Abstract

We proposed and constructed a system to realize broadband generation of arbitrary axisymmetrically polarized (AP) pulses with spatial complex amplitude modulation. This system employs the combination of a spatial light modulator in the 4-f configuration (4-f SLM), and a space variant wave plate as a common path interferometer. The 4-f SLM and the common path interferometer offer compensation for spatial dispersion with respect to wavelength and stability to perturbation, respectively. We experimentally demonstrated the various AP pulses generation by applying modulations of fundamental and higher-order Laguerre-Gauss modes, whose radial indices were, respectively, p = 0 and 1, with high purity, which showed that we were able to generate arbitral AP pulses with spatial complex amplitude modulation. This technique is expected to be applied in both classical and quantum communications with higher-order modes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear coupling between axisymmetrically-polarized ultrashort optical pulses in a uniaxial crystal

Masato Suzuki, Keisaku Yamane, Kazuhiko Oka, Yasunori Toda, and Ryuji Morita
Opt. Express 22(14) 16903-16915 (2014)

Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement

Xi-Lin Wang, Jianping Ding, Wei-Jiang Ni, Cheng-Shan Guo, and Hui-Tian Wang
Opt. Lett. 32(24) 3549-3551 (2007)

Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields

Atsushi Shibukawa, Atsushi Okamoto, Masanori Takabayashi, and Akihisa Tomita
Opt. Express 22(4) 3968-3982 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  2. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
    [Crossref] [PubMed]
  3. M. O. Scully and M. S. Zubairy, “Simple laser accelerator: Optics and particle dynamics,” Phys. Rev. A 44, 2656–2663 (1991).
    [Crossref] [PubMed]
  4. Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88, 095005 (2002).
    [Crossref] [PubMed]
  5. Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
    [Crossref] [PubMed]
  6. V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
    [Crossref] [PubMed]
  7. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
    [Crossref]
  8. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18, 22305–22313 (2010).
    [Crossref] [PubMed]
  9. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18, 17967–17973 (2010).
    [Crossref] [PubMed]
  10. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
    [Crossref] [PubMed]
  11. O. Allegre, W. Perrie, S. Edwardson, G. Dearden, and K. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14, 085601 (2012).
    [Crossref]
  12. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
    [Crossref] [PubMed]
  13. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5, 17929 (2015).
    [Crossref] [PubMed]
  14. L. Rapp, R. Meyer, L. Furfaro, C. Billet, R. Giust, and F. Courvoisier, “High speed cleaving of crystals with ultrafast bessel beams,” Opt. Express 25, 9312–9317 (2017).
    [Crossref] [PubMed]
  15. V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 8, 846–850 (2014).
    [Crossref]
  16. C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
    [Crossref] [PubMed]
  17. C. Gabriel, A. Aiello, S. Berg-Johansen, C. Marquardt, and G. Leuchs, “Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes,” Eur. Phys. J. D 66, 1–5 (2012).
    [Crossref]
  18. C. Hernández-García, A. Turpin, J. S. Román, A. Picón, R. Drevinskas, A. Cerkauskaite, P. G. Kazansky, C. G. Durfee, I. nigo, and J. Sola, “Extreme ultraviolet vector beams driven by infrared lasers,” Optica 4, 520–526 (2017).
    [Crossref]
  19. Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17, 24198–24207 (2009).
    [Crossref]
  20. F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express 19, 25143–25150 (2011).
    [Crossref]
  21. H. Kim, M. Akbarimoosavi, and T. Feurer, “Probing ultrafast phenomena with radially polarized light,” Appl. Opt. 55, 4389–4394 (2016).
    [Crossref] [PubMed]
  22. K. Shigematsu, M. Suzuki, K. Yamane, R. Morita, and Y. Toda, “Snap-shot optical polarization spectroscopy using radially polarized pulses,” Appl. Phys. Express 9, 122401 (2016).
    [Crossref]
  23. M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Full quantitative analysis of arbitrary cylindrically polarized pulses by using extended Stokes parameters,” Sci. Rep. 5, 17797 (2015).
    [Crossref] [PubMed]
  24. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13, 7599–7608 (2005).
    [Crossref] [PubMed]
  25. I. Zeylikovich, H. I. Sztul, V. Kartazaev, T. Le, and R. R. Alfano, “Ultrashort Laguerre-Gaussian pulses with angular and group velocity dispersion compensation,” Opt. Lett. 32, 2025–2027 (2007).
    [Crossref] [PubMed]
  26. M. Sakamoto, K. Oka, and R. Morita, “Diffraction characteristics of optical and polarization vortices generated by an axially symmetric polarizer,” Proc. SPIE 8274, 827414 (2012).
    [Crossref]
  27. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
    [Crossref]
  28. M. Sakamoto, T. Sasaki, K. Noda, T. M. Tien, N. Kawatsuki, and H. Ono, “Three-dimensional vector recording in polarization sensitive liquid crystal composites by using axisymmetrically polarized beam,” Opt. Lett. 41, 642–645 (2016).
    [Crossref] [PubMed]
  29. V. Chille, S. Berg-Johansen, M. Semmler, P. Banzer, A. Aiello, G. Leuchs, and C. Marquardt, “Experimental generation of amplitude squeezed vector beams,” Opt. Express 24, 12385–12394 (2016).
    [Crossref] [PubMed]
  30. K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24, 29269–29282 (2016).
    [Crossref] [PubMed]
  31. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, “Hypergeometric-Gaussian modes,” Opt. Lett. 32, 3053–3055 (2007).
    [Crossref] [PubMed]
  32. M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Nonlinear coupling between axisymmetrically-polarized ultrashort optical pulses in a uniaxial crystal,” Opt. Express 22, 16903–16915 (2014).
    [Crossref] [PubMed]
  33. M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Extended Stokes parameters for cylindrically polarized beams,” Opt. Rev. 22, 179–183 (2015).
    [Crossref]
  34. M. Suzuki, “A comprehensive study on cylindrical symmetry in optical physics : Full-quantitative characterization of cylindrically polarized optical pulses,” Ph.D. thesis, Hokkaido Univ. (2016).
  35. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref] [PubMed]
  36. J. P. Kirk and A. L. Jones, “Phase-only complex-valued spatial filter,” J. Opt. Soc. Am. 61, 1023–1028 (1971).
    [Crossref]
  37. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999).
    [Crossref]
  38. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A 24, 3500–3507 (2007).
    [Crossref]
  39. T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre–Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett. 34, 34–36 (2009).
    [Crossref]
  40. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [Crossref] [PubMed]
  41. M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Analysis of the Pancharatnam-Berry phase of vector vortex states using the Hamiltonian based on the Maxwell-Schrödinger equation,” Phys. Rev. A 94, 043851 (2016).
    [Crossref]
  42. L. Allen, J. Courtial, and M. J. Padgett, “Matrix formulation for the propagation of light beams with orbital and spin angular momenta,” Phys. Rev. E 60, 7497–7503 (1999).
    [Crossref]
  43. E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett. 34, 1021–1023 (2009).
    [Crossref] [PubMed]
  44. R. C. Devlin, A. Ambrosio, D. Wintz, S. L. Oscurato, A. Y. Zhu, M. Khorasaninejad, J. Oh, P. Maddalena, and F. Capasso, “Spin-to-orbital angular momentum conversion in dielectric metasurfaces,” Opt. Express 25, 377–393 (2017).
    [Crossref] [PubMed]
  45. E. Collett, Polarized light in fiber optics (SPIE, 2003).
  46. K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
    [Crossref]
  47. N. Baranova, B. Y. Zel’Dovich, A. Mamaev, N. Pilipetskii, and V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 206 (1981).
  48. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
    [Crossref] [PubMed]
  49. J. Kalwe, M. Neugebauer, C. Ominde, G. Leuchs, G. Rurimo, and P. Banzer, “Exploiting cellophane birefringence to generate radially and azimuthally polarised vector beams,” European J. Phys. 36, 025011 (2015).
    [Crossref]
  50. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensationM,” Opt. Lett. 28, 2258–2260 (2003).
    [Crossref] [PubMed]
  51. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref] [PubMed]
  52. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Applied Physics B 81, 597–600 (2005).
    [Crossref]
  53. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
    [Crossref]
  54. G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. E. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices,” Opt. Lett. 41, 3447–3450 (2016).
    [Crossref] [PubMed]
  55. L. Li, G. Xie, Y. Yan, Y. Ren, P. Liao, Z. Zhao, N. Ahmed, Z. Wang, C. Bao, A. J. Willner, S. Ashrafi, M. Tur, and A. E. Willner, “Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre–Gaussian beams,” J. Opt. Soc. Am. B 34, 1–6 (2017).
    [Crossref]
  56. E. Karimi and E. Santamato, “Radial coherent and intelligent states of paraxial wave equation,” Opt. Lett. 37, 2484–2486 (2012).
    [Crossref] [PubMed]
  57. W. N. Plick, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “The forgotten quantum number: A short note on the radial modes of Laguerre-Gauss beams,” https://arXiv:1306.6517 (2013).
  58. E. Karimi, R. W. Boyd, P. de la Hoz, and H. de Guise, J. Řeháček, Z. Hradil, A. Aiello, G. Leuchs, and L. L. Sánchez-Soto, “Radial quantum number of Laguerre-Gauss modes,” Phys. Rev. A 89, 063813 (2014).
    [Crossref]
  59. E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett, and R. W. Boyd, “Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference,” Phys. Rev. A 89, 013829 (2014).
    [Crossref]

