Abstract

A weakly focused laser beam can exert sufficient radiation pressure to manipulate microscopic particles over a large depth range. However, depth-resolved continuous measurement of radiation-pressure force profiles over an extended range about the focal plane has not been demonstrated despite decades of research on optical manipulation. Here, we present a method for continuous measurement of axial radiation-pressure forces from a weakly focused beam on polystyrene micro-beads suspended in viscous fluids over a depth range of 400 μm, based on real-time monitoring of particle dynamics using optical coherence tomography (OCT). Measurements of radiation-pressure forces as a function of beam power, wavelength, bead size, and refractive index are consistent with theoretical trends. However, our continuous measurements also reveal localized depth-dependent features in the radiation-pressure force profiles that deviate from theoretical predictions based on an aberration-free Gaussian beam. The combination of long-range radiation pressure and OCT offers a new mode of quantitative optical manipulation and detection with extended spatial coverage. This may find applications in the characterization of optical tractor beams, or volumetric optical manipulation and interrogation of beads in viscoelastic media.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Computational localization microscopy with extended axial range

Yongzhuang Zhou, Paul Zammit, Guillem Carles, and Andrew R. Harvey
Opt. Express 26(6) 7563-7577 (2018)

Enhancement of axial force of optical tweezers by utilizing a circular stop at the back focal plane of the objective

Hossein Gorjizadeh Alinezhad, Sajad Meydanloo, and S. Nader S. Reihani
J. Opt. Soc. Am. B 35(11) 2654-2660 (2018)

