Abstract

The search for new low loss nematic liquid crystal mixtures with enhanced birefringence and low temperature of nematic-to-isotropic phase transition plays a pivotal role in a development of new applications in the emerging field of thermally tunable metamaterials. Here we maximize thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture. It is shown that the resonant response of a metamaterial device can be effectively tuned both in terms of its magnitude and wavelength with the spectral tunability approaching the theoretical limit of 8 GHz. Electromagnetic simulations confirm our tests and match the experimental observations well. The suggested approach opens new routes for next-generation soft-matter-based filtering and sensing components and devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magnetically tunable left handed metamaterials by liquid crystal orientation

Fuli Zhang, Lei Kang, Qian Zhao, Ji Zhou, Xiaopeng Zhao, and Didier Lippens
Opt. Express 17(6) 4360-4366 (2009)

Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces

Zhen Liu, Chia-Yi Huang, Hongwei Liu, Xinhai Zhang, and Chengkuo Lee
Opt. Express 21(5) 6519-6525 (2013)

Electrically controllable fishnet metamaterial based on nematic liquid crystal

Fuli Zhang, Weihong Zhang, Qian Zhao, Jingbo Sun, Kepeng Qiu, Ji Zhou, and Didier Lippens
Opt. Express 19(2) 1563-1568 (2011)

References

  • View by:
  • |
  • |
  • |

  1. I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nonlinear, Tunable and Active Metamaterials (Springer Series in Materials Science, 2015).
  2. J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
    [Crossref] [PubMed]
  3. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  4. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light 1(7), e18 (2012).
    [Crossref]
  5. S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
    [Crossref]
  6. X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
    [Crossref]
  7. N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010).
    [Crossref] [PubMed]
  8. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
    [Crossref] [PubMed]
  9. O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
    [Crossref]
  10. W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
    [Crossref] [PubMed]
  11. R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
    [Crossref]
  12. R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
    [Crossref]
  13. D. C. Zografopoulos and R. Beccherelli, “Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching,” Sci. Rep. 5(1), 13137 (2015).
    [Crossref] [PubMed]
  14. C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
    [Crossref]
  15. O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
    [Crossref]
  16. A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
    [Crossref]
  17. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
    [Crossref]
  18. O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21(2), 1633–1638 (2013).
    [Crossref] [PubMed]
  19. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
    [Crossref]
  20. D. H. Werner, D. H. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15(6), 3342–3347 (2007).
    [Crossref] [PubMed]
  21. L. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. THz Sci. Technol. 3, 827–831 (2013).
  22. J. Dziaduszek, R. Dabrowski, A. Ziolek, S. Gauza, and S. T. Wu, “Syntheses and mesomorphic properties of laterally fluorinatedphenyl isothiocyanatotolanes and their high birefringent mixtures,” Opto-Electron. Rev. 17(1), 20–24 (2009).
    [Crossref]
  23. S. Gauza, A. Parish, S. T. Wu, A. Spadlo, and R. Dabrowski, “Physical properties of laterally fluorinated isothiocyanato phenyl-tolane liquid crystals,” Liq. Cryst. 35(4), 483–488 (2008).
    [Crossref]
  24. S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
    [Crossref]
  25. J. Dziaduszek, R. Dąbrowski, S. Urban, K. Garbat, A. Glushchenko, and K. Czupryński, “Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications,” Liq. Cryst., 1–16 (2017).
  26. R. Kowerdziej, J. Krupka, E. Nowinowski-Kruszelnicki, M. Olifierczuk, and J. Parka, “Microwave complex permittivity of voltage-tunable nematic liquid crystals measured in high resistivity silicon transducers,” Appl. Phys. Lett. 102(10), 102904 (2013).
    [Crossref]
  27. R. Kowerdziej, J. Parka, J. Krupka, M. Olifierczuk, E. Nowinowski-Kruszelnicki, L. Jaroszewicz, and O. Chojnowska, “Dielectric properties of highly – anisotropic nematic liquid crystals for tunable microwave components,” Appl. Phys. Lett. 103(17), 172902 (2013).
    [Crossref]
  28. R. Dabrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
    [Crossref]
  29. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).
  30. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).
  31. A. Sengupta, Topological Microfluidics, Nematic Liquid Crystals and Nematic Colloids in Microfluidic Environment (Springer Theses, 2013).
  32. S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
    [Crossref] [PubMed]
  33. L. Yun-Shik, Principles of Terahertz Science and Technology (Springer, 2008).
  34. H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  35. N. I. Zheludev, “The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
    [Crossref] [PubMed]
  36. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  37. F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express 21(11), 13256–13271 (2013).
    [Crossref] [PubMed]
  38. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
    [Crossref] [PubMed]
  39. A. S. Gliozzi, M. Miniaci, F. Bosia, N. M. Pugno, and M. Scalerandi, “Metamaterials-based sensor to detect and locate nonlinear elastic sources,” Appl. Phys. Lett. 107(16), 161902 (2015).
    [Crossref]
  40. Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22(18), 21326–21339 (2014).
    [Crossref] [PubMed]
  41. X. Zhou, X. Yin, T. Zhang, L. Chen, and X. Li, “Ultrabroad terahertz bandpass filter by hyperbolic metamaterial waveguide,” Opt. Express 23(9), 11657–11664 (2015).
    [Crossref] [PubMed]
  42. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  43. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
    [Crossref] [PubMed]
  44. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
    [Crossref] [PubMed]
  45. N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
    [Crossref] [PubMed]