2017 (4)

2016 (7)

M. Sakamoto, T. Sasaki, K. Noda, T. M. Tien, N. Kawatsuki, and H. Ono, “Three-dimensional vector recording in polarization sensitive liquid crystal composites by using axisymmetrically polarized beam,” Opt. Lett. 41, 642–645 (2016).
[Crossref] [PubMed]

H. Kim, M. Akbarimoosavi, and T. Feurer, “Probing ultrafast phenomena with radially polarized light,” Appl. Opt. 55, 4389–4394 (2016).
[Crossref] [PubMed]

V. Chille, S. Berg-Johansen, M. Semmler, P. Banzer, A. Aiello, G. Leuchs, and C. Marquardt, “Experimental generation of amplitude squeezed vector beams,” Opt. Express 24, 12385–12394 (2016).
[Crossref] [PubMed]

G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. E. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices,” Opt. Lett. 41, 3447–3450 (2016).
[Crossref] [PubMed]

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24, 29269–29282 (2016).
[Crossref] [PubMed]

K. Shigematsu, M. Suzuki, K. Yamane, R. Morita, and Y. Toda, “Snap-shot optical polarization spectroscopy using radially polarized pulses,” Appl. Phys. Express 9, 122401 (2016).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Analysis of the Pancharatnam-Berry phase of vector vortex states using the Hamiltonian based on the Maxwell-Schrödinger equation,” Phys. Rev. A 94, 043851 (2016).
[Crossref]

2015 (4)

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Extended Stokes parameters for cylindrically polarized beams,” Opt. Rev. 22, 179–183 (2015).
[Crossref]

J. Kalwe, M. Neugebauer, C. Ominde, G. Leuchs, G. Rurimo, and P. Banzer, “Exploiting cellophane birefringence to generate radially and azimuthally polarised vector beams,” European J. Phys. 36, 025011 (2015).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Full quantitative analysis of arbitrary cylindrically polarized pulses by using extended Stokes parameters,” Sci. Rep. 5, 17797 (2015).
[Crossref] [PubMed]

J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5, 17929 (2015).
[Crossref] [PubMed]

2014 (5)

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 8, 846–850 (2014).
[Crossref]

E. Karimi, R. W. Boyd, P. de la Hoz, and H. de Guise, J. Řeháček, Z. Hradil, A. Aiello, G. Leuchs, and L. L. Sánchez-Soto, “Radial quantum number of Laguerre-Gauss modes,” Phys. Rev. A 89, 063813 (2014).
[Crossref]

E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett, and R. W. Boyd, “Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference,” Phys. Rev. A 89, 013829 (2014).
[Crossref]

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Nonlinear coupling between axisymmetrically-polarized ultrashort optical pulses in a uniaxial crystal,” Opt. Express 22, 16903–16915 (2014).
[Crossref] [PubMed]

2013 (2)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref] [PubMed]

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

2012 (4)

O. Allegre, W. Perrie, S. Edwardson, G. Dearden, and K. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14, 085601 (2012).
[Crossref]