PSF engineering in multifocus microscopy for increased depth volumetric imaging

Bassam Hajj, Mohamed El Beheiry, and Maxime Dahan
Biomed. Opt. Express 7(3) 726-731 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  4. D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
    [Crossref] [PubMed]
  5. R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
    [Crossref] [PubMed]
  6. S. Ermilov and B. Anvari, “Dynamic Measurements of Transverse Optical Trapping Force in Biological Applications,” Ann. Biomed. Eng. 32(7), 1016–1026 (2004).
    [Crossref] [PubMed]
  7. M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
    [Crossref] [PubMed]
  8. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735–1748 (1994).
    [Crossref] [PubMed]
  9. T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and Theoretical Investigations on the Validity of the Geometrical Optics Model for Calculating the Stability of Optical Traps,” Cytometry 12(6), 479–485 (1991).
    [Crossref] [PubMed]
  10. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
    [Crossref]
  11. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [Crossref] [PubMed]
  12. Y. A. Ayala, A. V. Arzola, and K. Volke-Sepúlveda, “3D micromanipulation at low numerical aperture with a single light beam: the focused-Bessel trap,” Opt. Lett. 41(3), 614–617 (2016).
    [Crossref] [PubMed]
  13. Y. A. Ayala, A. V. Arzola, and K. Volke-Sepulveda, “Comparative study of optical levitation traps: focused Bessel beam versus Gaussian beams,” J. Opt. Soc. Am. B 33(6), 1060–1067 (2016).
    [Crossref]
  14. T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
    [Crossref]
  15. D. B. Ruffner and D. G. Grier, “Optical Conveyors: A class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
    [Crossref] [PubMed]
  16. O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7(2), 123–127 (2013).
    [Crossref]
  17. D. B. Ruffner and D. G. Grier, “Universal, strong and long-ranged trapping by optical conveyors,” Opt. Express 22(22), 26834–26843 (2014).
    [Crossref] [PubMed]
  18. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
    [Crossref]
  19. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
    [Crossref]
  20. T. Cizmar, O. Brzobohaty, K. Dholakia, and P. Zemanek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8(1), 50–56 (2011).
    [Crossref]
  21. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref] [PubMed]
  22. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
    [Crossref] [PubMed]
  23. F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
    [Crossref] [PubMed]
  24. T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical Chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
    [Crossref]
  25. S. B. Kim, J. H. Kim, and S. S. Kim, “Theoretical development of in situ optical particle separator: cross-type optical chromatography,” Appl. Opt. 45(27), 6919–6924 (2006).
    [Crossref] [PubMed]
  26. K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmar, “Cellular and Colloidal Separation Using Optical Forces,” in Methods Cell Biol. (2007), pp. 467–495.
  27. M. Zabetian, M. S. Saidi, M. B. Shafii, and M. H. Saidi, “Separation of microparticles suspended in a minichannel using laser radiation pressure,” Appl. Opt. 52(20), 4950–4958 (2013).
    [Crossref] [PubMed]
  28. F. Benabid, J. Knight, and P. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10(21), 1195–1203 (2002).
    [Crossref] [PubMed]
  29. T. H. Chow, W. M. Lee, K. M. Tan, B. K. Ng, and C. J. R. Sheppard, “Resolving interparticle position and optical forces along the axial direction using optical coherence gating,” Appl. Phys. Lett. 97(23), 231113 (2010).
    [Crossref]
  30. G. Sitters, N. Laurens, E. J. de Rijk, H. Kress, E. J. G. Peterman, and G. J. L. Wuite, “Optical Pushing: A Tool for Parallelized Biomolecule Manipulation,” Biophys. J. 110(1), 44–50 (2016).
    [Crossref] [PubMed]
  31. R. B. Liebert and D. C. Prieve, “Force Exerted by a Laser Beam on a Microscopic Sphere in Water: Designing for Maximum Axial Force,” Ind. Eng. Chem. Res. 34(10), 3542–3550 (1995).
    [Crossref]
  32. S. Nemoto and H. Togo, “Axial force acting on a dielectric sphere in a focused laser beam,” Appl. Opt. 37(27), 6386–6394 (1998).
    [Crossref] [PubMed]
  33. K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35(15), 2702–2710 (1996).
    [Crossref] [PubMed]
  34. G. Gouesbet and G. Grehan, Generalized Lorenz-Mie Theories, 2 ed. (Springer International Publishing, 2017), p. 331.
  35. L. A. Ambrosio and M. Zamboni-Rached, “Optical forces experienced by arbitrary-sized spherical scatterers from superpositions of equal-frequency Bessel beams,” J. Opt. Soc. Am. B 32(5), B37–B46 (2015).
    [Crossref]
  36. M. Yang, Y. Wu, K. F. Ren, and X. Sheng, “Computation of radiation pressure force exerted on arbitrary shaped homogeneous particles by high-order Bessel vortex beams using MLFMA,” Opt. Express 24(24), 27979–27992 (2016).
    [Crossref] [PubMed]
  37. F. P. Wu, B. Zhang, Z. L. Liu, Y. Tang, and N. Zhang, “Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere,” Opt. Commun. 405, 96–100 (2017).
    [Crossref]
  38. R. Dimova and B. Pouligny, “Absorbing microspheres in water: laser radiation pressure and hydrodynamic forces,” in Scattering of Shaped Light Beams and Applications, G. Gouesbet and G. Grehan, eds. (2000), pp. 45–65.
  39. M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
    [Crossref]
  40. W. Mu, Z. Li, L. Luan, G. C. Spalding, G. Wang, and J. B. Ketterson, “Force measurement on microspheres in an optical standing wave,” J. Opt. Soc. Am. B 25(5), 763–767 (2008).
    [Crossref]
  41. W. J. Choi, K. S. Park, T. J. Eom, M. K. Oh, and B. H. Lee, “Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography,” Opt. Lett. 37(14), 2784–2786 (2012).
    [Crossref] [PubMed]
  42. K. C. Neuman and S. M. Block, “Optical Trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  43. H. Lamb, Hydrodynamics, 6th ed. (C.U.P, 1932), p. 738.
  44. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-microm Wavelength Region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  45. K. Takamura, H. Fischer, and N. R. Morrow, “Physical properties of aqueous glycerol solutions,” J. Petrol. Sci. Eng. 98–99, 50–60 (2012).
    [Crossref]
  46. J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
    [Crossref]
  47. I. Z. Kozma, P. Krok, and E. Riedle, “Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet,” J. Opt. Soc. Am. B 22(7), 1479–1485 (2005).
    [Crossref]
  48. J. B. Segur and H. E. Oberstar, “Viscosity of Glycerol and Its Aqueous Solutions,” Ind. Eng. Chem. 43(9), 2117–2120 (1951).
    [Crossref]
  49. J. A. T. Gonzalez, M. P. Longinotti, and H. R. Corti, “The Viscosity of Glycerol-Water Mixture Including the Supercooled Region,” J. Chem. Eng. Data 56(4), 1397–1406 (2011).
    [Crossref]
  50. K. Ahnert and M. Abel, “Numerical differentiation of experimental data: local versus global methods,” Comput. Phys. Commun. 177(10), 764–774 (2007).
    [Crossref]
  51. J. Huisken and E. H. K. Stelzer, “Optical levitation of absorbing particles with a nominally Gaussian laser beam,” Opt. Lett. 27(14), 1223–1225 (2002).
    [Crossref] [PubMed]
  52. R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, “Laser-induced thermophoresis of individual particles in a viscous liquid,” Opt. Express 19(11), 10571–10586 (2011).
    [Crossref] [PubMed]
  53. Lumerical Inc, Lumerical FDTD Solutions. https://www.lumerical.com/tcad-products/fdtd .
  54. A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6), 061917 (2007).
    [Crossref] [PubMed]
  55. Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter Rheology of Gaseous Media Using a Rotating Optically Trapped Birefringent Microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
    [Crossref] [PubMed]
  56. S. G. Adie, B. W. Graft, A. Ahmad, B. Dabarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
    [Crossref]
  57. H. Polaert, G. Gouesbet, and G. Gréhan, “Laboratory determination of beam-shape coefficients for use in generalized Lorenz-Mie theory,” Appl. Opt. 40(10), 1699–1706 (2001).
    [Crossref] [PubMed]
  58. J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34(12), 2120–2132 (1995).
    [Crossref] [PubMed]
  59. Y. F. Chen, G. A. Blab, and J. C. Meiners, “Stretching Submicron Biomolecules with Constant-Force Axial Optical Tweezers,” Biophys. J. 96(11), 4701–4708 (2009).
    [Crossref] [PubMed]
  60. S. Yehoshua, R. Pollari, and J. N. Milstein, “Axial Optical Traps: A New Direction for Optical Tweezers,” Biophys. J. 108(12), 2759–2766 (2015).
    [Crossref] [PubMed]
  61. S. H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15(4), 1505–1512 (2007).
    [Crossref] [PubMed]
  62. E. W. Chang, J. B. Kobler, and S. H. Yun, “Subnanometer optical coherence tomographic vibrography,” Opt. Lett. 37(17), 3678–3680 (2012).
    [Crossref] [PubMed]
  63. J. S. T. Gongora and A. Fratalocchi, “Optical force on diseased blood cells: Towards the optical sorting of biological matter,” Opt. Lasers Eng. 76, 40–44 (2016).
    [Crossref]
  64. D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
    [Crossref]
  65. M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
    [Crossref] [PubMed]
  66. M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
    [Crossref] [PubMed]