2016 (1)

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref] [PubMed]

2015 (7)

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

D. C. Zografopoulos and R. Beccherelli, “Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching,” Sci. Rep. 5(1), 13137 (2015).
[Crossref] [PubMed]

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

A. S. Gliozzi, M. Miniaci, F. Bosia, N. M. Pugno, and M. Scalerandi, “Metamaterials-based sensor to detect and locate nonlinear elastic sources,” Appl. Phys. Lett. 107(16), 161902 (2015).
[Crossref]

X. Zhou, X. Yin, T. Zhang, L. Chen, and X. Li, “Ultrabroad terahertz bandpass filter by hyperbolic metamaterial waveguide,” Opt. Express 23(9), 11657–11664 (2015).
[Crossref] [PubMed]

2014 (4)

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22(18), 21326–21339 (2014).
[Crossref] [PubMed]

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

2013 (11)

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

R. Kowerdziej, J. Krupka, E. Nowinowski-Kruszelnicki, M. Olifierczuk, and J. Parka, “Microwave complex permittivity of voltage-tunable nematic liquid crystals measured in high resistivity silicon transducers,” Appl. Phys. Lett. 102(10), 102904 (2013).
[Crossref]

R. Kowerdziej, J. Parka, J. Krupka, M. Olifierczuk, E. Nowinowski-Kruszelnicki, L. Jaroszewicz, and O. Chojnowska, “Dielectric properties of highly – anisotropic nematic liquid crystals for tunable microwave components,” Appl. Phys. Lett. 103(17), 172902 (2013).
[Crossref]

R. Dabrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

L. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. THz Sci. Technol. 3, 827–831 (2013).

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21(2), 1633–1638 (2013).
[Crossref] [PubMed]

F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express 21(11), 13256–13271 (2013).
[Crossref] [PubMed]

2012 (4)

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
[Crossref] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light 1(7), e18 (2012).
[Crossref]

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

2011 (1)

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (4)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref] [PubMed]

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

J. Dziaduszek, R. Dabrowski, A. Ziolek, S. Gauza, and S. T. Wu, “Syntheses and mesomorphic properties of laterally fluorinatedphenyl isothiocyanatotolanes and their high birefringent mixtures,” Opto-Electron. Rev. 17(1), 20–24 (2009).
[Crossref]

2008 (1)

S. Gauza, A. Parish, S. T. Wu, A. Spadlo, and R. Dabrowski, “Physical properties of laterally fluorinated isothiocyanato phenyl-tolane liquid crystals,” Liq. Cryst. 35(4), 483–488 (2008).
[Crossref]

2007 (2)

D. H. Werner, D. H. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15(6), 3342–3347 (2007).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

2006 (2)

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Alves, F.

Averitt, R. D.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Beccherelli, R.

D. C. Zografopoulos and R. Beccherelli, “Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching,” Sci. Rep. 5(1), 13137 (2015).
[Crossref] [PubMed]

Beigang, R.

Bosia, F.

