Abstract

Photonic antennas are critical in applications such as spectroscopy, photovoltaics, optical communications, holography, and sensors. In most of those applications, metallic antennas have been employed due to their reduced sizes. Nevertheless, compact metallic antennas suffer from high dissipative loss, wavelength-dependent radiation pattern, and they are difficult to integrate with CMOS technology. All-dielectric antennas have been proposed to overcome those disadvantages because, in contrast to metallic ones, they are CMOS-compatible, easier to integrate with typical silicon waveguides, and they generally present a broader wavelength range of operation. These advantages are achieved, however, at the expense of larger footprints that prevent dense integration and their use in massive phased arrays. In order to overcome this drawback, we employ topological optimization to design an all-dielectric compact antenna with vertical emission over a broad wavelength range. The fabricated device has a footprint of 1.78 µm × 1.78 µm and shows a shift in the direction of its main radiation lobe of only 4° over wavelengths ranging from 1470 nm to 1550 nm and a coupling efficiency bandwidth broader than 150 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide

Withawat Withayachumnankul, Ryoumei Yamada, Christophe Fumeaux, Masayuki Fujita, and Tadao Nagatsuma
Opt. Express 25(13) 14706-14714 (2017)

Analytic approach to study a hybrid plasmonic waveguide-fed and numerically design a nano-antenna based on the new director

Maryam Khodadadi, Najmeh Nozhat, and Seyyed Mohammad Mehdi Moshiri
Opt. Express 28(3) 3305-3330 (2020)

Voxelized topology optimization for fabrication-compatible inverse design of 3D photonic devices

Aditi Udupa, Jinlong Zhu, and Lynford L. Goddard
Opt. Express 27(15) 21988-21998 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Letters 10, 4952–4955 (2010).
    [Crossref] [PubMed]
  2. C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
    [Crossref]
  3. P. C. Wuytens, A. G. Skirtach, and R. Baets, “On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides,” Opt. Express 25, 12926–12934 (2017).
    [Crossref] [PubMed]
  4. H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
    [Crossref]
  5. A. Alù and N. Engheta, “Wireless at the nanoscale: Optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
    [Crossref] [PubMed]
  6. G. N. Malheiros-Silveira, G. S. Wiederhecker, and H. E. Hernández-Figueroa, “Dielectric resonator antenna for applications in nanophotonics,” Opt. Express 21, 1234–1239 (2013).
    [Crossref] [PubMed]
  7. J. L. Pita, I. Aldaya, O. J. S. Santana, L. E. E. de Araujo, P. Dainese, and L. H. Gabrielli, “Side-lobe level reduction in bio-inspired optical phased-array antennas,” Opt. Express 25, 30105–30114 (2017).
    [Crossref] [PubMed]
  8. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics 101, 093105 (2007).
    [Crossref]
  9. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Optics Express 16, 21793 (2008).
    [Crossref] [PubMed]
  10. N. Liu, M. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” in “Conference on Lasers and Electro-Optics,” Optical Society of America (OSA, 2011), p. PDPC11.
  11. J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Letters 12, 4090–4094 (2012).
    [Crossref] [PubMed]
  12. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref] [PubMed]
  13. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438 (2009).
    [Crossref]
  14. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Optics Express 20, 20599 (2012).
    [Crossref] [PubMed]
  15. G. N. Malheiros-Silveira, L. H. Gabrielli, C. J. Chang-Hasnain, and H. E. Hernandez-Figueroa, “Breakthroughs in photonics 2013: Advances in nanoantennas,” IEEE Photon. J. 6, 1–6 (2014).
    [Crossref]
  16. P. Dumon, W. Bogaerts, D. V. Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Optics Express 14, 664 (2006).
    [Crossref] [PubMed]
  17. A. Michaels and E. Yablonovitch, “Reinventing the circuit board with integrated optical interconnects,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2016), pp. STu4G–2.
  18. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Optics letters 29, 2749–2751 (2004).
    [Crossref] [PubMed]
  19. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled cmos photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
    [Crossref]
  20. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett. 15, 1249–1251 (2003).
    [Crossref]
  21. T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightw. Tech. 34, 1567–1571 (2016).
    [Crossref]
  22. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4µm2 footprint,” Nature Photonics 9, 378–382 (2015).
    [Crossref]
  23. L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Optics Express 24, 16866 (2016).
    [Crossref] [PubMed]
  24. A. Y. Piggott, J. Lu, T. M. Babinec, K. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2015), pp. SM3I–2.
  25. L. H. Frandsen, Y. Elesin, L. F. Frellsen, M. Mitrovic, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material,” Opt. Express 22, 8525 (2014).
    [Crossref] [PubMed]
  26. E. Hassan, E. Wadbro, and M. Berggren, “Topology optimization of metallic antennas,” IEEE Transactions on Antennas and Propagation 62, 2488–2500 (2014).
    [Crossref]
  27. R. Díaz de León-Zapata, G. González, E. Flores-García, A. G. Rodríguez, and F. J. González, “Evolutionary algorithm geometry optimization of optical antennas,” Int. J. Antennas Propag. 2016, 3156702 (2016).
    [Crossref]
  28. J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), pp. SM3G–7.
  29. P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM Review 47, 99–131 (2005).
    [Crossref]
  30. L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