2017 (2)

F. P. Wu, B. Zhang, Z. L. Liu, Y. Tang, and N. Zhang, “Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere,” Opt. Commun. 405, 96–100 (2017).
[Crossref]

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (2)

2014 (2)

D. B. Ruffner and D. G. Grier, “Universal, strong and long-ranged trapping by optical conveyors,” Opt. Express 22(22), 26834–26843 (2014).
[Crossref] [PubMed]

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

2013 (3)

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref] [PubMed]

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7(2), 123–127 (2013).
[Crossref]

M. Zabetian, M. S. Saidi, M. B. Shafii, and M. H. Saidi, “Separation of microparticles suspended in a minichannel using laser radiation pressure,” Appl. Opt. 52(20), 4950–4958 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (6)

J. A. T. Gonzalez, M. P. Longinotti, and H. R. Corti, “The Viscosity of Glycerol-Water Mixture Including the Supercooled Region,” J. Chem. Eng. Data 56(4), 1397–1406 (2011).
[Crossref]

R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, “Laser-induced thermophoresis of individual particles in a viscous liquid,” Opt. Express 19(11), 10571–10586 (2011).
[Crossref] [PubMed]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter Rheology of Gaseous Media Using a Rotating Optically Trapped Birefringent Microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[Crossref] [PubMed]

S. G. Adie, B. W. Graft, A. Ahmad, B. Dabarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

T. Cizmar, O. Brzobohaty, K. Dholakia, and P. Zemanek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8(1), 50–56 (2011).
[Crossref]

2010 (2)

T. H. Chow, W. M. Lee, K. M. Tan, B. K. Ng, and C. J. R. Sheppard, “Resolving interparticle position and optical forces along the axial direction using optical coherence gating,” Appl. Phys. Lett. 97(23), 231113 (2010).
[Crossref]

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[Crossref] [PubMed]

2009 (2)

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

Y. F. Chen, G. A. Blab, and J. C. Meiners, “Stretching Submicron Biomolecules with Constant-Force Axial Optical Tweezers,” Biophys. J. 96(11), 4701–4708 (2009).
[Crossref] [PubMed]

2008 (2)

W. Mu, Z. Li, L. Luan, G. C. Spalding, G. Wang, and J. B. Ketterson, “Force measurement on microspheres in an optical standing wave,” J. Opt. Soc. Am. B 25(5), 763–767 (2008).
[Crossref]

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

2007 (3)

S. H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15(4), 1505–1512 (2007).
[Crossref] [PubMed]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6), 061917 (2007).
[Crossref] [PubMed]

K. Ahnert and M. Abel, “Numerical differentiation of experimental data: local versus global methods,” Comput. Phys. Commun. 177(10), 764–774 (2007).
[Crossref]

2006 (1)

2005 (3)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

I. Z. Kozma, P. Krok, and E. Riedle, “Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet,” J. Opt. Soc. Am. B 22(7), 1479–1485 (2005).
[Crossref]

2004 (2)

K. C. Neuman and S. M. Block, “Optical Trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

S. Ermilov and B. Anvari, “Dynamic Measurements of Transverse Optical Trapping Force in Biological Applications,” Ann. Biomed. Eng. 32(7), 1016–1026 (2004).
[Crossref] [PubMed]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

2002 (4)

J. Huisken and E. H. K. Stelzer, “Optical levitation of absorbing particles with a nominally Gaussian laser beam,” Opt. Lett. 27(14), 1223–1225 (2002).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

F. Benabid, J. Knight, and P. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10(21), 1195–1203 (2002).
[Crossref] [PubMed]

