Abstract

We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic microwave true time delays for phased array antennas using a 49  GHz FSR integrated optical micro-comb source [Invited]

Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Tania Moein, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss
Photon. Res. 6(5) B30-B36 (2018)

Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers

Sanghoon Chin, Luc Thévenaz, Juan Sancho, Salvador Sales, José Capmany, Perrine Berger, Jérôme Bourderionnet, and Daniel Dolfi
Opt. Express 18(21) 22599-22613 (2010)

Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis

Thach G. Nguyen, Mehrdad Shoeiby, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss
Opt. Express 23(17) 22087-22097 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. R. C. Williamson and R. D. Esman, “RF photonics,” J. Lightwave Technol. 26(9), 1145–1153 (2008).
    [Crossref]
  3. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory 50(3), 877–887 (2002).
    [Crossref]
  4. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
    [Crossref]
  5. R. A. Minasian, “Ultra-Wideband and Adaptive Photonic Signal Processing of Microwave Signals,” IEEE J. Quantum Electron. 52(1), 1–13 (2016).
    [Crossref]
  6. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  7. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  8. M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22(18), 21488–21498 (2014).
    [Crossref] [PubMed]
  9. B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
    [Crossref] [PubMed]
  10. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
    [Crossref]
  11. A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
    [Crossref] [PubMed]
  12. X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23(8), 10002–10008 (2015).
    [Crossref] [PubMed]
  13. D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
    [Crossref]
  14. Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207(1-6), 177–187 (2002).
    [Crossref]
  15. J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33(7), 545–546 (1997).
    [Crossref]
  16. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
    [Crossref] [PubMed]
  17. K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
    [Crossref] [PubMed]
  18. P. A. Morton and J. B. Khurgin, “Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier,” IEEE Photonics Technol. Lett. 21(22), 1686–1688 (2009).
    [Crossref]
  19. O. F. Yilmaz, L. Yaron, S. Khaleghi, M. R. Chitgarha, M. Tur, and A. Willner, “True time delays using conversion/dispersion with flat magnitude response for wideband analog RF signals,” Opt. Express 20(8), 8219–8227 (2012).
    [Crossref] [PubMed]
  20. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
    [Crossref] [PubMed]
  21. H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14(11), 4800–4807 (2006).
    [Crossref] [PubMed]
  22. J. J. Zhang and J. P. Yao, “Photonic True-Time Delay Beamforming Using a Switch-Controlled Wavelength-Dependent Recirculating Loop,” J. Lightwave Technol. 34(16), 3923–3929 (2016).
    [Crossref]
  23. L. Zhang, M. Li, N. Shi, X. Zhu, S. Sun, J. Tang, W. Li, and N. Zhu, “Photonic true time delay beamforming technique with ultra-fast beam scanning,” Opt. Express 25(13), 14524–14532 (2017).
    [Crossref] [PubMed]
  24. Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photonics Technol. Lett. 14(8), 1172–1174 (2002).
    [Crossref]
  25. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
    [Crossref] [PubMed]
  26. J. Dai, X. Xu, Z. Wu, Y. Dai, F. Yin, Y. Zhou, J. Li, and K. Xu, “Self-oscillating optical frequency comb generator based on an optoelectronic oscillator employing cascaded modulators,” Opt. Express 23(23), 30014–30019 (2015).
    [Crossref] [PubMed]
  27. C. Chen, C. He, D. Zhu, R. Guo, F. Zhang, and S. Pan, “Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator,” Opt. Lett. 38(16), 3137–3139 (2013).
    [Crossref] [PubMed]
  28. R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
    [Crossref] [PubMed]
  29. A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quant. 19(6), 6 (2013).
    [Crossref]