2017 (2)

2016 (4)

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightw. Tech. 34, 1567–1571 (2016).
[Crossref]

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Optics Express 24, 16866 (2016).
[Crossref] [PubMed]

R. Díaz de León-Zapata, G. González, E. Flores-García, A. G. Rodríguez, and F. J. González, “Evolutionary algorithm geometry optimization of optical antennas,” Int. J. Antennas Propag. 2016, 3156702 (2016).
[Crossref]

2015 (1)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4µm2 footprint,” Nature Photonics 9, 378–382 (2015).
[Crossref]

2014 (3)

L. H. Frandsen, Y. Elesin, L. F. Frellsen, M. Mitrovic, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material,” Opt. Express 22, 8525 (2014).
[Crossref] [PubMed]

E. Hassan, E. Wadbro, and M. Berggren, “Topology optimization of metallic antennas,” IEEE Transactions on Antennas and Propagation 62, 2488–2500 (2014).
[Crossref]

G. N. Malheiros-Silveira, L. H. Gabrielli, C. J. Chang-Hasnain, and H. E. Hernandez-Figueroa, “Breakthroughs in photonics 2013: Advances in nanoantennas,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

2013 (3)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

G. N. Malheiros-Silveira, G. S. Wiederhecker, and H. E. Hernández-Figueroa, “Dielectric resonator antenna for applications in nanophotonics,” Opt. Express 21, 1234–1239 (2013).
[Crossref] [PubMed]

2012 (2)

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Letters 12, 4090–4094 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Optics Express 20, 20599 (2012).
[Crossref] [PubMed]

2011 (1)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled cmos photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

2010 (2)

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Letters 10, 4952–4955 (2010).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Wireless at the nanoscale: Optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Optics Express 16, 21793 (2008).
[Crossref] [PubMed]

2007 (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics 101, 093105 (2007).
[Crossref]

2006 (1)

P. Dumon, W. Bogaerts, D. V. Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Optics Express 14, 664 (2006).
[Crossref] [PubMed]

2005 (1)

P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM Review 47, 99–131 (2005).
[Crossref]

2004 (1)

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Optics letters 29, 2749–2751 (2004).
[Crossref] [PubMed]

2003 (1)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett. 15, 1249–1251 (2003).
[Crossref]

Aldaya, I.

Alivisatos, A. P.

N. Liu, M. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” in “Conference on Lasers and Electro-Optics,” Optical Society of America (OSA, 2011), p. PDPC11.

Alù, A.

A. Alù and N. Engheta, “Wireless at the nanoscale: Optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Atsumi, Y.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightw. Tech. 34, 1567–1571 (2016).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, T. M. Babinec, K. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2015), pp. SM3I–2.

Baets, R.

P. C. Wuytens, A. G. Skirtach, and R. Baets, “On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides,” Opt. Express 25, 12926–12934 (2017).
[Crossref] [PubMed]

P. Dumon, W. Bogaerts, D. V. Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Optics Express 14, 664 (2006).
[Crossref] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Optics letters 29, 2749–2751 (2004).
[Crossref] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett. 15, 1249–1251 (2003).
[Crossref]

Beckx, S.

P. Dumon, W. Bogaerts, D. V. Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Optics Express 14, 664 (2006).
[Crossref] [PubMed]

Belov, P. A.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Optics Express 20, 20599 (2012).
[Crossref] [PubMed]

Berggren, M.