C. Gabriel, A. Aiello, S. Berg-Johansen, C. Marquardt, and G. Leuchs, “Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes,” Eur. Phys. J. D 66, 1–5 (2012).
[Crossref]

M. Sakamoto, K. Oka, and R. Morita, “Diffraction characteristics of optical and polarization vortices generated by an axially symmetric polarizer,” Proc. SPIE 8274, 827414 (2012).
[Crossref]

E. Karimi and E. Santamato, “Radial coherent and intelligent states of paraxial wave equation,” Opt. Lett. 37, 2484–2486 (2012).
[Crossref] [PubMed]

2011 (3)

F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express 19, 25143–25150 (2011).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (4)

2008 (1)

Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
[Crossref] [PubMed]

2007 (5)

2006 (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

2005 (2)

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Applied Physics B 81, 597–600 (2005).
[Crossref]

I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13, 7599–7608 (2005).
[Crossref] [PubMed]

2003 (2)

2002 (1)

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88, 095005 (2002).
[Crossref] [PubMed]

2001 (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[Crossref]

1999 (2)

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999).
[Crossref]

L. Allen, J. Courtial, and M. J. Padgett, “Matrix formulation for the propagation of light beams with orbital and spin angular momenta,” Phys. Rev. E 60, 7497–7503 (1999).
[Crossref]

1992 (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
[Crossref] [PubMed]

1991 (1)

M. O. Scully and M. S. Zubairy, “Simple laser accelerator: Optics and particle dynamics,” Phys. Rev. A 44, 2656–2663 (1991).
[Crossref] [PubMed]

1981 (1)

N. Baranova, B. Y. Zel’Dovich, A. Mamaev, N. Pilipetskii, and V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 206 (1981).

1971 (1)

Ahmed, M. A.

Ahmed, N.

Aiello, A.

V. Chille, S. Berg-Johansen, M. Semmler, P. Banzer, A. Aiello, G. Leuchs, and C. Marquardt, “Experimental generation of amplitude squeezed vector beams,” Opt. Express 24, 12385–12394 (2016).
[Crossref] [PubMed]

C. Gabriel, A. Aiello, S. Berg-Johansen, C. Marquardt, and G. Leuchs, “Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes,” Eur. Phys. J. D 66, 1–5 (2012).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

Akbarimoosavi, M.

Alfano, R. R.

Allegre, O.

O. Allegre, W. Perrie, S. Edwardson, G. Dearden, and K. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14, 085601 (2012).
[Crossref]

Allen, L.

L. Allen, J. Courtial, and M. J. Padgett, “Matrix formulation for the propagation of light beams with orbital and spin angular momenta,” Phys. Rev. E 60, 7497–7503 (1999).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Ambrosio, A.

Amoruso, S.

J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5, 17929 (2015).
[Crossref] [PubMed]

Andersen, U. L.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

Ando, T.

Aoki, N.

Arrizón, V.

Ashrafi, S.

Banzer, P.

V. Chille, S. Berg-Johansen, M. Semmler, P. Banzer, A. Aiello, G. Leuchs, and C. Marquardt, “Experimental generation of amplitude squeezed vector beams,” Opt. Express 24, 12385–12394 (2016).
[Crossref] [PubMed]

J. Kalwe, M. Neugebauer, C. Ominde, G. Leuchs, G. Rurimo, and P. Banzer, “Exploiting cellophane birefringence to generate radially and azimuthally polarised vector beams,” European J. Phys. 36, 025011 (2015).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

Bao, C.

Baranova, N.

N. Baranova, B. Y. Zel’Dovich, A. Mamaev, N. Pilipetskii, and V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 206 (1981).

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Bent, N.

E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett, and R. W. Boyd, “Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference,” Phys. Rev. A 89, 013829 (2014).
[Crossref]

Berg-Johansen, S.

V. Chille, S. Berg-Johansen, M. Semmler, P. Banzer, A. Aiello, G. Leuchs, and C. Marquardt, “Experimental generation of amplitude squeezed vector beams,” Opt. Express 24, 12385–12394 (2016).
[Crossref] [PubMed]

C. Gabriel, A. Aiello, S. Berg-Johansen, C. Marquardt, and G. Leuchs, “Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes,” Eur. Phys. J. D 66, 1–5 (2012).
[Crossref]

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

Billet, C.

Bolduc, E.

E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett, and R. W. Boyd, “Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference,” Phys. Rev. A 89, 013829 (2014).
[Crossref]

Boyd, R. W.

E. Karimi, R. W. Boyd, P. de la Hoz, and H. de Guise, J. Řeháček, Z. Hradil, A. Aiello, G. Leuchs, and L. L. Sánchez-Soto, “Radial quantum number of Laguerre-Gauss modes,” Phys. Rev. A 89, 063813 (2014).
[Crossref]

E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett, and R. W. Boyd, “Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference,” Phys. Rev. A 89, 013829 (2014).
[Crossref]

Brabec, T.

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

Brasselet, E.

Brixner, T.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

Bruzzese, R.

J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5, 17929 (2015).
[Crossref] [PubMed]

Campos, J.

Capasso, F.

Carrada, R.

Cerkauskaite, A.

Chille, V.

Chujo, K.

Cižmár, T.

Collett, E.

E. Collett, Polarized light in fiber optics (SPIE, 2003).

Cottrell, D. M.

Courtial, J.

L. Allen, J. Courtial, and M. J. Padgett, “Matrix formulation for the propagation of light beams with orbital and spin angular momenta,” Phys. Rev. E 60, 7497–7503 (1999).
[Crossref]

Courvoisier, F.

Davis, J. A.

Davoyan, A. R.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 8, 846–850 (2014).
[Crossref]

de Guise, H.

E. Karimi, R. W. Boyd, P. de la Hoz, and H. de Guise, J. Řeháček, Z. Hradil, A. Aiello, G. Leuchs, and L. L. Sánchez-Soto, “Radial quantum number of Laguerre-Gauss modes,” Phys. Rev. A 89, 063813 (2014).
[Crossref]

de la Hoz, P.

E. Karimi, R. W. Boyd, P. de la Hoz, and H. de Guise, J. Řeháček, Z. Hradil, A. Aiello, G. Leuchs, and L. L. Sánchez-Soto, “Radial quantum number of Laguerre-Gauss modes,” Phys. Rev. A 89, 063813 (2014).
[Crossref]

Dearden, G.