2001 (3)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

H. Polaert, G. Gouesbet, and G. Gréhan, “Laboratory determination of beam-shape coefficients for use in generalized Lorenz-Mie theory,” Appl. Opt. 40(10), 1699–1706 (2001).
[Crossref] [PubMed]

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[Crossref]

1998 (1)

1997 (1)

J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

1996 (1)

1995 (3)

R. B. Liebert and D. C. Prieve, “Force Exerted by a Laser Beam on a Microscopic Sphere in Water: Designing for Maximum Axial Force,” Ind. Eng. Chem. Res. 34(10), 3542–3550 (1995).
[Crossref]

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical Chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[Crossref]

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser, “Forward scattering of a Gaussian beam by a nonabsorbing sphere,” Appl. Opt. 34(12), 2120–2132 (1995).
[Crossref] [PubMed]

1994 (1)

1991 (1)

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and Theoretical Investigations on the Validity of the Geometrical Optics Model for Calculating the Stability of Optical Traps,” Cytometry 12(6), 479–485 (1991).
[Crossref] [PubMed]

1986 (1)

1973 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

1951 (1)

J. B. Segur and H. E. Oberstar, “Viscosity of Glycerol and Its Aqueous Solutions,” Ind. Eng. Chem. 43(9), 2117–2120 (1951).
[Crossref]

Abbas, M. M.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Abel, M.

K. Ahnert and M. Abel, “Numerical differentiation of experimental data: local versus global methods,” Comput. Phys. Commun. 177(10), 764–774 (2007).
[Crossref]

Adie, S. G.

S. G. Adie, B. W. Graft, A. Ahmad, B. Dabarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

Adrian, M. L.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Ahmad, A.

S. G. Adie, B. W. Graft, A. Ahmad, B. Dabarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

Ahnert, K.

K. Ahnert and M. Abel, “Numerical differentiation of experimental data: local versus global methods,” Comput. Phys. Commun. 177(10), 764–774 (2007).
[Crossref]

Alvarez-Elizondo, M.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Alvarez-Elizondo, M. B.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Ambrosio, L. A.

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Anvari, B.

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

S. Ermilov and B. Anvari, “Dynamic Measurements of Transverse Optical Trapping Force in Biological Applications,” Ann. Biomed. Eng. 32(7), 1016–1026 (2004).
[Crossref] [PubMed]

Arita, Y.

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter Rheology of Gaseous Media Using a Rotating Optically Trapped Birefringent Microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[Crossref] [PubMed]

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Arzola, A. V.

Ashkin, A.

Ayala, Y. A.

Beil, M.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

Benabid, F.

Berns, M. W.

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Bjorkholm, J. E.

Blab, G. A.

Y. F. Chen, G. A. Blab, and J. C. Meiners, “Stretching Submicron Biomolecules with Constant-Force Axial Optical Tweezers,” Biophys. J. 96(11), 4701–4708 (2009).
[Crossref] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical Trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Boppart, S. A.

S. G. Adie, B. W. Graft, A. Ahmad, B. Dabarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

Botvinick, E.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Botvinick, E. L.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Bowman, R. W.

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref] [PubMed]

Bruel, A.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

Brzobohaty, O.

T. Cizmar, O. Brzobohaty, K. Dholakia, and P. Zemanek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8(1), 50–56 (2011).
[Crossref]

Brzobohatý, O.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7(2), 123–127 (2013).
[Crossref]

Bucholtz, F.

Camposeo, A.

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6), 061917 (2007).
[Crossref] [PubMed]

Carney, P. S.

S. G. Adie, B. W. Graft, A. Ahmad, B. Dabarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

Cesar, C. L.

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6), 061917 (2007).
[Crossref] [PubMed]

Chang, E. W.

Chen, Y. F.

Y. F. Chen, G. A. Blab, and J. C. Meiners, “Stretching Submicron Biomolecules with Constant-Force Axial Optical Tweezers,” Biophys. J. 96(11), 4701–4708 (2009).
[Crossref] [PubMed]

Choi, W. J.

Chow, T. H.

T. H. Chow, W. M. Lee, K. M. Tan, B. K. Ng, and C. J. R. Sheppard, “Resolving interparticle position and optical forces along the axial direction using optical coherence gating,” Appl. Phys. Lett. 97(23), 231113 (2010).
[Crossref]

Chu, S.

Chvátal, L.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7(2), 123–127 (2013).
[Crossref]

Cingolani, R.

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6), 061917 (2007).
[Crossref] [PubMed]

Cizmar, T.

T. Cizmar, O. Brzobohaty, K. Dholakia, and P. Zemanek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8(1), 50–56 (2011).
[Crossref]

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Cižmár, T.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7(2), 123–127 (2013).
[Crossref]

Coleman, J. P.

Corti, H. R.

J. A. T. Gonzalez, M. P. Longinotti, and H. R. Corti, “The Viscosity of Glycerol-Water Mixture Including the Supercooled Region,” J. Chem. Eng. Data 56(4), 1397–1406 (2011).
[Crossref]

Craven, P. D.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Dabarsyah, B.