A. S. Gliozzi, M. Miniaci, F. Bosia, N. M. Pugno, and M. Scalerandi, “Metamaterials-based sensor to detect and locate nonlinear elastic sources,” Appl. Phys. Lett. 107(16), 161902 (2015).
[Crossref]

Buchnev, O.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21(2), 1633–1638 (2013).
[Crossref] [PubMed]

Chan, C. H.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chang, C. L.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Chen, H. T.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, L.

Chen, W.-C.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Chettiar, U. K.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

Chien, L. C.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Chojnowska, O.

R. Kowerdziej, J. Parka, J. Krupka, M. Olifierczuk, E. Nowinowski-Kruszelnicki, L. Jaroszewicz, and O. Chojnowska, “Dielectric properties of highly – anisotropic nematic liquid crystals for tunable microwave components,” Appl. Phys. Lett. 103(17), 172902 (2013).
[Crossref]

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Cong, L.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref] [PubMed]

Czuprynski, K.

J. Dziaduszek, R. Dąbrowski, S. Urban, K. Garbat, A. Glushchenko, and K. Czupryński, “Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications,” Liq. Cryst., 1–16 (2017).

Dabrowski, R.

R. Dabrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

J. Dziaduszek, R. Dabrowski, A. Ziolek, S. Gauza, and S. T. Wu, “Syntheses and mesomorphic properties of laterally fluorinatedphenyl isothiocyanatotolanes and their high birefringent mixtures,” Opto-Electron. Rev. 17(1), 20–24 (2009).
[Crossref]

S. Gauza, A. Parish, S. T. Wu, A. Spadlo, and R. Dabrowski, “Physical properties of laterally fluorinated isothiocyanato phenyl-tolane liquid crystals,” Liq. Cryst. 35(4), 483–488 (2008).
[Crossref]

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

J. Dziaduszek, R. Dąbrowski, S. Urban, K. Garbat, A. Glushchenko, and K. Czupryński, “Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications,” Liq. Cryst., 1–16 (2017).

De Angelis, F.

Decker, M.

L. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. THz Sci. Technol. 3, 827–831 (2013).

Di Fabrizio, E.

Drachev, V.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Dziaduszek, J.

J. Dziaduszek, R. Dabrowski, A. Ziolek, S. Gauza, and S. T. Wu, “Syntheses and mesomorphic properties of laterally fluorinatedphenyl isothiocyanatotolanes and their high birefringent mixtures,” Opto-Electron. Rev. 17(1), 20–24 (2009).
[Crossref]

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

J. Dziaduszek, R. Dąbrowski, S. Urban, K. Garbat, A. Glushchenko, and K. Czupryński, “Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications,” Liq. Cryst., 1–16 (2017).

Fang, X.

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Farnell, J.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Fedotov, V. A.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21(2), 1633–1638 (2013).
[Crossref] [PubMed]

Forchel, A.

Fruhnert, M.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

Fujita, H.

Garbat, K.

J. Dziaduszek, R. Dąbrowski, S. Urban, K. Garbat, A. Glushchenko, and K. Czupryński, “Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications,” Liq. Cryst., 1–16 (2017).

Gauza, S.

J. Dziaduszek, R. Dabrowski, A. Ziolek, S. Gauza, and S. T. Wu, “Syntheses and mesomorphic properties of laterally fluorinatedphenyl isothiocyanatotolanes and their high birefringent mixtures,” Opto-Electron. Rev. 17(1), 20–24 (2009).
[Crossref]

S. Gauza, A. Parish, S. T. Wu, A. Spadlo, and R. Dabrowski, “Physical properties of laterally fluorinated isothiocyanato phenyl-tolane liquid crystals,” Liq. Cryst. 35(4), 483–488 (2008).
[Crossref]

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Gholipour, B.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Gliozzi, A. S.

A. S. Gliozzi, M. Miniaci, F. Bosia, N. M. Pugno, and M. Scalerandi, “Metamaterials-based sensor to detect and locate nonlinear elastic sources,” Appl. Phys. Lett. 107(16), 161902 (2015).
[Crossref]

Glushchenko, A.

J. Dziaduszek, R. Dąbrowski, S. Urban, K. Garbat, A. Glushchenko, and K. Czupryński, “Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications,” Liq. Cryst., 1–16 (2017).