O. Allegre, W. Perrie, S. Edwardson, G. Dearden, and K. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14, 085601 (2012).
[Crossref]

Desyatnikov, A. S.

Devlin, R. C.

Dorn, R.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Applied Physics B 81, 597–600 (2005).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Drevinskas, R.

Durfee, C. G.

Edwardson, S.

O. Allegre, W. Perrie, S. Edwardson, G. Dearden, and K. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14, 085601 (2012).
[Crossref]

Elser, D.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

Engheta, N.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 8, 846–850 (2014).
[Crossref]

Euser, T. G.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

Fatemi, F. K.

Feurer, T.

H. Kim, M. Akbarimoosavi, and T. Feurer, “Probing ultrafast phenomena with radially polarized light,” Appl. Opt. 55, 4389–4394 (2016).
[Crossref] [PubMed]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Förtsch, M.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

Fukuchi, N.

Furfaro, L.

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Gabriel, C.

C. Gabriel, A. Aiello, S. Berg-Johansen, C. Marquardt, and G. Leuchs, “Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes,” Eur. Phys. J. D 66, 1–5 (2012).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

Gerber, G.

Giovannini, D.

E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett, and R. W. Boyd, “Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference,” Phys. Rev. A 89, 013829 (2014).
[Crossref]

Giust, R.

González, L. A.

Graf, T.

Harman, Z.

Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
[Crossref] [PubMed]

He, S.

J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5, 17929 (2015).
[Crossref] [PubMed]

Heckenberg, N. R.

Hernández-García, C.

Hnatovsky, C.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 8, 846–850 (2014).
[Crossref]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref] [PubMed]

Huang, H.

Inoue, T.

Izdebskaya, Y.

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Joly, N. Y.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

Jones, A. L.

Kalwe, J.

J. Kalwe, M. Neugebauer, C. Ominde, G. Leuchs, G. Rurimo, and P. Banzer, “Exploiting cellophane birefringence to generate radially and azimuthally polarised vector beams,” European J. Phys. 36, 025011 (2015).
[Crossref]

Karimi, E.

E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett, and R. W. Boyd, “Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference,” Phys. Rev. A 89, 013829 (2014).
[Crossref]

E. Karimi, R. W. Boyd, P. de la Hoz, and H. de Guise, J. Řeháček, Z. Hradil, A. Aiello, G. Leuchs, and L. L. Sánchez-Soto, “Radial quantum number of Laguerre-Gauss modes,” Phys. Rev. A 89, 063813 (2014).
[Crossref]

E. Karimi and E. Santamato, “Radial coherent and intelligent states of paraxial wave equation,” Opt. Lett. 37, 2484–2486 (2012).
[Crossref] [PubMed]

E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, “Hypergeometric-Gaussian modes,” Opt. Lett. 32, 3053–3055 (2007).
[Crossref] [PubMed]

Kartazaev, V.

Kawatsuki, N.

Kazansky, P. G.

Keitel, C. H.

Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
[Crossref] [PubMed]

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88, 095005 (2002).
[Crossref] [PubMed]

Khorasaninejad, M.

Kim, H.

Kirk, J. P.

Kivshar, Y. S.

Kraus, M.

Krolikowski, W.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 8, 846–850 (2014).
[Crossref]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref] [PubMed]

E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett. 34, 1021–1023 (2009).
[Crossref] [PubMed]

Le, T.

Leuchs, G.

V. Chille, S. Berg-Johansen, M. Semmler, P. Banzer, A. Aiello, G. Leuchs, and C. Marquardt, “Experimental generation of amplitude squeezed vector beams,” Opt. Express 24, 12385–12394 (2016).
[Crossref] [PubMed]

J. Kalwe, M. Neugebauer, C. Ominde, G. Leuchs, G. Rurimo, and P. Banzer, “Exploiting cellophane birefringence to generate radially and azimuthally polarised vector beams,” European J. Phys. 36, 025011 (2015).
[Crossref]

C. Gabriel, A. Aiello, S. Berg-Johansen, C. Marquardt, and G. Leuchs, “Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes,” Eur. Phys. J. D 66, 1–5 (2012).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Applied Physics B 81, 597–600 (2005).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Li, L.

Liao, P.

Maddalena, P.

Mamaev, A.

N. Baranova, B. Y. Zel’Dovich, A. Mamaev, N. Pilipetskii, and V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 206 (1981).

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Marceau, V.

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

Mariyenko, I. G.

Marquardt, C.

V. Chille, S. Berg-Johansen, M. Semmler, P. Banzer, A. Aiello, G. Leuchs, and C. Marquardt, “Experimental generation of amplitude squeezed vector beams,” Opt. Express 24, 12385–12394 (2016).
[Crossref] [PubMed]

C. Gabriel, A. Aiello, S. Berg-Johansen, C. Marquardt, and G. Leuchs, “Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes,” Eur. Phys. J. D 66, 1–5 (2012).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

Marrucci, L.

J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5, 17929 (2015).
[Crossref] [PubMed]

E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, “Hypergeometric-Gaussian modes,” Opt. Lett. 32, 3053–3055 (2007).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Matsumoto, N.

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

McDuff, R.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Meyer, R.

Miatto, F. M.

E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett, and R. W. Boyd, “Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference,” Phys. Rev. A 89, 013829 (2014).
[Crossref]

Michalowski, A.

Mitchell, K. J.

Miyamoto, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18, 17967–17973 (2010).
[Crossref] [PubMed]

Moreno, I.

Morita, R.