S. G. Adie, B. W. Graft, A. Ahmad, B. Dabarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

de Grooth, B. G.

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and Theoretical Investigations on the Validity of the Geometrical Optics Model for Calculating the Stability of Optical Traps,” Cytometry 12(6), 479–485 (1991).
[Crossref] [PubMed]

de Rijk, E. J.

G. Sitters, N. Laurens, E. J. de Rijk, H. Kress, E. J. G. Peterman, and G. J. L. Wuite, “Optical Pushing: A Tool for Parallelized Biomolecule Manipulation,” Biophys. J. 110(1), 44–50 (2016).
[Crossref] [PubMed]

Dholakia, K.

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter Rheology of Gaseous Media Using a Rotating Optically Trapped Birefringent Microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[Crossref] [PubMed]

T. Cizmar, O. Brzobohaty, K. Dholakia, and P. Zemanek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8(1), 50–56 (2011).
[Crossref]

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[Crossref] [PubMed]

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Dziedzic, J. M.

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Eom, T. J.

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Ermilov, S.

S. Ermilov and B. Anvari, “Dynamic Measurements of Transverse Optical Trapping Force in Biological Applications,” Ann. Biomed. Eng. 32(7), 1016–1026 (2004).
[Crossref] [PubMed]

Estrada, L. C.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Fischer, H.

K. Takamura, H. Fischer, and N. R. Morrow, “Physical properties of aqueous glycerol solutions,” J. Petrol. Sci. Eng. 98–99, 50–60 (2012).
[Crossref]

Fishman, G. J.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Fontes, A.

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6), 061917 (2007).
[Crossref] [PubMed]

Fratalocchi, A.

J. S. T. Gongora and A. Fratalocchi, “Optical force on diseased blood cells: Towards the optical sorting of biological matter,” Opt. Lasers Eng. 76, 40–44 (2016).
[Crossref]

Gallagher, D. L.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Garces-Chavez, V.

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Gongora, J. S. T.

J. S. T. Gongora and A. Fratalocchi, “Optical force on diseased blood cells: Towards the optical sorting of biological matter,” Opt. Lasers Eng. 76, 40–44 (2016).
[Crossref]

Gonzalez, J. A. T.

J. A. T. Gonzalez, M. P. Longinotti, and H. R. Corti, “The Viscosity of Glycerol-Water Mixture Including the Supercooled Region,” J. Chem. Eng. Data 56(4), 1397–1406 (2011).
[Crossref]

Gouesbet, G.

Graft, B. W.

S. G. Adie, B. W. Graft, A. Ahmad, B. Dabarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

Gratton, E.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Gréhan, G.

Greve, J.

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and Theoretical Investigations on the Validity of the Geometrical Optics Model for Calculating the Stability of Optical Traps,” Cytometry 12(6), 479–485 (1991).
[Crossref] [PubMed]

Grier, D. G.

D. B. Ruffner and D. G. Grier, “Universal, strong and long-ranged trapping by optical conveyors,” Opt. Express 22(22), 26834–26843 (2014).
[Crossref] [PubMed]

D. B. Ruffner and D. G. Grier, “Optical Conveyors: A class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref] [PubMed]

S. H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15(4), 1505–1512 (2007).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Guck, J.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Gunn-Moore, F.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[Crossref] [PubMed]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[Crossref]

Hale, G. M.

Head, D. A.

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

Hesselink, G.

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and Theoretical Investigations on the Validity of the Geometrical Optics Model for Calculating the Stability of Optical Traps,” Cytometry 12(6), 479–485 (1991).
[Crossref] [PubMed]

Hodges, J. T.

Huisken, J.

Imasaka, T.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical Chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[Crossref]

Ishidzu, Y.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical Chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[Crossref]

Kaneta, T.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical Chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[Crossref]

Karásek, V.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7(2), 123–127 (2013).
[Crossref]

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Kawabata, Y.

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical Chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[Crossref]

Keating, M.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Ketterson, J. B.

Kim, J. H.

Kim, S. B.

Kim, S. S.

Kniazeva, E.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Knight, J.

Kobler, J. B.

Koser, J.

J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Kotlarchyk, M. A.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Kozma, I. Z.

Kress, H.

G. Sitters, N. Laurens, E. J. de Rijk, H. Kress, E. J. G. Peterman, and G. J. L. Wuite, “Optical Pushing: A Tool for Parallelized Biomolecule Manipulation,” Biophys. J. 110(1), 44–50 (2016).
[Crossref] [PubMed]

Krok, P.

Kurup, A.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Laurens, N.

G. Sitters, N. Laurens, E. J. de Rijk, H. Kress, E. J. G. Peterman, and G. J. L. Wuite, “Optical Pushing: A Tool for Parallelized Biomolecule Manipulation,” Biophys. J. 110(1), 44–50 (2016).
[Crossref] [PubMed]

Lautenschläger, F.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

LeClair, A.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Lee, B. H.