Gokkavas, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Górecka, E.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grbovic, D.

Han, S.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref] [PubMed]

Han, Z.

Hattori, H. T.

L. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. THz Sci. Technol. 3, 827–831 (2013).

Heinrich, J.

Herman, J.

R. Dabrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Hirakawa, K.

Höfling, S.

Hsieh, F. J.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Imhof, C.

Jagadish, C.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Jaroszewicz, L.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, J. Parka, J. Krupka, M. Olifierczuk, E. Nowinowski-Kruszelnicki, L. Jaroszewicz, and O. Chojnowska, “Dielectric properties of highly – anisotropic nematic liquid crystals for tunable microwave components,” Appl. Phys. Lett. 103(17), 172902 (2013).
[Crossref]

Kaczmarek, M.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21(2), 1633–1638 (2013).
[Crossref] [PubMed]

Kafesaki, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Kang, L.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Karouta, F.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Karunasiri, G.

Kearney, B.

Khoo, I. C.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

D. H. Werner, D. H. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15(6), 3342–3347 (2007).
[Crossref] [PubMed]

Kildishev, A. V.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

D. H. Werner, D. H. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15(6), 3342–3347 (2007).
[Crossref] [PubMed]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Kohno, K.

Koschny, T.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Kowerdziej, R.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

R. Kowerdziej, J. Parka, J. Krupka, M. Olifierczuk, E. Nowinowski-Kruszelnicki, L. Jaroszewicz, and O. Chojnowska, “Dielectric properties of highly – anisotropic nematic liquid crystals for tunable microwave components,” Appl. Phys. Lett. 103(17), 172902 (2013).
[Crossref]

R. Kowerdziej, J. Krupka, E. Nowinowski-Kruszelnicki, M. Olifierczuk, and J. Parka, “Microwave complex permittivity of voltage-tunable nematic liquid crystals measured in high resistivity silicon transducers,” Appl. Phys. Lett. 102(10), 102904 (2013).
[Crossref]

Krupka, J.

R. Kowerdziej, J. Krupka, E. Nowinowski-Kruszelnicki, M. Olifierczuk, and J. Parka, “Microwave complex permittivity of voltage-tunable nematic liquid crystals measured in high resistivity silicon transducers,” Appl. Phys. Lett. 102(10), 102904 (2013).
[Crossref]

R. Kowerdziej, J. Parka, J. Krupka, M. Olifierczuk, E. Nowinowski-Kruszelnicki, L. Jaroszewicz, and O. Chojnowska, “Dielectric properties of highly – anisotropic nematic liquid crystals for tunable microwave components,” Appl. Phys. Lett. 103(17), 172902 (2013).
[Crossref]

Kula, P.

R. Dabrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

Kwon, D. H.

Lägel, B.

Lavrik, N. V.

Le Cor, T.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Lewandowski, W.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

Li, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Li, X.

Liang, X.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Lin, H.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref] [PubMed]

Lin, H. R.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Liu, L.

L. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. THz Sci. Technol. 3, 827–831 (2013).

Luo, Z.

MacDonald, K. F.

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light 1(7), e18 (2012).
[Crossref]

Manceau, J.-M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Massaouti, M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

McKerracher, I.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Mieczkowski, J.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

Miniaci, M.

A. S. Gliozzi, M. Miniaci, F. Bosia, N. M. Pugno, and M. Scalerandi, “Metamaterials-based sensor to detect and locate nonlinear elastic sources,” Appl. Phys. Lett. 107(16), 161902 (2015).
[Crossref]

Minovich, A.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Mironov, E.

L. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. THz Sci. Technol. 3, 827–831 (2013).

Mousavi, S. A.

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

Neshev, D. N.

L. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. THz Sci. Technol. 3, 827–831 (2013).

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Nikolaenko, A. E.

Nowinowski-Kruszelnicki, E.