E. Hassan, E. Wadbro, and M. Berggren, “Topology optimization of metallic antennas,” IEEE Transactions on Antennas and Propagation 62, 2488–2500 (2014).
[Crossref]

Bharadwaj, P.

Bienstman, P.

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Optics letters 29, 2749–2751 (2004).
[Crossref] [PubMed]

Bochterle, J.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Bogaerts, W.

P. Dumon, W. Bogaerts, D. V. Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Optics Express 14, 664 (2006).
[Crossref] [PubMed]

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett. 15, 1249–1251 (2003).
[Crossref]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Optics Express 16, 21793 (2008).
[Crossref] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics 101, 093105 (2007).
[Crossref]

Chang-Hasnain, C. J.

G. N. Malheiros-Silveira, L. H. Gabrielli, C. J. Chang-Hasnain, and H. E. Hernandez-Figueroa, “Breakthroughs in photonics 2013: Advances in nanoantennas,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

Chen, X.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett. 15, 1249–1251 (2003).
[Crossref]

Cubukcu, E.

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Letters 12, 4090–4094 (2012).
[Crossref] [PubMed]

D’Andrea, C.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Dainese, P.

Dainese, P. C.

J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), pp. SM3G–7.

de Araujo, L. E. E.

De Dobbelaere, P.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled cmos photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

de La Chapelle, M. L.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett. 15, 1249–1251 (2003).
[Crossref]

Deutsch, B.

Díaz de León-Zapata, R.

R. Díaz de León-Zapata, G. González, E. Flores-García, A. G. Rodríguez, and F. J. González, “Evolutionary algorithm geometry optimization of optical antennas,” Int. J. Antennas Propag. 2016, 3156702 (2016).
[Crossref]

Ding, Y.

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Optics Express 24, 16866 (2016).
[Crossref] [PubMed]

L. H. Frandsen, Y. Elesin, L. F. Frellsen, M. Mitrovic, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material,” Opt. Express 22, 8525 (2014).
[Crossref] [PubMed]

Dumon, P.

P. Dumon, W. Bogaerts, D. V. Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Optics Express 14, 664 (2006).
[Crossref] [PubMed]

Elesin, Y.

Engheta, N.

A. Alù and N. Engheta, “Wireless at the nanoscale: Optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

Eres, G.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Letters 10, 4952–4955 (2010).
[Crossref] [PubMed]

Fabrizio, E. D.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Fazio, B.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Flores-García, E.

R. Díaz de León-Zapata, G. González, E. Flores-García, A. G. Rodríguez, and F. J. González, “Evolutionary algorithm geometry optimization of optical antennas,” Int. J. Antennas Propag. 2016, 3156702 (2016).
[Crossref]

Frandsen, L. H.

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Optics Express 24, 16866 (2016).
[Crossref] [PubMed]

L. H. Frandsen, Y. Elesin, L. F. Frellsen, M. Mitrovic, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material,” Opt. Express 22, 8525 (2014).
[Crossref] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett. 15, 1249–1251 (2003).
[Crossref]

Frellsen, L. F.

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Optics Express 24, 16866 (2016).
[Crossref] [PubMed]

L. H. Frandsen, Y. Elesin, L. F. Frellsen, M. Mitrovic, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material,” Opt. Express 22, 8525 (2014).
[Crossref] [PubMed]

Gabrielli, L. H.

J. L. Pita, I. Aldaya, O. J. S. Santana, L. E. E. de Araujo, P. Dainese, and L. H. Gabrielli, “Side-lobe level reduction in bio-inspired optical phased-array antennas,” Opt. Express 25, 30105–30114 (2017).
[Crossref] [PubMed]

G. N. Malheiros-Silveira, L. H. Gabrielli, C. J. Chang-Hasnain, and H. E. Hernandez-Figueroa, “Breakthroughs in photonics 2013: Advances in nanoantennas,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), pp. SM3G–7.

Gaddis, A. L.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Letters 10, 4952–4955 (2010).
[Crossref] [PubMed]

Gan, F.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

Giessen, H.

N. Liu, M. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” in “Conference on Lasers and Electro-Optics,” Optical Society of America (OSA, 2011), p. PDPC11.

Gill, P. E.

P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM Review 47, 99–131 (2005).
[Crossref]

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled cmos photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

González, F. J.

R. Díaz de León-Zapata, G. González, E. Flores-García, A. G. Rodríguez, and F. J. González, “Evolutionary algorithm geometry optimization of optical antennas,” Int. J. Antennas Propag. 2016, 3156702 (2016).
[Crossref]

González, G.