K. Shigematsu, M. Suzuki, K. Yamane, R. Morita, and Y. Toda, “Snap-shot optical polarization spectroscopy using radially polarized pulses,” Appl. Phys. Express 9, 122401 (2016).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Analysis of the Pancharatnam-Berry phase of vector vortex states using the Hamiltonian based on the Maxwell-Schrödinger equation,” Phys. Rev. A 94, 043851 (2016).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Full quantitative analysis of arbitrary cylindrically polarized pulses by using extended Stokes parameters,” Sci. Rep. 5, 17797 (2015).
[Crossref] [PubMed]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Extended Stokes parameters for cylindrically polarized beams,” Opt. Rev. 22, 179–183 (2015).
[Crossref]

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Nonlinear coupling between axisymmetrically-polarized ultrashort optical pulses in a uniaxial crystal,” Opt. Express 22, 16903–16915 (2014).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref] [PubMed]

M. Sakamoto, K. Oka, and R. Morita, “Diffraction characteristics of optical and polarization vortices generated by an axially symmetric polarizer,” Proc. SPIE 8274, 827414 (2012).
[Crossref]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18, 17967–17973 (2010).
[Crossref] [PubMed]

Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17, 24198–24207 (2009).
[Crossref]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensationM,” Opt. Lett. 28, 2258–2260 (2003).
[Crossref] [PubMed]

Nakamura, K.

Neugebauer, M.

J. Kalwe, M. Neugebauer, C. Ominde, G. Leuchs, G. Rurimo, and P. Banzer, “Exploiting cellophane birefringence to generate radially and azimuthally polarised vector beams,” European J. Phys. 36, 025011 (2015).
[Crossref]

nigo, I.

Nivas, J. J.

J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5, 17929 (2015).
[Crossref] [PubMed]

Noda, K.

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

Oh, J.

Ohtake, Y.

Oka, K.

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Analysis of the Pancharatnam-Berry phase of vector vortex states using the Hamiltonian based on the Maxwell-Schrödinger equation,” Phys. Rev. A 94, 043851 (2016).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Full quantitative analysis of arbitrary cylindrically polarized pulses by using extended Stokes parameters,” Sci. Rep. 5, 17797 (2015).
[Crossref] [PubMed]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Extended Stokes parameters for cylindrically polarized beams,” Opt. Rev. 22, 179–183 (2015).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Nonlinear coupling between axisymmetrically-polarized ultrashort optical pulses in a uniaxial crystal,” Opt. Express 22, 16903–16915 (2014).
[Crossref] [PubMed]

M. Sakamoto, K. Oka, and R. Morita, “Diffraction characteristics of optical and polarization vortices generated by an axially symmetric polarizer,” Proc. SPIE 8274, 827414 (2012).
[Crossref]

Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17, 24198–24207 (2009).
[Crossref]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensationM,” Opt. Lett. 28, 2258–2260 (2003).
[Crossref] [PubMed]

Okida, M.

Omatsu, T.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18, 17967–17973 (2010).
[Crossref] [PubMed]

Ominde, C.

J. Kalwe, M. Neugebauer, C. Ominde, G. Leuchs, G. Rurimo, and P. Banzer, “Exploiting cellophane birefringence to generate radially and azimuthally polarised vector beams,” European J. Phys. 36, 025011 (2015).
[Crossref]

Ono, H.

Oscurato, S. L.

Padgett, M. J.

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24, 29269–29282 (2016).
[Crossref] [PubMed]

E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett, and R. W. Boyd, “Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference,” Phys. Rev. A 89, 013829 (2014).
[Crossref]

L. Allen, J. Courtial, and M. J. Padgett, “Matrix formulation for the propagation of light beams with orbital and spin angular momenta,” Phys. Rev. E 60, 7497–7503 (1999).
[Crossref]

Paparo, D.

J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5, 17929 (2015).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Perrie, W.

O. Allegre, W. Perrie, S. Edwardson, G. Dearden, and K. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14, 085601 (2012).
[Crossref]

Phillips, D. B.

Piccirillo, B.

Piché, M.

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

Picón, A.

Pilipetskii, N.

N. Baranova, B. Y. Zel’Dovich, A. Mamaev, N. Pilipetskii, and V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 206 (1981).

Quabis, S.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Applied Physics B 81, 597–600 (2005).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Rapp, L.

Ren, Y.

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

Rode, A.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref] [PubMed]

Román, J. S.

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Rubano, A.

J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5, 17929 (2015).
[Crossref] [PubMed]

Ruiz, U.

Rurimo, G.

J. Kalwe, M. Neugebauer, C. Ominde, G. Leuchs, G. Rurimo, and P. Banzer, “Exploiting cellophane birefringence to generate radially and azimuthally polarised vector beams,” European J. Phys. 36, 025011 (2015).
[Crossref]

Russell, P. S. J.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

Sakamoto, M.

M. Sakamoto, T. Sasaki, K. Noda, T. M. Tien, N. Kawatsuki, and H. Ono, “Three-dimensional vector recording in polarization sensitive liquid crystal composites by using axisymmetrically polarized beam,” Opt. Lett. 41, 642–645 (2016).
[Crossref] [PubMed]

M. Sakamoto, K. Oka, and R. Morita, “Diffraction characteristics of optical and polarization vortices generated by an axially symmetric polarizer,” Proc. SPIE 8274, 827414 (2012).
[Crossref]

Salamin, Y. I.

Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
[Crossref] [PubMed]

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88, 095005 (2002).
[Crossref] [PubMed]

Santamato, E.

Sasaki, T.

Scully, M. O.

M. O. Scully and M. S. Zubairy, “Simple laser accelerator: Optics and particle dynamics,” Phys. Rev. A 44, 2656–2663 (1991).
[Crossref] [PubMed]

Semmler, M.

Shigematsu, K.

K. Shigematsu, M. Suzuki, K. Yamane, R. Morita, and Y. Toda, “Snap-shot optical polarization spectroscopy using radially polarized pulses,” Appl. Phys. Express 9, 122401 (2016).
[Crossref]

Shimatake, K.

Shkukov, V.

N. Baranova, B. Y. Zel’Dovich, A. Mamaev, N. Pilipetskii, and V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 206 (1981).

Shvedov, V.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 8, 846–850 (2014).
[Crossref]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref] [PubMed]

E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett. 34, 1021–1023 (2009).
[Crossref] [PubMed]

Smith, C. P.

Sola, J.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Strohaber, J.

Suguro, A.

Suzuki, M.