R. Kowerdziej, J. Krupka, E. Nowinowski-Kruszelnicki, M. Olifierczuk, and J. Parka, “Microwave complex permittivity of voltage-tunable nematic liquid crystals measured in high resistivity silicon transducers,” Appl. Phys. Lett. 102(10), 102904 (2013).
[Crossref]

R. Kowerdziej, J. Parka, J. Krupka, M. Olifierczuk, E. Nowinowski-Kruszelnicki, L. Jaroszewicz, and O. Chojnowska, “Dielectric properties of highly – anisotropic nematic liquid crystals for tunable microwave components,” Appl. Phys. Lett. 103(17), 172902 (2013).
[Crossref]

Olifierczuk, M.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

R. Kowerdziej, J. Parka, J. Krupka, M. Olifierczuk, E. Nowinowski-Kruszelnicki, L. Jaroszewicz, and O. Chojnowska, “Dielectric properties of highly – anisotropic nematic liquid crystals for tunable microwave components,” Appl. Phys. Lett. 103(17), 172902 (2013).
[Crossref]

R. Kowerdziej, J. Krupka, E. Nowinowski-Kruszelnicki, M. Olifierczuk, and J. Parka, “Microwave complex permittivity of voltage-tunable nematic liquid crystals measured in high resistivity silicon transducers,” Appl. Phys. Lett. 102(10), 102904 (2013).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21(2), 1633–1638 (2013).
[Crossref] [PubMed]

Ou, J.-Y.

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Ozbay, E.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Padilla, W. J.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Papasimakis, N.

Parish, A.

S. Gauza, A. Parish, S. T. Wu, A. Spadlo, and R. Dabrowski, “Physical properties of laterally fluorinated isothiocyanato phenyl-tolane liquid crystals,” Liq. Cryst. 35(4), 483–488 (2008).
[Crossref]

Parka, J.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

R. Kowerdziej, J. Krupka, E. Nowinowski-Kruszelnicki, M. Olifierczuk, and J. Parka, “Microwave complex permittivity of voltage-tunable nematic liquid crystals measured in high resistivity silicon transducers,” Appl. Phys. Lett. 102(10), 102904 (2013).
[Crossref]

R. Kowerdziej, J. Parka, J. Krupka, M. Olifierczuk, E. Nowinowski-Kruszelnicki, L. Jaroszewicz, and O. Chojnowska, “Dielectric properties of highly – anisotropic nematic liquid crystals for tunable microwave components,” Appl. Phys. Lett. 103(17), 172902 (2013).
[Crossref]

Paul, O.

Plum, E.

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Podoliak, N.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Powell, D. A.

L. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. THz Sci. Technol. 3, 827–831 (2013).

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Pugno, N. M.

A. S. Gliozzi, M. Miniaci, F. Bosia, N. M. Pugno, and M. Scalerandi, “Metamaterials-based sensor to detect and locate nonlinear elastic sources,” Appl. Phys. Lett. 107(16), 161902 (2015).
[Crossref]

Pun, Y. B.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Rahm, M.

Raihan, M. R.

L. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. THz Sci. Technol. 3, 827–831 (2013).

Rockstuhl, C.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

Sasnouski, G.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Scalerandi, M.

A. S. Gliozzi, M. Miniaci, F. Bosia, N. M. Pugno, and M. Scalerandi, “Metamaterials-based sensor to detect and locate nonlinear elastic sources,” Appl. Phys. Lett. 107(16), 161902 (2015).
[Crossref]

Shadrivov, I. V.

L. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. THz Sci. Technol. 3, 827–831 (2013).

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Shalaev, V. M.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

D. H. Werner, D. H. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15(6), 3342–3347 (2007).
[Crossref] [PubMed]

Shen, N.-H.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Shen, Z. X.

Shi, J.

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Singh, R.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref] [PubMed]

Soukoulis, C. M.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Spadlo, A.

S. Gauza, A. Parish, S. T. Wu, A. Spadlo, and R. Dabrowski, “Physical properties of laterally fluorinated isothiocyanato phenyl-tolane liquid crystals,” Liq. Cryst. 35(4), 483–488 (2008).
[Crossref]

Tan, H. H.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Taylor, A. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tian, J.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

Toshiyoshi, H.

Tsai, D. P.

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Tseng, M. L.

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Tzortzakis, S.

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

Urban, S.

J. Dziaduszek, R. Dąbrowski, S. Urban, K. Garbat, A. Glushchenko, and K. Czupryński, “Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications,” Liq. Cryst., 1–16 (2017).

Valente, J.

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

Wallauer, J.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Walther, M.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Wang, W. C.

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

Werner, D. H.

Wolff, S.

Wrobel, J.

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Wu, S. T.