R. Díaz de León-Zapata, G. González, E. Flores-García, A. G. Rodríguez, and F. J. González, “Evolutionary algorithm geometry optimization of optical antennas,” Int. J. Antennas Propag. 2016, 3156702 (2016).
[Crossref]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics 101, 093105 (2007).
[Crossref]

Gu, B.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Letters 10, 4952–4955 (2010).
[Crossref] [PubMed]

Gucciardi, P. G.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Hassan, E.

E. Hassan, E. Wadbro, and M. Berggren, “Topology optimization of metallic antennas,” IEEE Transactions on Antennas and Propagation 62, 2488–2500 (2014).
[Crossref]

Hatab, N. A.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Letters 10, 4952–4955 (2010).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” in “Conference on Lasers and Electro-Optics,” Optical Society of America (OSA, 2011), p. PDPC11.

Hernandez-Figueroa, H. E.

G. N. Malheiros-Silveira, L. H. Gabrielli, C. J. Chang-Hasnain, and H. E. Hernandez-Figueroa, “Breakthroughs in photonics 2013: Advances in nanoantennas,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), pp. SM3G–7.

Hernández-Figueroa, H. E.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Hsueh, C.-H.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Letters 10, 4952–4955 (2010).
[Crossref] [PubMed]

Huang, H.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

Huck, C.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Jaenen, P.

P. Dumon, W. Bogaerts, D. V. Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Optics Express 14, 664 (2006).
[Crossref] [PubMed]

Kivshar, Y. S.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Optics Express 20, 20599 (2012).
[Crossref] [PubMed]

Krasnok, A. E.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Optics Express 20, 20599 (2012).
[Crossref] [PubMed]

Lagoudakis, K.

A. Y. Piggott, J. Lu, T. M. Babinec, K. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2015), pp. SM3I–2.

Li, C.

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Letters 12, 4090–4094 (2012).
[Crossref] [PubMed]

Li, H.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

Li, J.-H.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Letters 10, 4952–4955 (2010).
[Crossref] [PubMed]

Li, W.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

Liu, N.

N. Liu, M. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” in “Conference on Lasers and Electro-Optics,” Optical Society of America (OSA, 2011), p. PDPC11.

Lu, J.

A. Y. Piggott, J. Lu, T. M. Babinec, K. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2015), pp. SM3I–2.

Malheiros-Silveira, G. N.

G. N. Malheiros-Silveira, L. H. Gabrielli, C. J. Chang-Hasnain, and H. E. Hernandez-Figueroa, “Breakthroughs in photonics 2013: Advances in nanoantennas,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

G. N. Malheiros-Silveira, G. S. Wiederhecker, and H. E. Hernández-Figueroa, “Dielectric resonator antenna for applications in nanophotonics,” Opt. Express 21, 1234–1239 (2013).
[Crossref] [PubMed]

Maragò, O. M.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled cmos photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled cmos photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4µm2 footprint,” Nature Photonics 9, 378–382 (2015).
[Crossref]

Messina, E.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Michaels, A.

A. Michaels and E. Yablonovitch, “Reinventing the circuit board with integrated optical interconnects,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2016), pp. STu4G–2.

Miroshnichenko, A. E.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Optics Express 20, 20599 (2012).
[Crossref] [PubMed]

Mitrovic, M.

Miura, N.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightw. Tech. 34, 1567–1571 (2016).
[Crossref]

Mori, M.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightw. Tech. 34, 1567–1571 (2016).
[Crossref]

Murray, W.

P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM Review 47, 99–131 (2005).
[Crossref]

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled cmos photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Neubrech, F.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Nishi, T.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightw. Tech. 34, 1567–1571 (2016).
[Crossref]

Novotny, L.

Omoda, E.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightw. Tech. 34, 1567–1571 (2016).
[Crossref]

Pavesi, L.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

Petykiewicz, J.

A. Y. Piggott, J. Lu, T. M. Babinec, K. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2015), pp. SM3I–2.

Piggott, A. Y.

A. Y. Piggott, J. Lu, T. M. Babinec, K. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2015), pp. SM3I–2.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics 101, 093105 (2007).
[Crossref]

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled cmos photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Pita, J. L.