  30. W. Li and J. Yao, “Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer,” Opt. Express 17(26), 23712–23718 (2009).
    [Crossref] [PubMed]
  31. T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photonics Technol. Lett. 7(2), 197–199 (1995).
    [Crossref]
  32. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  33. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  34. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
    [Crossref]
  35. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  36. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  37. A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).
  38. X. X. Xue and A. M. Weiner, “Microwave photonics connected with microresonator frequency combs,” Front Optoelectron. 9(2), 238–248 (2016).
    [Crossref]
  39. X. Y. Xu, J. Y. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics 2(9), 096104 (2017).
    [Crossref]
  40. J. Y. Wu, T. Moein, X. Y. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2(5), 056103 (2017).
    [Crossref]
  41. A. Ortigosa-Blanch, J. Mora, J. Capmany, B. Ortega, and D. Pastor, “Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser,” Opt. Lett. 31(6), 709–711 (2006).
    [Crossref] [PubMed]
  42. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory 58(11), 3269–3278 (2010).
    [Crossref]
  43. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
    [Crossref]
  44. M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
    [Crossref]
  45. M. J. Strain and M. Sorel, “Design and Fabrication of Integrated Chirped Bragg Gratings for On-Chip Dispersion Control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010).
    [Crossref]
  46. E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110(16), 161113 (2017).
    [Crossref]
  47. B. Stern, X. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42(21), 4541–4544 (2017).
    [Crossref] [PubMed]
  48. M. Burla, D. A. I. Marpaung, L. M. Zhuang, M. R. Khan, A. Leinse, W. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multiwavelength-Integrated Optical Beamformer Based on Wavelength Division Multiplexing for 2-D Phased Array Antennas,” J. Lightwave Technol. 32(20), 3509–3520 (2014).
    [Crossref]
  49. W. Zhou, M. Stead, S. Weiss, O. Okusaga, L. Jiang, S. Anderson, and Z. Rena Huang, “Developing an integrated photonic system with a simple beamforming architecture for phased-array antennas,” Appl. Opt. 56(3), B5–B13 (2017).
    [Crossref] [PubMed]
  50. M. Longbrake, “True time-delay beamsteering for radar,” in Aerospace and Electronics Conference (NAECON) (IEEE, 2012), pp. 246–249.
  51. M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, 2001).
  52. X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring,” J. Lightwave Technol. 32(20), 3557–3565 (2014).
    [Crossref]
  53. X. X. Xue and A. M. Weiner, “Microwave photonics connected with microresonator frequency combs,” Front. Optoelectron. 9(2), 238–248 (2016).
    [Crossref]
  54. J. H. Mcclellan, T. W. Parks, and L. R. Rabiner, “Computer-Program for Designing Optimum Fir Linear Phase Digital Filters,” IEEE Trans. Audio Electroacoustics 21, 506–526 (1973).
  55. T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23(17), 22087–22097 (2015).
    [Crossref] [PubMed]
  56. A. Malacarne, R. Ashrafi, Y. Park, and J. Azaña, “Reconfigurable optical differential phase-shift-keying pattern recognition based on incoherent photonic processing,” Opt. Lett. 36(21), 4290–4292 (2011).
    [Crossref] [PubMed]
  57. Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of Broadband Microwave Arbitrary-Order Time Differential Operators Using a Reconfigurable Incoherent Photonic Processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).
    [Crossref]
  58. J. Azana, C. Madsen, K. Takiguchi, and G. Cincotti, “Guest editorial - Optical signal processing,” J. Lightwave Technol. 24(7), 2484–2486 (2006).
    [Crossref]
  59. S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photonics Technol. Lett. 16(3), 879–881 (2004).
    [Crossref]
  60. X. Zhu, F. Chen, H. Peng, and Z. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” Opt. Express 25(8), 9232–9243 (2017).
    [Crossref] [PubMed]