Lee, S. H.

Lee, W. M.

T. H. Chow, W. M. Lee, K. M. Tan, B. K. Ng, and C. J. R. Sheppard, “Resolving interparticle position and optical forces along the axial direction using optical coherence gating,” Appl. Phys. Lett. 97(23), 231113 (2010).
[Crossref]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Levine, A. J.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Li, Z.

Liebert, R. B.

R. B. Liebert and D. C. Prieve, “Force Exerted by a Laser Beam on a Microscopic Sphere in Water: Designing for Maximum Axial Force,” Ind. Eng. Chem. Res. 34(10), 3542–3550 (1995).
[Crossref]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[Crossref]

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Liu, Z. L.

F. P. Wu, B. Zhang, Z. L. Liu, Y. Tang, and N. Zhang, “Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere,” Opt. Commun. 405, 96–100 (2017).
[Crossref]

Longinotti, M. P.

J. A. T. Gonzalez, M. P. Longinotti, and H. R. Corti, “The Viscosity of Glycerol-Water Mixture Including the Supercooled Region,” J. Chem. Eng. Data 56(4), 1397–1406 (2011).
[Crossref]

Luan, L.

MacKintosh, F. C.

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Mazilu, M.

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter Rheology of Gaseous Media Using a Rotating Optically Trapped Birefringent Microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[Crossref] [PubMed]

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

McKinley, A. W.

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter Rheology of Gaseous Media Using a Rotating Optically Trapped Birefringent Microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[Crossref] [PubMed]

Meiners, J. C.

Y. F. Chen, G. A. Blab, and J. C. Meiners, “Stretching Submicron Biomolecules with Constant-Force Axial Optical Tweezers,” Biophys. J. 96(11), 4701–4708 (2009).
[Crossref] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Milstein, J. N.

S. Yehoshua, R. Pollari, and J. N. Milstein, “Axial Optical Traps: A New Direction for Optical Tweezers,” Biophys. J. 108(12), 2759–2766 (2015).
[Crossref] [PubMed]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Mizuno, D.

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Morrow, N. R.

K. Takamura, H. Fischer, and N. R. Morrow, “Physical properties of aqueous glycerol solutions,” J. Petrol. Sci. Eng. 98–99, 50–60 (2012).
[Crossref]

Mu, W.

Nemoto, S.

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical Trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Neves, A. A. R.

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6), 061917 (2007).
[Crossref] [PubMed]

Ng, B. K.

T. H. Chow, W. M. Lee, K. M. Tan, B. K. Ng, and C. J. R. Sheppard, “Resolving interparticle position and optical forces along the axial direction using optical coherence gating,” Appl. Phys. Lett. 97(23), 231113 (2010).
[Crossref]

Oberstar, H. E.

J. B. Segur and H. E. Oberstar, “Viscosity of Glycerol and Its Aqueous Solutions,” Ind. Eng. Chem. 43(9), 2117–2120 (1951).
[Crossref]

Oh, M. K.

Olson, C. C.

Padgett, M. J.

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref] [PubMed]

Park, K. S.

Paschke, S.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

Peterman, E. J. G.

G. Sitters, N. Laurens, E. J. de Rijk, H. Kress, E. J. G. Peterman, and G. J. L. Wuite, “Optical Pushing: A Tool for Parallelized Biomolecule Manipulation,” Biophys. J. 110(1), 44–50 (2016).
[Crossref] [PubMed]

Pisignano, D.

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6), 061917 (2007).
[Crossref] [PubMed]

Polaert, H.

Pollari, R.

S. Yehoshua, R. Pollari, and J. N. Milstein, “Axial Optical Traps: A New Direction for Optical Tweezers,” Biophys. J. 108(12), 2759–2766 (2015).
[Crossref] [PubMed]

Presser, C.

Prieve, D. C.

R. B. Liebert and D. C. Prieve, “Force Exerted by a Laser Beam on a Microscopic Sphere in Water: Designing for Maximum Axial Force,” Ind. Eng. Chem. Res. 34(10), 3542–3550 (1995).
[Crossref]

Putnam, A. J.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Querry, M. R.

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[Crossref]

Ren, K. F.

Rheims, J.

J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Riedle, E.

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter Rheology of Gaseous Media Using a Rotating Optically Trapped Birefringent Microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[Crossref] [PubMed]

Ruffner, D. B.

D. B. Ruffner and D. G. Grier, “Universal, strong and long-ranged trapping by optical conveyors,” Opt. Express 22(22), 26834–26843 (2014).
[Crossref] [PubMed]

D. B. Ruffner and D. G. Grier, “Optical Conveyors: A class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref] [PubMed]

Russell, P.

Saidi, M. H.

Saidi, M. S.

Sarshar, M.

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

Schermer, R. T.

Schinkinger, S.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Schmidt, C. F.

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

Schut, T. C. B.