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Analysis of the Pancharatnam-Berry phase of vector vortex states using the Hamiltonian based on the Maxwell-Schrödinger equation,” Phys. Rev. A 94, 043851 (2016).
[Crossref]

K. Shigematsu, M. Suzuki, K. Yamane, R. Morita, and Y. Toda, “Snap-shot optical polarization spectroscopy using radially polarized pulses,” Appl. Phys. Express 9, 122401 (2016).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Full quantitative analysis of arbitrary cylindrically polarized pulses by using extended Stokes parameters,” Sci. Rep. 5, 17797 (2015).
[Crossref] [PubMed]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Extended Stokes parameters for cylindrically polarized beams,” Opt. Rev. 22, 179–183 (2015).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Nonlinear coupling between axisymmetrically-polarized ultrashort optical pulses in a uniaxial crystal,” Opt. Express 22, 16903–16915 (2014).
[Crossref] [PubMed]

M. Suzuki, “A comprehensive study on cylindrical symmetry in optical physics : Full-quantitative characterization of cylindrically polarized optical pulses,” Ph.D. thesis, Hokkaido Univ. (2016).

Sztul, H. I.

Takahashi, F.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref] [PubMed]

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref] [PubMed]

Tanda, S.

Tien, T. M.

Toda, Y.

K. Shigematsu, M. Suzuki, K. Yamane, R. Morita, and Y. Toda, “Snap-shot optical polarization spectroscopy using radially polarized pulses,” Appl. Phys. Express 9, 122401 (2016).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Analysis of the Pancharatnam-Berry phase of vector vortex states using the Hamiltonian based on the Maxwell-Schrödinger equation,” Phys. Rev. A 94, 043851 (2016).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Extended Stokes parameters for cylindrically polarized beams,” Opt. Rev. 22, 179–183 (2015).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Full quantitative analysis of arbitrary cylindrically polarized pulses by using extended Stokes parameters,” Sci. Rep. 5, 17797 (2015).
[Crossref] [PubMed]

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Nonlinear coupling between axisymmetrically-polarized ultrashort optical pulses in a uniaxial crystal,” Opt. Express 22, 16903–16915 (2014).
[Crossref] [PubMed]

Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17, 24198–24207 (2009).
[Crossref]

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref] [PubMed]

Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17, 24198–24207 (2009).
[Crossref]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref] [PubMed]

Tsubota, M.

Tur, M.

Turpin, A.

Turtaev, S.

Uiterwaal, C. J. G. J.

Varin, C.

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

Vecchione, A.

J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5, 17929 (2015).
[Crossref] [PubMed]

Voss, A.

Wang, Z.

Watkins, K.

O. Allegre, W. Perrie, S. Edwardson, G. Dearden, and K. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14, 085601 (2012).
[Crossref]

Weber, R.

White, A. G.

Willner, A. E.

Willner, A. J.

Wintz, D.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Xie, G.

Yamane, K.

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Analysis of the Pancharatnam-Berry phase of vector vortex states using the Hamiltonian based on the Maxwell-Schrödinger equation,” Phys. Rev. A 94, 043851 (2016).
[Crossref]

K. Shigematsu, M. Suzuki, K. Yamane, R. Morita, and Y. Toda, “Snap-shot optical polarization spectroscopy using radially polarized pulses,” Appl. Phys. Express 9, 122401 (2016).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Full quantitative analysis of arbitrary cylindrically polarized pulses by using extended Stokes parameters,” Sci. Rep. 5, 17797 (2015).
[Crossref] [PubMed]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Extended Stokes parameters for cylindrically polarized beams,” Opt. Rev. 22, 179–183 (2015).
[Crossref]

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Nonlinear coupling between axisymmetrically-polarized ultrashort optical pulses in a uniaxial crystal,” Opt. Express 22, 16903–16915 (2014).
[Crossref] [PubMed]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensationM,” Opt. Lett. 28, 2258–2260 (2003).
[Crossref] [PubMed]

Yamashita, M.

Yan, Y.

Yang, Z.

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

Yzuel, M. J.

Zel’Dovich, B. Y.

N. Baranova, B. Y. Zel’Dovich, A. Mamaev, N. Pilipetskii, and V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 206 (1981).

Zeylikovich, I.

Zhan, Q.

Zhang, Z.

Zhao, Z.

Zhong, W.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

Zhu, A. Y.

Zito, G.

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, “Simple laser accelerator: Optics and particle dynamics,” Phys. Rev. A 44, 2656–2663 (1991).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Appl. Phys. Express (1)

K. Shigematsu, M. Suzuki, K. Yamane, R. Morita, and Y. Toda, “Snap-shot optical polarization spectroscopy using radially polarized pulses,” Appl. Phys. Express 9, 122401 (2016).
[Crossref]

Applied Physics B (1)

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Applied Physics B 81, 597–600 (2005).
[Crossref]

Eur. Phys. J. D (1)

C. Gabriel, A. Aiello, S. Berg-Johansen, C. Marquardt, and G. Leuchs, “Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes,” Eur. Phys. J. D 66, 1–5 (2012).
[Crossref]

European J. Phys. (1)

J. Kalwe, M. Neugebauer, C. Ominde, G. Leuchs, G. Rurimo, and P. Banzer, “Exploiting cellophane birefringence to generate radially and azimuthally polarised vector beams,” European J. Phys. 36, 025011 (2015).
[Crossref]

J. Opt. (1)

O. Allegre, W. Perrie, S. Edwardson, G. Dearden, and K. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt. 14, 085601 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

N. Baranova, B. Y. Zel’Dovich, A. Mamaev, N. Pilipetskii, and V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 206 (1981).

Nature Photon. (1)

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, “A long-range polarization-controlled optical tractor beam,” Nature Photon. 8, 846–850 (2014).
[Crossref]

New J. Phys. (2)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
[Crossref]

K. Yamane, Z. Yang, Y. Toda, and R. Morita, “Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction,” New J. Phys. 16, 053020 (2014).
[Crossref]

Opt. Express (10)

R. C. Devlin, A. Ambrosio, D. Wintz, S. L. Oscurato, A. Y. Zhu, M. Khorasaninejad, J. Oh, P. Maddalena, and F. Capasso, “Spin-to-orbital angular momentum conversion in dielectric metasurfaces,” Opt. Express 25, 377–393 (2017).
[Crossref] [PubMed]

L. Rapp, R. Meyer, L. Furfaro, C. Billet, R. Giust, and F. Courvoisier, “High speed cleaving of crystals with ultrafast bessel beams,” Opt. Express 25, 9312–9317 (2017).
[Crossref] [PubMed]

I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13, 7599–7608 (2005).
[Crossref] [PubMed]

Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express 17, 24198–24207 (2009).
[Crossref]

F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express 19, 25143–25150 (2011).
[Crossref]

V. Chille, S. Berg-Johansen, M. Semmler, P. Banzer, A. Aiello, G. Leuchs, and C. Marquardt, “Experimental generation of amplitude squeezed vector beams,” Opt. Express 24, 12385–12394 (2016).
[Crossref] [PubMed]

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24, 29269–29282 (2016).
[Crossref] [PubMed]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Nonlinear coupling between axisymmetrically-polarized ultrashort optical pulses in a uniaxial crystal,” Opt. Express 22, 16903–16915 (2014).
[Crossref] [PubMed]

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18, 22305–22313 (2010).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18, 17967–17973 (2010).
[Crossref] [PubMed]

Opt. Lett. (10)

E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, “Hypergeometric-Gaussian modes,” Opt. Lett. 32, 3053–3055 (2007).
[Crossref] [PubMed]

T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre–Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett. 34, 34–36 (2009).
[Crossref]

I. Zeylikovich, H. I. Sztul, V. Kartazaev, T. Le, and R. R. Alfano, “Ultrashort Laguerre-Gaussian pulses with angular and group velocity dispersion compensation,” Opt. Lett. 32, 2025–2027 (2007).
[Crossref] [PubMed]

M. Sakamoto, T. Sasaki, K. Noda, T. M. Tien, N. Kawatsuki, and H. Ono, “Three-dimensional vector recording in polarization sensitive liquid crystal composites by using axisymmetrically polarized beam,” Opt. Lett. 41, 642–645 (2016).
[Crossref] [PubMed]

E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett. 34, 1021–1023 (2009).
[Crossref] [PubMed]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
[Crossref] [PubMed]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensationM,” Opt. Lett. 28, 2258–2260 (2003).
[Crossref] [PubMed]

E. Karimi and E. Santamato, “Radial coherent and intelligent states of paraxial wave equation,” Opt. Lett. 37, 2484–2486 (2012).
[Crossref] [PubMed]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[Crossref]

G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. E. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices,” Opt. Lett. 41, 3447–3450 (2016).
[Crossref] [PubMed]

Opt. Rev. (1)

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Extended Stokes parameters for cylindrically polarized beams,” Opt. Rev. 22, 179–183 (2015).
[Crossref]

Optica (1)

Phys. Rev. A (5)

M. O. Scully and M. S. Zubairy, “Simple laser accelerator: Optics and particle dynamics,” Phys. Rev. A 44, 2656–2663 (1991).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Analysis of the Pancharatnam-Berry phase of vector vortex states using the Hamiltonian based on the Maxwell-Schrödinger equation,” Phys. Rev. A 94, 043851 (2016).
[Crossref]

E. Karimi, R. W. Boyd, P. de la Hoz, and H. de Guise, J. Řeháček, Z. Hradil, A. Aiello, G. Leuchs, and L. L. Sánchez-Soto, “Radial quantum number of Laguerre-Gauss modes,” Phys. Rev. A 89, 063813 (2014).
[Crossref]

E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto, M. J. Padgett, and R. W. Boyd, “Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference,” Phys. Rev. A 89, 013829 (2014).
[Crossref]

Phys. Rev. E (1)

L. Allen, J. Courtial, and M. J. Padgett, “Matrix formulation for the propagation of light beams with orbital and spin angular momenta,” Phys. Rev. E 60, 7497–7503 (1999).
[Crossref]

Phys. Rev. Lett. (9)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88, 095005 (2002).
[Crossref] [PubMed]

Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
[Crossref] [PubMed]

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref] [PubMed]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Sakamoto, K. Oka, and R. Morita, “Diffraction characteristics of optical and polarization vortices generated by an axially symmetric polarizer,” Proc. SPIE 8274, 827414 (2012).
[Crossref]

Sci. Rep. (2)

M. Suzuki, K. Yamane, K. Oka, Y. Toda, and R. Morita, “Full quantitative analysis of arbitrary cylindrically polarized pulses by using extended Stokes parameters,” Sci. Rep. 5, 17797 (2015).
[Crossref] [PubMed]

J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate,” Sci. Rep. 5, 17929 (2015).
[Crossref] [PubMed]

Other (3)

M. Suzuki, “A comprehensive study on cylindrical symmetry in optical physics : Full-quantitative characterization of cylindrically polarized optical pulses,” Ph.D. thesis, Hokkaido Univ. (2016).

W. N. Plick, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “The forgotten quantum number: A short note on the radial modes of Laguerre-Gauss beams,” https://arXiv:1306.6517 (2013).