2017 (7)

X. Y. Xu, J. Y. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics 2(9), 096104 (2017).
[Crossref]

J. Y. Wu, T. Moein, X. Y. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2(5), 056103 (2017).
[Crossref]

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110(16), 161113 (2017).
[Crossref]

W. Zhou, M. Stead, S. Weiss, O. Okusaga, L. Jiang, S. Anderson, and Z. Rena Huang, “Developing an integrated photonic system with a simple beamforming architecture for phased-array antennas,” Appl. Opt. 56(3), B5–B13 (2017).
[Crossref] [PubMed]

X. Zhu, F. Chen, H. Peng, and Z. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” Opt. Express 25(8), 9232–9243 (2017).
[Crossref] [PubMed]

L. Zhang, M. Li, N. Shi, X. Zhu, S. Sun, J. Tang, W. Li, and N. Zhu, “Photonic true time delay beamforming technique with ultra-fast beam scanning,” Opt. Express 25(13), 14524–14532 (2017).
[Crossref] [PubMed]

B. Stern, X. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42(21), 4541–4544 (2017).
[Crossref] [PubMed]

2016 (4)

J. J. Zhang and J. P. Yao, “Photonic True-Time Delay Beamforming Using a Switch-Controlled Wavelength-Dependent Recirculating Loop,” J. Lightwave Technol. 34(16), 3923–3929 (2016).
[Crossref]

X. X. Xue and A. M. Weiner, “Microwave photonics connected with microresonator frequency combs,” Front. Optoelectron. 9(2), 238–248 (2016).
[Crossref]

R. A. Minasian, “Ultra-Wideband and Adaptive Photonic Signal Processing of Microwave Signals,” IEEE J. Quantum Electron. 52(1), 1–13 (2016).
[Crossref]

X. X. Xue and A. M. Weiner, “Microwave photonics connected with microresonator frequency combs,” Front Optoelectron. 9(2), 238–248 (2016).
[Crossref]

2015 (4)

2014 (3)

2013 (4)

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

C. Chen, C. He, D. Zhu, R. Guo, F. Zhang, and S. Pan, “Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator,” Opt. Lett. 38(16), 3137–3139 (2013).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quant. 19(6), 6 (2013).
[Crossref]

2012 (4)

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

O. F. Yilmaz, L. Yaron, S. Khaleghi, M. R. Chitgarha, M. Tur, and A. Willner, “True time delays using conversion/dispersion with flat magnitude response for wideband analog RF signals,” Opt. Express 20(8), 8219–8227 (2012).
[Crossref] [PubMed]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (8)

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory 58(11), 3269–3278 (2010).
[Crossref]

Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of Broadband Microwave Arbitrary-Order Time Differential Operators Using a Reconfigurable Incoherent Photonic Processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).
[Crossref]

M. J. Strain and M. Sorel, “Design and Fabrication of Integrated Chirped Bragg Gratings for On-Chip Dispersion Control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010).
[Crossref]

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
[Crossref] [PubMed]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
[Crossref] [PubMed]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
[Crossref] [PubMed]

2009 (4)

J. P. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

W. Li and J. Yao, “Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer,” Opt. Express 17(26), 23712–23718 (2009).
[Crossref] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

P. A. Morton and J. B. Khurgin, “Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier,” IEEE Photonics Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

2008 (2)

R. C. Williamson and R. D. Esman, “RF photonics,” J. Lightwave Technol. 26(9), 1145–1153 (2008).
[Crossref]

M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

2006 (4)

2005 (2)

2004 (1)

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photonics Technol. Lett. 16(3), 879–881 (2004).
[Crossref]

2002 (3)

Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207(1-6), 177–187 (2002).
[Crossref]

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory 50(3), 877–887 (2002).
[Crossref]

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photonics Technol. Lett. 14(8), 1172–1174 (2002).
[Crossref]

1997 (1)

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[Crossref]

1995 (1)

T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photonics Technol. Lett. 7(2), 197–199 (1995).
[Crossref]

1973 (1)

J. H. Mcclellan, T. W. Parks, and L. R. Rabiner, “Computer-Program for Designing Optimum Fir Linear Phase Digital Filters,” IEEE Trans. Audio Electroacoustics 21, 506–526 (1973).

Anderson, S.

Andres, M. V.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Asghari, M. H.

Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of Broadband Microwave Arbitrary-Order Time Differential Operators Using a Reconfigurable Incoherent Photonic Processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).
[Crossref]

Ashrafi, R.

Azana, J.

Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of Broadband Microwave Arbitrary-Order Time Differential Operators Using a Reconfigurable Incoherent Photonic Processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).
[Crossref]

J. Azana, C. Madsen, K. Takiguchi, and G. Cincotti, “Guest editorial - Optical signal processing,” J. Lightwave Technol. 24(7), 2484–2486 (2006).
[Crossref]

Azaña, J.