J. Dziaduszek, R. Dabrowski, A. Ziolek, S. Gauza, and S. T. Wu, “Syntheses and mesomorphic properties of laterally fluorinatedphenyl isothiocyanatotolanes and their high birefringent mixtures,” Opto-Electron. Rev. 17(1), 20–24 (2009).
[Crossref]

S. Gauza, A. Parish, S. T. Wu, A. Spadlo, and R. Dabrowski, “Physical properties of laterally fluorinated isothiocyanato phenyl-tolane liquid crystals,” Liq. Cryst. 35(4), 483–488 (2008).
[Crossref]

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Xiao, B.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref] [PubMed]

Xiao, S.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

Yang, H.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref] [PubMed]

Yin, X.

Youngs, I. J.

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

Zengerle, R.

Zhang, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Zhang, J.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light 1(7), e18 (2012).
[Crossref]

Zhang, T.

Zhao, Q.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Zhao, Y.

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Zheludev, N. I.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21(2), 1633–1638 (2013).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light 1(7), e18 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

N. I. Zheludev, “The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010).
[Crossref] [PubMed]

Zhou, J.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Zhou, X.

Zide, J. M.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Ziolek, A.

J. Dziaduszek, R. Dabrowski, A. Ziolek, S. Gauza, and S. T. Wu, “Syntheses and mesomorphic properties of laterally fluorinatedphenyl isothiocyanatotolanes and their high birefringent mixtures,” Opto-Electron. Rev. 17(1), 20–24 (2009).
[Crossref]

Zografopoulos, D. C.

D. C. Zografopoulos and R. Beccherelli, “Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching,” Sci. Rep. 5(1), 13137 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional Photonic Switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Appl. Phys. Lett. (12)

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” Appl. Phys. Lett. 105(1), 011906 (2014).
[Crossref]

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

C. L. Chang, W. C. Wang, H. R. Lin, F. J. Hsieh, Y. B. Pun, and C. H. Chan, “Tunable terahertz fishnet metamaterial,” Appl. Phys. Lett. 102(15), 151903 (2013).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, and C. Jagadish, “Liquid crystal based nonlinear fishnet metamaterial,” Appl. Phys. Lett. 100(12), 121113 (2012).
[Crossref]

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wrobel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

R. Kowerdziej, J. Krupka, E. Nowinowski-Kruszelnicki, M. Olifierczuk, and J. Parka, “Microwave complex permittivity of voltage-tunable nematic liquid crystals measured in high resistivity silicon transducers,” Appl. Phys. Lett. 102(10), 102904 (2013).
[Crossref]

R. Kowerdziej, J. Parka, J. Krupka, M. Olifierczuk, E. Nowinowski-Kruszelnicki, L. Jaroszewicz, and O. Chojnowska, “Dielectric properties of highly – anisotropic nematic liquid crystals for tunable microwave components,” Appl. Phys. Lett. 103(17), 172902 (2013).
[Crossref]

A. S. Gliozzi, M. Miniaci, F. Bosia, N. M. Pugno, and M. Scalerandi, “Metamaterials-based sensor to detect and locate nonlinear elastic sources,” Appl. Phys. Lett. 107(16), 161902 (2015).
[Crossref]

Crystals (1)

R. Dabrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

L. Liu, I. V. Shadrivov, D. A. Powell, M. R. Raihan, H. T. Hattori, M. Decker, E. Mironov, and D. N. Neshev, “Temperature control of terahertz metamaterials with liquid crystals,” IEEE Trans. THz Sci. Technol. 3, 827–831 (2013).

J. Disp. Technol. (1)

S. Gauza, Y. Zhao, T. Le Cor, S. T. Wu, J. Dziaduszek, G. Sasnouski, R. Dabrowski, and L. C. Chien, “Enhancing birefringence by doping fluorinated phenyltolanes,” J. Disp. Technol. 2(4), 327–332 (2006).
[Crossref]

Light (1)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light 1(7), e18 (2012).
[Crossref]

Liq. Cryst. (1)

S. Gauza, A. Parish, S. T. Wu, A. Spadlo, and R. Dabrowski, “Physical properties of laterally fluorinated isothiocyanato phenyl-tolane liquid crystals,” Liq. Cryst. 35(4), 483–488 (2008).
[Crossref]