J. L. Pita, I. Aldaya, O. J. S. Santana, L. E. E. de Araujo, P. Dainese, and L. H. Gabrielli, “Side-lobe level reduction in bio-inspired optical phased-array antennas,” Opt. Express 25, 30105–30114 (2017).
[Crossref] [PubMed]

J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), pp. SM3G–7.

Polman, A.

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Optics Express 16, 21793 (2008).
[Crossref] [PubMed]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4µm2 footprint,” Nature Photonics 9, 378–382 (2015).
[Crossref]

Pucci, A.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Reed, J. C.

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Letters 12, 4090–4094 (2012).
[Crossref] [PubMed]

Retterer, S. T.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Letters 10, 4952–4955 (2010).
[Crossref] [PubMed]

Rodríguez, A. G.

R. Díaz de León-Zapata, G. González, E. Flores-García, A. G. Rodríguez, and F. J. González, “Evolutionary algorithm geometry optimization of optical antennas,” Int. J. Antennas Propag. 2016, 3156702 (2016).
[Crossref]

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled cmos photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Sakakibara, Y.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightw. Tech. 34, 1567–1571 (2016).
[Crossref]

Santana, O. J. S.

Saunders, M. A.

P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM Review 47, 99–131 (2005).
[Crossref]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4µm2 footprint,” Nature Photonics 9, 378–382 (2015).
[Crossref]

Sheng, Z.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

Sigmund, O.

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Optics Express 24, 16866 (2016).
[Crossref] [PubMed]

L. H. Frandsen, Y. Elesin, L. F. Frellsen, M. Mitrovic, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material,” Opt. Express 22, 8525 (2014).
[Crossref] [PubMed]

Skirtach, A. G.

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Taillaert, D.

P. Dumon, W. Bogaerts, D. V. Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Optics Express 14, 664 (2006).
[Crossref] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Optics letters 29, 2749–2751 (2004).
[Crossref] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett. 15, 1249–1251 (2003).
[Crossref]

Tajima, S.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightw. Tech. 34, 1567–1571 (2016).
[Crossref]

Tang, M.

N. Liu, M. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” in “Conference on Lasers and Electro-Optics,” Optical Society of America (OSA, 2011), p. PDPC11.

Thourhout, D. V.

P. Dumon, W. Bogaerts, D. V. Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Optics Express 14, 664 (2006).
[Crossref] [PubMed]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Toma, A.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics 101, 093105 (2007).
[Crossref]

Vivien, L.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

Vuckovic, J.

A. Y. Piggott, J. Lu, T. M. Babinec, K. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2015), pp. SM3I–2.

Wadbro, E.

E. Hassan, E. Wadbro, and M. Berggren, “Topology optimization of metallic antennas,” IEEE Transactions on Antennas and Propagation 62, 2488–2500 (2014).
[Crossref]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4µm2 footprint,” Nature Photonics 9, 378–382 (2015).
[Crossref]

Wang, X.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Wiederhecker, G. S.

Wouters, J.

P. Dumon, W. Bogaerts, D. V. Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Optics Express 14, 664 (2006).
[Crossref] [PubMed]

Wu, A.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

Wuytens, P. C.

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Yablonovitch, E.

A. Michaels and E. Yablonovitch, “Reinventing the circuit board with integrated optical interconnects,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2016), pp. STu4G–2.

Yoshida, T.

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightw. Tech. 34, 1567–1571 (2016).
[Crossref]

Yvind, K.

Zhang, Z.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Letters 10, 4952–4955 (2010).
[Crossref] [PubMed]

Zhu, A. Y.

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Letters 12, 4090–4094 (2012).
[Crossref] [PubMed]

Zhu, H.

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Letters 12, 4090–4094 (2012).
[Crossref] [PubMed]

Zhu, X.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

Zou, S.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

ACS Nano (1)

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. D. Fabrizio, M. L. de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

ACS Photonics (1)

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3, 324–328 (2016).
[Crossref]

Adv. Opt. Photon. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled cmos photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

IEEE Photon. J. (1)

G. N. Malheiros-Silveira, L. H. Gabrielli, C. J. Chang-Hasnain, and H. E. Hernandez-Figueroa, “Breakthroughs in photonics 2013: Advances in nanoantennas,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

IEEE Photon. Tech. Lett. (1)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett. 15, 1249–1251 (2003).
[Crossref]

IEEE Transactions on Antennas and Propagation (1)

E. Hassan, E. Wadbro, and M. Berggren, “Topology optimization of metallic antennas,” IEEE Transactions on Antennas and Propagation 62, 2488–2500 (2014).
[Crossref]