Barbarin, Y.

M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Beeker, W.

Bente, E. A. J. M.

M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Berger, P.

Bourderionnet, J.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Burla, M.

Capmany, J.

Caspani, L.

Chembo, Y. K.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

Chen, C.

Chen, F.

Chen, Z.

Chin, S.

Chitgarha, M. R.

Choi, D. Y.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Chu, S. T.

Chuang, S. L.

Cincotti, G.

J. Azana, C. Madsen, K. Takiguchi, and G. Cincotti, “Guest editorial - Optical signal processing,” J. Lightwave Technol. 24(7), 2484–2486 (2006).
[Crossref]

Clerici, M.

Coen, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

Corcoran, B.

Cruz, J. L.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[Crossref]

Dai, J.

Dai, Y.

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

Densmore, A.

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Dolfi, D.

Dong, L.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[Crossref]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Dutt, A.

Eggleton, B. J.

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
[Crossref] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Erkintalo, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

Esman, R. D.

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Ferrera, M.

M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22(18), 21488–21498 (2014).
[Crossref] [PubMed]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Gimeno, B.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Guo, R.

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory 58(11), 3269–3278 (2010).
[Crossref]

Hansson, T.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

He, C.

Heck, M. J. R.

M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Heideman, R. G.

Helsten, R.

Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of Broadband Microwave Arbitrary-Order Time Differential Operators Using a Reconfigurable Incoherent Photonic Processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).
[Crossref]

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Herráez, M.

Hoekman, M.

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Janz, S.

Ji, X.

Jiang, L.

Khaleghi, S.

Khan, M. R.

Khurgin, J. B.

P. A. Morton and J. B. Khurgin, “Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier,” IEEE Photonics Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

Kim, H. J.

Kippenberg, T. J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Kjær, R.

Kondratko, P.

Kourogi, M.

T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photonics Technol. Lett. 7(2), 197–199 (1995).
[Crossref]

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Leaird, D. E.

X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring,” J. Lightwave Technol. 32(20), 3557–3565 (2014).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quant. 19(6), 6 (2013).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
[Crossref] [PubMed]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory 58(11), 3269–3278 (2010).
[Crossref]

Leinse, A.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Li, J.

Li, M.

Li, W.

Lin, W. P.

D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
[Crossref]

Lipson, M.

B. Stern, X. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42(21), 4541–4544 (2017).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Little, B. E.

Liu, Y. Q.

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photonics Technol. Lett. 14(8), 1172–1174 (2002).
[Crossref]

Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207(1-6), 177–187 (2002).
[Crossref]

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
[Crossref] [PubMed]

Longbrake, M.

M. Longbrake, “True time-delay beamsteering for radar,” in Aerospace and Electronics Conference (NAECON) (IEEE, 2012), pp. 246–249.

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Luther-Davies, B.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Ma, R.

Madden, S. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Madsen, C.

J. Azana, C. Madsen, K. Takiguchi, and G. Cincotti, “Guest editorial - Optical signal processing,” J. Lightwave Technol. 24(7), 2484–2486 (2006).
[Crossref]

Malacarne, A.

Mansoori, S.

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photonics Technol. Lett. 16(3), 879–881 (2004).
[Crossref]

Marpaung, D. A. I.

Mcclellan, J. H.

J. H. Mcclellan, T. W. Parks, and L. R. Rabiner, “Computer-Program for Designing Optimum Fir Linear Phase Digital Filters,” IEEE Trans. Audio Electroacoustics 21, 506–526 (1973).

Metcalf, A. J.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quant. 19(6), 6 (2013).
[Crossref]

Minasian, R. A.

R. A. Minasian, “Ultra-Wideband and Adaptive Photonic Signal Processing of Microwave Signals,” IEEE J. Quantum Electron. 52(1), 1–13 (2016).
[Crossref]

Mitchell, A.

J. Y. Wu, T. Moein, X. Y. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2(5), 056103 (2017).
[Crossref]

X. Y. Xu, J. Y. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics 2(9), 096104 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23(17), 22087–22097 (2015).
[Crossref] [PubMed]

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photonics Technol. Lett. 16(3), 879–881 (2004).
[Crossref]

Moein, T.