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and Theoretical Investigations on the Validity of the Geometrical Optics Model for Calculating the Stability of Optical Traps,” Cytometry 12(6), 479–485 (1991).
[Crossref] [PubMed]

Segur, J. B.

J. B. Segur and H. E. Oberstar, “Viscosity of Glycerol and Its Aqueous Solutions,” Ind. Eng. Chem. 43(9), 2117–2120 (1951).
[Crossref]

Shafii, M. B.

Sheldon, R.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Sheng, X.

Sheppard, C. J. R.

T. H. Chow, W. M. Lee, K. M. Tan, B. K. Ng, and C. J. R. Sheppard, “Resolving interparticle position and optical forces along the axial direction using optical coherence gating,” Appl. Phys. Lett. 97(23), 231113 (2010).
[Crossref]

Shreim, S. G.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Šiler, M.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7(2), 123–127 (2013).
[Crossref]

Singh, R.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Sitters, G.

G. Sitters, N. Laurens, E. J. de Rijk, H. Kress, E. J. G. Peterman, and G. J. L. Wuite, “Optical Pushing: A Tool for Parallelized Biomolecule Manipulation,” Biophys. J. 110(1), 44–50 (2016).
[Crossref] [PubMed]

Sonek, G. J.

Spalding, G. C.

Spann, J. F.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Stelzer, E. H. K.

Stevenson, D. J.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[Crossref] [PubMed]

Takamura, K.

K. Takamura, H. Fischer, and N. R. Morrow, “Physical properties of aqueous glycerol solutions,” J. Petrol. Sci. Eng. 98–99, 50–60 (2012).
[Crossref]

Tan, K. M.

T. H. Chow, W. M. Lee, K. M. Tan, B. K. Ng, and C. J. R. Sheppard, “Resolving interparticle position and optical forces along the axial direction using optical coherence gating,” Appl. Phys. Lett. 97(23), 231113 (2010).
[Crossref]

Tang, Y.

F. P. Wu, B. Zhang, Z. L. Liu, Y. Tang, and N. Zhang, “Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere,” Opt. Commun. 405, 96–100 (2017).
[Crossref]

Tankosic, D.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Thomas, E.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[Crossref]

Togo, H.

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Valdevit, L.

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Volke-Sepulveda, K.

Volke-Sepúlveda, K.

Wang, G.

West, E. A.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Witherow, W. K.

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

Wong, W. T.

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Wriedt, T.

J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Wright, W. H.

Wu, F. P.

F. P. Wu, B. Zhang, Z. L. Liu, Y. Tang, and N. Zhang, “Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere,” Opt. Commun. 405, 96–100 (2017).
[Crossref]

Wu, Y.

Wuite, G. J. L.

G. Sitters, N. Laurens, E. J. de Rijk, H. Kress, E. J. G. Peterman, and G. J. L. Wuite, “Optical Pushing: A Tool for Parallelized Biomolecule Manipulation,” Biophys. J. 110(1), 44–50 (2016).
[Crossref] [PubMed]

Yang, M.

Yehoshua, S.

S. Yehoshua, R. Pollari, and J. N. Milstein, “Axial Optical Traps: A New Direction for Optical Tweezers,” Biophys. J. 108(12), 2759–2766 (2015).
[Crossref] [PubMed]

Yun, S. H.

Zabetian, M.

Zamboni-Rached, M.

Zemanek, P.

T. Cizmar, O. Brzobohaty, K. Dholakia, and P. Zemanek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8(1), 50–56 (2011).
[Crossref]

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Zemánek, P.

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7(2), 123–127 (2013).
[Crossref]

Zhang, B.

F. P. Wu, B. Zhang, Z. L. Liu, Y. Tang, and N. Zhang, “Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere,” Opt. Commun. 405, 96–100 (2017).
[Crossref]

Zhang, N.

F. P. Wu, B. Zhang, Z. L. Liu, Y. Tang, and N. Zhang, “Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere,” Opt. Commun. 405, 96–100 (2017).
[Crossref]

Acta Biomater. (1)

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref] [PubMed]

Anal. Chem. (2)

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, and K. Dholakia, “Picoliter Rheology of Gaseous Media Using a Rotating Optically Trapped Birefringent Microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[Crossref] [PubMed]

T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical Chromatography,” Anal. Chem. 67(11), 1763–1765 (1995).
[Crossref]

Ann. Biomed. Eng. (1)

S. Ermilov and B. Anvari, “Dynamic Measurements of Transverse Optical Trapping Force in Biological Applications,” Ann. Biomed. Eng. 32(7), 1016–1026 (2004).
[Crossref] [PubMed]

Appl. Opt. (8)

Appl. Phys. Lett. (2)

T. H. Chow, W. M. Lee, K. M. Tan, B. K. Ng, and C. J. R. Sheppard, “Resolving interparticle position and optical forces along the axial direction using optical coherence gating,” Appl. Phys. Lett. 97(23), 231113 (2010).
[Crossref]