Nat. Commun. (2)

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Express (7)

F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express 21(11), 13256–13271 (2013).
[Crossref] [PubMed]

N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010).
[Crossref] [PubMed]

D. H. Werner, D. H. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15(6), 3342–3347 (2007).
[Crossref] [PubMed]

O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21(2), 1633–1638 (2013).
[Crossref] [PubMed]

O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref] [PubMed]

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22(18), 21326–21339 (2014).
[Crossref] [PubMed]

X. Zhou, X. Yin, T. Zhang, L. Chen, and X. Li, “Ultrabroad terahertz bandpass filter by hyperbolic metamaterial waveguide,” Opt. Express 23(9), 11657–11664 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Opto-Electron. Rev. (1)

J. Dziaduszek, R. Dabrowski, A. Ziolek, S. Gauza, and S. T. Wu, “Syntheses and mesomorphic properties of laterally fluorinatedphenyl isothiocyanatotolanes and their high birefringent mixtures,” Opto-Electron. Rev. 17(1), 20–24 (2009).
[Crossref]

Phys. Rev. Lett. (2)

N.-H. Shen, M. Massaouti, M. Gokkavas, J.-M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref] [PubMed]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Sci. Rep. (2)

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6(1), 20801 (2016).
[Crossref] [PubMed]

D. C. Zografopoulos and R. Beccherelli, “Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching,” Sci. Rep. 5(1), 13137 (2015).
[Crossref] [PubMed]

Science (1)

N. I. Zheludev, “The road ahead for metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

Other (6)

L. Yun-Shik, Principles of Terahertz Science and Technology (Springer, 2008).

J. Dziaduszek, R. Dąbrowski, S. Urban, K. Garbat, A. Glushchenko, and K. Czupryński, “Selected fluorosubstituted phenyltolanes with a terminal group: NCS, CN, F, OCF3 and their mesogenic and dielectric properties and use for the formulation of high birefringence nematic mixtures to GHz and THz applications,” Liq. Cryst., 1–16 (2017).

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).

P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).

A. Sengupta, Topological Microfluidics, Nematic Liquid Crystals and Nematic Colloids in Microfluidic Environment (Springer Theses, 2013).

I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nonlinear, Tunable and Active Metamaterials (Springer Series in Materials Science, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Thermally reconfigurable photonic metamaterial. Schematic impression of hybrid liquid-crystal cell with microstructured metasurface (yellow) supported by quartz glass (blue) coated with a thin film of uniformly rubbed polyimide (violet). (a) Scanning electron microscope (SEM) image of a single metamolecule. The liquid crystals can exist in two phases. (b) In one phase, the molecules (green) tend to line up; this is called the nematic phase. The vector n denotes the local director field. (c) At sufficiently high temperatures, a nematic-to-isotropic phase transition occurs, and the crystalline phase disassociates into an isotropic phase in which the molecules have no preferred orientation. On cooling, the isotropic material returns to the original liquid crystalline state, i.e., the process is completely continuous and is reversible.
Fig. 2
Fig. 2 Resonant behaviour of a single SRR illustrated by (a) electric displacement, (b) electric distribution, (c) magnetic displacement, (d) magnetic distribution and (e) current density distribution at the magnetic resonance wavelength.
Fig. 3
Fig. 3 Tunability of the measured transmittance of the designed nematic liquid crystal mixture (3073) under four different temperatures.
Fig. 4
Fig. 4 Tunability of the transmittance of the metamaterial device (a) without liquid crystal, and (b) with liquid crystal under two different temperatures. Solid lines show the experimental data, and dashed lines represent simulated results.
Fig. 5
Fig. 5 Maximum changes in transmittance intensity and resonance frequency of LC-loaded metamaterial measured as functions of applied temperature.
Fig. 6
Fig. 6 Reversible shifting of minimum transmittance position in consecutive heating/cooling cycles.
Fig. 7
Fig. 7 Temperature of nematic-to-isotropic phase transition and the corresponding birefringence (∆n) of nematic mixtures at 0.5 THz. The red star indicates parameters of nematic mixture 3073.

Tables (1)

Tables Icon

Table 1 Composition of mixture 3073 with chemical structure, phase transition temperatures as well as melting point enthalpy of components.

Metrics