J. Y. Wu, T. Moein, X. Y. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2(5), 056103 (2017).
[Crossref]

Monat, C.

Mora, J.

Morandotti, R.

X. Y. Xu, J. Y. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics 2(9), 096104 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23(17), 22087–22097 (2015).
[Crossref] [PubMed]

M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22(18), 21488–21498 (2014).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[Crossref] [PubMed]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

Mørk, J.

Morton, P. A.

P. A. Morton and J. B. Khurgin, “Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier,” IEEE Photonics Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

Moss, D. J.

J. Y. Wu, T. Moein, X. Y. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2(5), 056103 (2017).
[Crossref]

X. Y. Xu, J. Y. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics 2(9), 096104 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23(17), 22087–22097 (2015).
[Crossref] [PubMed]

M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22(18), 21488–21498 (2014).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[Crossref] [PubMed]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
[Crossref] [PubMed]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

Munoz, P.

M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Nguyen, T. G.

X. Y. Xu, J. Y. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics 2(9), 096104 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23(17), 22087–22097 (2015).
[Crossref] [PubMed]

Notzel, R.

M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Oei, Y. S.

M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Ohtsu, M.

T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photonics Technol. Lett. 7(2), 197–199 (1995).
[Crossref]

Okusaga, O.

Ooi, K. J. A.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110(16), 161113 (2017).
[Crossref]

Ortega, B.

Ortigosa-Blanch, A.

Pan, S.

Park, Y.

A. Malacarne, R. Ashrafi, Y. Park, and J. Azaña, “Reconfigurable optical differential phase-shift-keying pattern recognition based on incoherent photonic processing,” Opt. Lett. 36(21), 4290–4292 (2011).
[Crossref] [PubMed]

Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of Broadband Microwave Arbitrary-Order Time Differential Operators Using a Reconfigurable Incoherent Photonic Processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).
[Crossref]

Parks, T. W.

J. H. Mcclellan, T. W. Parks, and L. R. Rabiner, “Computer-Program for Designing Optimum Fir Linear Phase Digital Filters,” IEEE Trans. Audio Electroacoustics 21, 506–526 (1973).

Pasquazi, A.

Pastor, D.

Peccianti, M.

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Pelusi, M. D.

Peng, H.

Png, C. E.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110(16), 161113 (2017).
[Crossref]

Qi, M. H.

Rabiner, L. R.

J. H. Mcclellan, T. W. Parks, and L. R. Rabiner, “Computer-Program for Designing Optimum Fir Linear Phase Digital Filters,” IEEE Trans. Audio Electroacoustics 21, 506–526 (1973).

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

Reimer, C.

Ren, G. H.

J. Y. Wu, T. Moein, X. Y. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2(5), 056103 (2017).
[Crossref]

Rena Huang, Z.

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Roeloffzen, C. G. H.

Sahin, E.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110(16), 161113 (2017).
[Crossref]

Saitoh, T.

T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photonics Technol. Lett. 7(2), 197–199 (1995).
[Crossref]

Sales, S.

Sancho, J.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Seeds, A. J.

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory 50(3), 877–887 (2002).
[Crossref]

Shi, N.

Shoeiby, M.

X. Y. Xu, J. Y. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics 2(9), 096104 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23(17), 22087–22097 (2015).
[Crossref] [PubMed]

Smit, M. K.

M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Song, K. Y.

Sorel, M.

M. J. Strain and M. Sorel, “Design and Fabrication of Integrated Chirped Bragg Gratings for On-Chip Dispersion Control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010).
[Crossref]

Stead, M.

Stern, B.

Strain, M. J.

M. J. Strain and M. Sorel, “Design and Fabrication of Integrated Chirped Bragg Gratings for On-Chip Dispersion Control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010).
[Crossref]

Su, H.

Sun, S.

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
[Crossref] [PubMed]

Takiguchi, K.

