm, beam expansion 64 μm, LiPWS bandwidth 256 nm at 633 nm. (d) Pitch 5 μm, sampling interval 1 μm, beam expansion ∼21 μm, LiPWS bandwidth 66 nm at 633 nm. The bandwidth is calculated at the central wavelength of 633 nm in a waveguide with refractive index of 1.5. Pitch is the minimum distance between nano-samplers.
Fig. 5
Fig. 5 EpoClad/EpoCore Fabrication process. (a) Silicon substrate with spun-on EpoClad layer. (b) UV exposure through mask and thermal step for selective crosslinking of the EpoClad (c) Spin coating and baking of EpoCore layer (d) UV exposure through mask and thermal step for selective crosslinking of the EpoCore (e) Spin coating and baking of second EpoClad layer (f) UV exposure through slightly bigger mask and thermal step for selective crosslinking of the EpoClad (g) Developing the resist stack (h) Dicing of substrate.
Fig. 6
Fig. 6 The optical mode profile in far-field in the fabricated EpoClad/EpoCore planar waveguides. (a) TE0. (b) TE1.
Fig. 7
Fig. 7 Refractive index of silicon oxynitride versus the ratio of atomic nitrogen to the sum of atomic nitrogen and oxygen in SiOmNp.
Fig. 8
Fig. 8 Colormap representing the scattering efficiency as a function of diameter (D, horizontal axis) and thickness (t, vertical axis) of gold nanodisk at 633 nm, in a medium with average refractive index of air and waveguide material.
Fig. 9
Fig. 9 Colormap representing backscattering efficiency at far-field as a function of diameter (D, horizontal axis) and thickness (t, vertical axis) of gold nanodisk at 633 nm, in a medium with average refractive index of air and waveguide material.
Fig. 10
Fig. 10 Gold nanodisk fabrication process. (a) Fused silica substrate (b) Waveguide deposition by PECVD, dicing into individual chips and polishing (c) Ti / Au coating (d) Depositing e-beam resist (e) E-beam exposure of the resist (f) Developing the resist (g) Sputter etching the Au and chemical etching of the Ti (h) Removal of the resist in oxygen plasma.
Fig. 11
Fig. 11 SEM images of realized gold nanodisks. Left to right shows nanodisks of target diameters (D): 50 nm, 70 nm, 130 nm, 500 nm.
Fig. 12
Fig. 12 Measured scattering spectrum of fabricated gold nanodisk (D ≈ 150 nm and D ≈ 75 nm) in the integration time τ = 0.5 ms. The solid lines show the analytical extinction spectra of a uniform gold nanodisk calculated in a medium with average refractive index of air and glass.
Fig. 13
Fig. 13 Optical microscope images of fabricated patterns of gold nanodisks on a silicon oxynitride planar waveguide. A region of 500 μm×500 μm with L-shaped markers on its corners is shown in (a). (b) and (c) show the realized pattern of nanodisks within a selected region.
Fig. 14
Fig. 14 SEM images showing a developed grid of nanodisks of 70 nm diameter in the pattern as shown in Fig. 4(b).
Fig. 15
Fig. 15 Input light source and elements of front-end optics for beam shaping.
Fig. 16
Fig. 16 The optical schematic of experimental setup.
Fig. 17
Fig. 17 The sampled interferogram data at 633 nm.
Fig. 18
Fig. 18 In the top, the retrieved interferogram signal from Fig. 17 is shown in blue and its offset is shown in red. The interferogram after removing the offset is shown on the bottom.
Fig. 19
Fig. 19 The retrieved interferogram at 633 nm is shown in the top and its reconstructed spectrum is shown on the bottom. The interferogram is sampled with intervals of 1 μm over a distance of 0.5 mm.
Fig. 20
Fig. 20 The retrieved interferogram at 633 nm is shown on the top and its reconstructed spectrum is shown on the bottom. The interferogram is sampled with intervals of 0.25 μm over a distance of 0.5 mm.
Fig. 21
Fig. 21 Three reconstructed spectral picks at 685 nm and 633 nm. The interferogram of reference laser beams were sampled with intervals of 1 μm at 685 nm, 1 μm and 0.25 μm at 633 nm respectively from left to right.
Fig. 22
Fig. 22 Sampling pattern fulfilling CarbonSat NIR imaging spectrometer requirements: Airy pattern of nanodisk samplers imaged by 10× objective with NA = 0.25 to reach 0.03 nm spectral resolution and bandwidth of 18 nm. The pattern is repetitive in the horizontal direction for 4000 μm to reach the required spectral resolution. The sensor active area is 40 mm×0.02 mm in this case.
Fig. 23
Fig. 23 Sampling pattern providing 176 nm spectral range at 766 nm central wavelength. The Airy pattern is simulated using 10× objective with NA = 0.25.
Fig. 24
Fig. 24 Lay-out of the FPAS on-chip (the sketch is inspired by the original design in [35]). Here a block of 4 × 5 sub-arrays are shown. The radiation is collected from the scene (x–y plane) and imaged on the focal plane of the telescope where the arrays of FPAS are located. The spectral information is extracted along the waveguides (marked as λ in the block). Hence, the output is a 3D-image with two spatial axes reflecting the scene and one axis containing spectral information of the scene (i.e. each pixel in the output image contains a sampled spectral measurement of reflectance). The single-block of FPAS includes a waveguide, nano-samplers in the evanescent field and a compact photodetector.
Fig. 25
Fig. 25 Schematic visualization of a single-block of LiPWS (developed prototype).
Fig. 26
Fig. 26 Schematic 4×4 stacked FPAS spectrometer sub-arrays based on LiPWS and customized arrays of nanodisks.

Tables (4)

Tables Icon

Table 1 Process parameters used for EpoCore/EpoClad process. UV exposure was done with a wideband high pressure mercury lamp, with dose measured at the 365 nm peak. If not mentioned, temperatures were increased gradually by 8 °C/min; the temperature ramp is included in the mentioned baking time.

Tables Icon

Table 2 PECVD deposition parameters.

Tables Icon

Table 3 Design specification of an on-chip LiPWS for CarbonSat NIR Imaging Spectrometer.

Tables Icon

Table 4 A baseband high SNR on-chip LiPWS for CarbonSat NIR Imaging Spectrometer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = λ Δ λ = 2 n eff L λ = OPD λ
L min = 0.605 λ max 2 2 Δ λ n eff
P max = 1 4 n eff ( 1 λ min 1 λ max ) 1
2 P max λ 2 n eff

Metrics