E. Collett, Polarized light in fiber optics (SPIE, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) System setup capable for generation of arbitrary AP broadband pulses. SLM1,2, a liquid crystal on silicon spatial light modulators; L1-L4, convex lenses (f1 , 2 , 3 = 500 mm, f4 = 1000 mm); I1,2, irises; AHWP1,2, achromatic half-wave plates; AQWP1, an achromatic quarter-wave plate; SVWP, a space variant wave plate (Photonic Lattice SWP-808). |s, l〉 (= |s〉 |l〉) represents the state of spin and orbit angular momentum of light in the ħ units [23, 32]. (b) an AP state of final generated pulses plotted on the l =1 normalized extended Poincaré sphere (EPS). The final generated state is manipulated by the angles of AHWP1 (θH1) and AHWP2 (θH2) in the polarization converter. (c) (ϕl=1, θl=1)-plane of the l =1 normalized EPS. Here, ϕl=1 and θl=1 are, respectively, azimuthal angle and polar angle. The rotations of AHWP1 and AHWP2 make the moves of the final generated AP state parallel to the θl=1 and ϕl=1 axes, respectively.
Fig. 2
Fig. 2 (a) Outline drawing of whole experimental setup. Ti:Sa Osc., a Ti:Sapphire oscillator (central wavelength, 800 nm; bandwidth, 60 nm); BPF, a bandpass filter (central wavelength, 800 nm; bandwidth, 3 nm); BS1,2, broadband non-polarizing beam splitters; L5-8, convex lenses (f5 , 8 = 200 mm, f6 , 7 = 100 mm); P1,2, pinholes; AQWP2,3, achromatic quarter-wave plates; POL1,2, polarizers; a delay stage is put in the reference pulse branch (see the Appendix). (b) Method for measurement of interference pattern of the |s = ±1〉 component of the final generated pulses. When θQ2 = 45 [deg], the polarization analyzer outputs the |s = −1〉 component as a vertically polarized state. By combining vertically polarized reference pulses, we observe an interference fringe pattern of the |s = −1〉 component of the final generated pulses with the reference pulse beam. When θQ2 = 135 [deg], we observe that of the |s = 1〉 component of the final generated pulses.
Fig. 3
Fig. 3 Grating patterns on SLM2 in order to generate (a) p = 0 and (b) p = 1 LG AP pulses.
Fig. 4
Fig. 4 Generation results of (a–d) p = 0 and (e–h) p = 1 LG RP pulses. (a,e) Intensity and polarization distributions of (a) p = 0 and (e) p = 1 LG RP pulses. (b,f) Intensity on the radial axis r of (b) p = 0 and (f) p = 1 LG RP pulses. Red and cyan curves represent experimental and fitting ones, respectively. (c,d) Interference fringe patterns of (c) |s = 1〉 and (d) |s = 1〉 components in p = 0 LG RP pulses with the reference pulse beam. (g,h) Interference fringe patterns of (g) |s = −1〉 and (h) |s = 1〉 components in p = 1 LG RP pulses with the reference pulse beam. Note that the images in (e), (g) and (h) are displayed on a 75% scale of the images in (a), (c) and (d).
Fig. 5
Fig. 5 Transition of polarization distribution when (a,c) AHWP1 was rotated under the condition that θH2 = −22.5 deg, or when (b,d) AHWP2 was rotated under the condition that θH1 = 22.5 deg. The grating pattern on SLM2 was (a,b) the pattern in Fig. 3(a) (p = 0 LG AP mode) or (c,d) the pattern in Fig. 3(b) (p = 1 LG AP mode). These polarization distributions are colored under the following rule: black, linear polarization; red, left-handed elliptical polarization; blue, right-handed elliptical polarization. The images in (c) and (d) are displayed on a 75% scale of the images in (a) and (b).
Fig. 6
Fig. 6 (a–d) The value of normalized l = 1 ESPs S ˜ i , l = 1 E ( i = 1 3 ) and l = 1 DOP-SD corresponding to the polarization distributions displayed in Fig. 5(a–d). Solid curves represent ideal ones described by Eq. (6).
Fig. 7
Fig. 7 Experimental results for (a) p = 0 and (b) p = 1 LG AP states plotted on the (ϕl=1, θl=1)-planes. Dashed lines are ideal trajectories [Eqs. (7)(8)]
Fig. 8
Fig. 8 Whole experimental setup. Ti:Sa Osc., a Ti:Sapphire oscillator (central wavelength, 800 nm; bandwidth, 60 nm); OL1,2, objective lenses; SMF, single mode fiber (∼10 m); M1-15, mirrors; L1-L14, convex lenses (L1-3,9,10,12,14, f = 500 mm; L4,11, f = 1000 mm; L5,7,13, f = 200 mm; L6,8, f = 100 mm); PBS, a polarizing beam splitter; BS1,2, broadband non-polarizing beam splitters; SLM, a liquid crystal on silicon spatial light modulator; MZ, a zero-incidence mirror; I1,2, irises; GL1,2, Glan-Laser Calcite polarizers; AHWP0-2, achromatic half-wave plates; AQWP1,2, achromatic quarter-wave plates; SVWP, a space variant wave plate (Photonic Lattice SWP-808); Delay, a delay stage; POL2, a polarizer; BPF, a bandpass filter (central wavelength, 800 nm; bandwidth, 3 nm).
Fig. 9
Fig. 9 A three-dimensional configuration of optical components in a 4-f SLM system.

Tables (1)

Tables Icon

Table 1 The values of the first ESP S ˜ 1 , l = 1 and the DOP-SD P l = 1 space of generated p = 0 LG RP pulses [Fig. 4(a)] and p = 1 LG RP pulses [Fig. 4(e)].

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

exp ( i π / 4 ) 2 ( 1 i i 1 ) ( cos 2 θ H 1 sin 2 θ H 1 ) = exp ( + i π / 4 ) sin 2 θ H 1 | s = + 1 + exp ( i π / 4 ) cos 2 θ H 1 | s = 1 ,
( cos 2 θ H 2 sin 2 θ H 2 sin 2 θ H 2 cos 2 θ H 2 ) = R θ H 2 ( 1 0 0 1 ) R θ H 2 = | s = + 1 e i θ H 2 s = 1 | + | s = 1 e + i θ H 2 | s = + 1 ,
R θ = ( cos θ sin θ sin θ cos θ )
( cos 2 q ϕ sin 2 q ϕ sin 2 q ϕ cos 2 q ϕ ) = | s = + 1 ϕ | l = 2 q s = 1 | + | s = 1 ϕ | l = + 2 q s = + 1 | ,
f ( r , ϕ ) = f SLM 2 1 st ( r f 4 / f 3 ) ( sin 2 θ H 1 e i ( 2 θ H 2 π / 4 ) | s = + 1 ϕ | l = 1 + cos 2 θ H 1 e i ( 2 θ H 2 π / 4 ) | s = 1 ϕ | l = + 1 ) .
S ˜ l = 1 E = ( sin 4 θ H 2 sin 4 θ H 1 cos 4 θ H 2 sin 4 θ H 1 cos 4 θ H 1 ) .
ϕ l = 1 = π 2 + 4 θ H 2 ,
θ l = 1 = π 4 θ H 1 .
S ˜ l = 1 E ( ϕ l = 1 , θ l = 1 ) = S ˜ l = 1 E ( ϕ l = 1 + 2 π , θ l = 1 ) = S ˜ l = 1 E ( ϕ l = 1 , θ l = 1 + 2 π ) = S ˜ l = 1 E ( ϕ l = 1 + π , 2 π θ l = 1 ) .
I ( r ) = 1 2 π 0 2 π I ( r , ϕ ) d ϕ ,
I l LG ( r ) = | A | 2 2 p ! π ( p + | l | ) ! ( 2 r 2 w 2 ) | l | { L p | l | ( 2 r 2 w 2 ) } 2 1 w 2 exp ( 2 r 2 w 2 ) ,

Metrics