J. Azana, C. Madsen, K. Takiguchi, and G. Cincotti, “Guest editorial - Optical signal processing,” J. Lightwave Technol. 24(7), 2484–2486 (2006).
[Crossref]

Tan, D. T. H.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110(16), 161113 (2017).
[Crossref]

Tang, J.

Thévenaz, L.

Tilma, B. W.

M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

Torres-Company, V.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quant. 19(6), 6 (2013).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

Tur, M.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

van der Poel, M.

Vo, T. D.

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
[Crossref] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Wabnitz, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

Wang, C. Y.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Wang, J.

Weiner, A. M.

X. X. Xue and A. M. Weiner, “Microwave photonics connected with microresonator frequency combs,” Front. Optoelectron. 9(2), 238–248 (2016).
[Crossref]

X. X. Xue and A. M. Weiner, “Microwave photonics connected with microresonator frequency combs,” Front Optoelectron. 9(2), 238–248 (2016).
[Crossref]

X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring,” J. Lightwave Technol. 32(20), 3557–3565 (2014).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quant. 19(6), 6 (2013).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
[Crossref] [PubMed]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory 58(11), 3269–3278 (2010).
[Crossref]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

Weiss, S.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Williamson, R. C.

Willner, A.

Wu, J. Y.

J. Y. Wu, T. Moein, X. Y. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2(5), 056103 (2017).
[Crossref]

X. Y. Xu, J. Y. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics 2(9), 096104 (2017).
[Crossref]

Wu, R.

Wu, Z.

Xu, D. X.

Xu, K.

Xu, X.

Xu, X. Y.

J. Y. Wu, T. Moein, X. Y. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2(5), 056103 (2017).
[Crossref]

X. Y. Xu, J. Y. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics 2(9), 096104 (2017).
[Crossref]

Xuan, Y.

Xue, X.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

Xue, X. X.

X. X. Xue and A. M. Weiner, “Microwave photonics connected with microresonator frequency combs,” Front Optoelectron. 9(2), 238–248 (2016).
[Crossref]

X. X. Xue and A. M. Weiner, “Microwave photonics connected with microresonator frequency combs,” Front. Optoelectron. 9(2), 238–248 (2016).
[Crossref]

X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring,” J. Lightwave Technol. 32(20), 3557–3565 (2014).
[Crossref]

Yang, D. H.

D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
[Crossref]

Yang, J. L.

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photonics Technol. Lett. 14(8), 1172–1174 (2002).
[Crossref]

Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207(1-6), 177–187 (2002).
[Crossref]

Yao, J.

Yao, J. P.

J. J. Zhang and J. P. Yao, “Photonic True-Time Delay Beamforming Using a Switch-Controlled Wavelength-Dependent Recirculating Loop,” J. Lightwave Technol. 34(16), 3923–3929 (2016).
[Crossref]

J. P. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207(1-6), 177–187 (2002).
[Crossref]

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photonics Technol. Lett. 14(8), 1172–1174 (2002).
[Crossref]

Yaron, L.

Ye, X.

Yilmaz, O. F.

Yin, F.

Yvind, K.

Zhang, F.

Zhang, J. J.

Zhang, L.

Zhou, W.

Zhou, Y.

Zhu, D.

Zhu, N.

Zhu, X.

Zhuang, L. M.

APL Photonics (2)

X. Y. Xu, J. Y. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics 2(9), 096104 (2017).
[Crossref]

J. Y. Wu, T. Moein, X. Y. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2(5), 056103 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110(16), 161113 (2017).
[Crossref]

Electron. Lett. (1)

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[Crossref]

Front Optoelectron. (1)

X. X. Xue and A. M. Weiner, “Microwave photonics connected with microresonator frequency combs,” Front Optoelectron. 9(2), 238–248 (2016).
[Crossref]

Front. Optoelectron. (1)

X. X. Xue and A. M. Weiner, “Microwave photonics connected with microresonator frequency combs,” Front. Optoelectron. 9(2), 238–248 (2016).
[Crossref]

IEEE J. Quantum Electron. (3)