Int. J. Antennas Propag. (1)

R. Díaz de León-Zapata, G. González, E. Flores-García, A. G. Rodríguez, and F. J. González, “Evolutionary algorithm geometry optimization of optical antennas,” Int. J. Antennas Propag. 2016, 3156702 (2016).
[Crossref]

J. Lightw. Tech. (1)

T. Yoshida, E. Omoda, Y. Atsumi, T. Nishi, S. Tajima, N. Miura, M. Mori, and Y. Sakakibara, “Vertically curved Si waveguide coupler with low loss and flat wavelength window,” J. Lightw. Tech. 34, 1567–1571 (2016).
[Crossref]

Journal of Applied Physics (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics 101, 093105 (2007).
[Crossref]

Nano Letters (2)

J. C. Reed, H. Zhu, A. Y. Zhu, C. Li, and E. Cubukcu, “Graphene-enabled silver nanoantenna sensors,” Nano Letters 12, 4090–4094 (2012).
[Crossref] [PubMed]

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Letters 10, 4952–4955 (2010).
[Crossref] [PubMed]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Nature Photonics (1)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4µm2 footprint,” Nature Photonics 9, 378–382 (2015).
[Crossref]

Opt. Express (4)

Optics Express (4)

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Optics Express 24, 16866 (2016).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Optics Express 20, 20599 (2012).
[Crossref] [PubMed]

P. Dumon, W. Bogaerts, D. V. Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Optics Express 14, 664 (2006).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Optics Express 16, 21793 (2008).
[Crossref] [PubMed]

Optics letters (1)

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Optics letters 29, 2749–2751 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Alù and N. Engheta, “Wireless at the nanoscale: Optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[Crossref] [PubMed]

SIAM Review (1)

P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM Review 47, 99–131 (2005).
[Crossref]

Other (5)

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

N. Liu, M. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” in “Conference on Lasers and Electro-Optics,” Optical Society of America (OSA, 2011), p. PDPC11.

A. Michaels and E. Yablonovitch, “Reinventing the circuit board with integrated optical interconnects,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2016), pp. STu4G–2.

J. L. Pita, P. C. Dainese, H. E. Hernandez-Figueroa, and L. H. Gabrielli, “Ultra-compact broadband dielectric antenna,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), pp. SM3G–7.

A. Y. Piggott, J. Lu, T. M. Babinec, K. Lagoudakis, J. Petykiewicz, and J. Vuckovic, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” in “Conference on Lasers and Electro-Optics”, Optical Society of America (OSA, 2015), pp. SM3I–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Design of the optimized antenna. (a) Optimization region indicating the pixel size, the four possible silicon layer heights, the dimension of the feeding waveguide, and the far-field radiation directions that are used in computing the figure of merit of the antenna. (b) Optimized design after 78 iterations. (c) Smoothed design suitable for fabrication.
Fig. 2
Fig. 2 Simulation of the optimized antenna at wavelengths from 1400 nm to 1550 nm. (a) Transmission and reflection coefficients, as well as emission efficiencies in the upward and downward directions. (b) Near-field intensity profiles and (c) far-field radiation patterns at 1470 nm and 1550 nm. (d) Cuts of the near-fields (b) along the indicated paths. (e) Cuts of the far-fileds (d) along the 90° azimuthal angle. N.f and F.f. stand for near-field and far-field, respectively.
Fig. 3
Fig. 3 Characterization of the fabricated antenna at 1470 nm and 1550 nm. (a) SEM image of the antenna under test. (b) Experimental setups for measurements of near-field profile and (c) far-field radiation pattern. TLS: tunable laser source; PC: polarization controller; LF: lensed fiber, L1: Microscope objective; L2: lens; CCD: InGaAs coupled charge device camera. (d) Captured near-field profiles and (e) far-field radiation patterns. (f, g) Cuts of the near-fields (d) and far-fields (e) along the indicated paths, respectively. N.f. indicates near-field, while F.f represents far-field.
Fig. 4
Fig. 4 Antennas for coupling. (a) Experimental setup employed to measure the antenna bandwidth. OSA: optical spectrum analyzer; LP: linear polarizer; PC: polarization controller; LF: lensed fiber; and PS: piezo-stage. (b) Measured coupling efficiency.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n i j = n clad + ( n core n clad ) u ( p i j )

Metrics