M. J. R. Heck, P. Munoz, B. W. Tilma, E. A. J. M. Bente, Y. Barbarin, Y. S. Oei, R. Notzel, and M. K. Smit, “Design, fabrication and characterization of an InP-based tunable integrated optical pulse shaper,” IEEE J. Quantum Electron. 44(4), 370–377 (2008).
[Crossref]

M. J. Strain and M. Sorel, “Design and Fabrication of Integrated Chirped Bragg Gratings for On-Chip Dispersion Control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010).
[Crossref]

R. A. Minasian, “Ultra-Wideband and Adaptive Photonic Signal Processing of Microwave Signals,” IEEE J. Quantum Electron. 52(1), 1–13 (2016).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quant. 19(6), 6 (2013).
[Crossref]

IEEE Photonics J. (1)

Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of Broadband Microwave Arbitrary-Order Time Differential Operators Using a Reconfigurable Incoherent Photonic Processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (4)

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photonics Technol. Lett. 16(3), 879–881 (2004).
[Crossref]

P. A. Morton and J. B. Khurgin, “Microwave Photonic Delay Line With Separate Tuning of the Optical Carrier,” IEEE Photonics Technol. Lett. 21(22), 1686–1688 (2009).
[Crossref]

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photonics Technol. Lett. 14(8), 1172–1174 (2002).
[Crossref]

T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photonics Technol. Lett. 7(2), 197–199 (1995).
[Crossref]

IEEE Trans. Audio Electroacoustics (1)

J. H. Mcclellan, T. W. Parks, and L. R. Rabiner, “Computer-Program for Designing Optimum Fir Linear Phase Digital Filters,” IEEE Trans. Audio Electroacoustics 21, 506–526 (1973).

IEEE Trans. Microw. Theory (2)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory 58(11), 3269–3278 (2010).
[Crossref]

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory 50(3), 877–887 (2002).
[Crossref]

J. Lightwave Technol. (7)

Nat. Photonics (7)

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Opt. Commun. (2)

D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
[Crossref]

Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207(1-6), 177–187 (2002).
[Crossref]

Opt. Express (15)

K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
[Crossref] [PubMed]

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
[Crossref] [PubMed]

X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23(8), 10002–10008 (2015).
[Crossref] [PubMed]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23(17), 22087–22097 (2015).
[Crossref] [PubMed]

J. Dai, X. Xu, Z. Wu, Y. Dai, F. Yin, Y. Zhou, J. Li, and K. Xu, “Self-oscillating optical frequency comb generator based on an optoelectronic oscillator employing cascaded modulators,” Opt. Express 23(23), 30014–30019 (2015).
[Crossref] [PubMed]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
[Crossref] [PubMed]

H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14(11), 4800–4807 (2006).
[Crossref] [PubMed]

M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22(18), 21488–21498 (2014).
[Crossref] [PubMed]

W. Li and J. Yao, “Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer,” Opt. Express 17(26), 23712–23718 (2009).
[Crossref] [PubMed]

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
[Crossref] [PubMed]

O. F. Yilmaz, L. Yaron, S. Khaleghi, M. R. Chitgarha, M. Tur, and A. Willner, “True time delays using conversion/dispersion with flat magnitude response for wideband analog RF signals,” Opt. Express 20(8), 8219–8227 (2012).
[Crossref] [PubMed]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20(24), 27355–27362 (2012).
[Crossref] [PubMed]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

X. Zhu, F. Chen, H. Peng, and Z. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” Opt. Express 25(8), 9232–9243 (2017).
[Crossref] [PubMed]

L. Zhang, M. Li, N. Shi, X. Zhu, S. Sun, J. Tang, W. Li, and N. Zhu, “Photonic true time delay beamforming technique with ultra-fast beam scanning,” Opt. Express 25(13), 14524–14532 (2017).
[Crossref] [PubMed]

Opt. Lett. (5)

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (3)

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-Combs: A Novel Generation of Optical Sources,” Phys. Rep., in press (2017).

M. Longbrake, “True time-delay beamsteering for radar,” in Aerospace and Electronics Conference (NAECON) (IEEE, 2012), pp. 246–249.

M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of the RF true time delay lines based on an integrated optical comb source. MRR: micro-ring resonator. MZM: Mach-Zehnder modulator.
Fig. 2
Fig. 2 (a) Schematic illustration of the MRR. (b) SEM image of the cross-section of the MRR before depositing the silica upper cladding.
Fig. 3
Fig. 3 Schematic diagram of the true time delay device based on an integrated optical comb source. TLS: tunable laser source. EDFA: erbium-doped fibre amplifier. BPF: optical bandpass filter. PC: polarization controller. TCS: temperature controller stage. MZM: Mach-Zehnder modulator. SMF: single mode fibre. WDM: wavelength division multiplexer. PD: photodetector.
Fig. 4
Fig. 4 (a) The drop-port transmission spectrum of the MRR, showing an FSR of ~1.6 nm. Inset shows a resonance at ~1550 nm with full width at half maximum (FWHM) of ~1.2 pm (~150 MHz). (b) Optical spectrum of the generated Kerr comb from 1400 nm to 1700 nm. Inset shows a zoom-in spectrum with a span of ~32 nm.
Fig. 5
Fig. 5 (a) Measured RF phase responses of the 21-channel true time delay device and (b) corresponding time delays of each channel. Inset in (b) shows the flat delays over a wide RF frequency range. (c) Calculated 3-dB beamwidth of a linear phased array using the true time delay device, as a function of the number of radiating elements (M). (d) Calculated array factors (AFs) for various M from 2 to 21. (e) Calculated AFs with m varying from 1 to 7 and corresponding θ3dB and θ0. (f) Calculated AFs with various RF frequencies.
Fig. 6
Fig. 6 Schematic diagram of the MPF based on the optical true time delay unit with the integrated optical comb source. TLS: tunable laser source. EDFA: erbium-doped fibre amplifier. PC: polarization controller. BPF: optical bandpass filter. TCS: temperature controller stage. MZM: Mach-Zehnder modulator. SMF: single mode fibre. OC: optical coupler. PD: photodetector. OSA: optical spectrum analyser. VNA: vector network analyser.
Fig. 7
Fig. 7 (a) Correlations between the number of taps and the Q factor, 3dB bandwidth of the all-ones MPF. (b) Simulated RF transmission spectra of an all-ones MPF with different number of taps. (c) Measured optical spectra (red solid) of the shaped optical combs and ideal tap weights (green crossing) for the all-ones MPF. (d) Measured RF transmission spectra of the all-ones MPF with different number of taps.
Fig. 8
Fig. 8 Calculated (a) required dynamic range of tap weights, (b) required number of taps, (c) 3dB bandwidth and (d) QRF factor, as functions of the transition bandwidth BWTR and center frequency fc of the tunable MPF.
Fig. 9
Fig. 9 (a) Parameters of the designed tunable bandpass filter, including number of taps and dynamic range. (b) Correlations between the number of taps and the Q factor, reciprocal 3dB bandwidth of the tunable bandpass filter with different centre frequencies. (c) Measured optical spectra (red solid) of the shaped optical combs and ideal tap weights (green crossing) for the tunable MPF with fc = 4.899 GHz. (d) Simulated (dashed) and experimentally measured (solid) RF transmission spectra of a tunable MPF with different center frequencies fc.
Fig. 10
Fig. 10 Measured and simulated RF transmission spectra of (a) halfband highpass filter, (b) halfband lowpass filter, (c) bandstop filter, and (d) Nyquist filter.
Fig. 11
Fig. 11 Simulated RF transmission spectra of (a) halfband highpass filter, (b) halfband lowpass filter, (c) bandstop filter, (d) Nyquist filter, and (e) tunable bandpass filter.

Tables (2)

Tables Icon

Table 1 Parameters for designing the tunable MPF.

Tables Icon

Table 2 Calculated MPF tap coefficients.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ 0 = sin 1 c τ d P A A
θ 0 = sin 1 c m T d P A A
A F ( θ , λ R F ) = sin 2 [ M π ( d P A A / λ R F ) ( sin θ c m T / d P A A ) ] M 2 sin 2 [ π ( d P A A / λ R F ) ( sin θ c m T / d P A A ) ]
H ( ω ) = n = 0 N 1 a n e j ω n T

Metrics