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[Crossref]

Biophys. J. (5)

G. Sitters, N. Laurens, E. J. de Rijk, H. Kress, E. J. G. Peterman, and G. J. L. Wuite, “Optical Pushing: A Tool for Parallelized Biomolecule Manipulation,” Biophys. J. 110(1), 44–50 (2016).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Y. F. Chen, G. A. Blab, and J. C. Meiners, “Stretching Submicron Biomolecules with Constant-Force Axial Optical Tweezers,” Biophys. J. 96(11), 4701–4708 (2009).
[Crossref] [PubMed]

S. Yehoshua, R. Pollari, and J. N. Milstein, “Axial Optical Traps: A New Direction for Optical Tweezers,” Biophys. J. 108(12), 2759–2766 (2015).
[Crossref] [PubMed]

Comput. Phys. Commun. (1)

K. Ahnert and M. Abel, “Numerical differentiation of experimental data: local versus global methods,” Comput. Phys. Commun. 177(10), 764–774 (2007).
[Crossref]

Cytometry (1)

T. C. B. Schut, G. Hesselink, B. G. de Grooth, and J. Greve, “Experimental and Theoretical Investigations on the Validity of the Geometrical Optics Model for Calculating the Stability of Optical Traps,” Cytometry 12(6), 479–485 (1991).
[Crossref] [PubMed]

Ind. Eng. Chem. (1)

J. B. Segur and H. E. Oberstar, “Viscosity of Glycerol and Its Aqueous Solutions,” Ind. Eng. Chem. 43(9), 2117–2120 (1951).
[Crossref]

Ind. Eng. Chem. Res. (1)

R. B. Liebert and D. C. Prieve, “Force Exerted by a Laser Beam on a Microscopic Sphere in Water: Designing for Maximum Axial Force,” Ind. Eng. Chem. Res. 34(10), 3542–3550 (1995).
[Crossref]

J. Biomed. Opt. (2)

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[Crossref] [PubMed]

J. Chem. Eng. Data (1)

J. A. T. Gonzalez, M. P. Longinotti, and H. R. Corti, “The Viscosity of Glycerol-Water Mixture Including the Supercooled Region,” J. Chem. Eng. Data 56(4), 1397–1406 (2011).
[Crossref]

J. Geophys. Res. (1)

M. M. Abbas, P. D. Craven, J. F. Spann, W. K. Witherow, E. A. West, D. L. Gallagher, M. L. Adrian, G. J. Fishman, D. Tankosic, A. LeClair, R. Sheldon, and E. Thomas., “Radiation pressure measurements on micron-size individual dust grains,” J. Geophys. Res. 108(A6), 1229 (2003).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Petrol. Sci. Eng. (1)

K. Takamura, H. Fischer, and N. R. Morrow, “Physical properties of aqueous glycerol solutions,” J. Petrol. Sci. Eng. 98–99, 50–60 (2012).
[Crossref]

Laser Phys. Lett. (1)

T. Cizmar, O. Brzobohaty, K. Dholakia, and P. Zemanek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8(1), 50–56 (2011).
[Crossref]

Macromolecules (1)

D. Mizuno, D. A. Head, F. C. MacKintosh, and C. F. Schmidt, “Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems,” Macromolecules 41(19), 7194–7202 (2008).
[Crossref]

Meas. Sci. Technol. (1)

J. Rheims, J. Koser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Nat. Photonics (1)

O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, and P. Zemánek, “Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’,” Nat. Photonics 7(2), 123–127 (2013).
[Crossref]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Opt. Commun. (4)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

F. P. Wu, B. Zhang, Z. L. Liu, Y. Tang, and N. Zhang, “Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere,” Opt. Commun. 405, 96–100 (2017).
[Crossref]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000).
[Crossref]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (1)

J. S. T. Gongora and A. Fratalocchi, “Optical force on diseased blood cells: Towards the optical sorting of biological matter,” Opt. Lasers Eng. 76, 40–44 (2016).
[Crossref]

Opt. Lett. (5)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6), 061917 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

D. B. Ruffner and D. G. Grier, “Optical Conveyors: A class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref] [PubMed]

PLoS One (1)

M. A. Kotlarchyk, S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, E. Kniazeva, E. Gratton, A. J. Putnam, and E. L. Botvinick, “Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel,” PLoS One 6(5), e20201 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 15696–15701 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

S. G. Adie, B. W. Graft, A. Ahmad, B. Dabarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

Rep. Prog. Phys. (1)

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical Trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Other (5)

H. Lamb, Hydrodynamics, 6th ed. (C.U.P, 1932), p. 738.

Lumerical Inc, Lumerical FDTD Solutions. https://www.lumerical.com/tcad-products/fdtd .

K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmar, “Cellular and Colloidal Separation Using Optical Forces,” in Methods Cell Biol. (2007), pp. 467–495.

R. Dimova and B. Pouligny, “Absorbing microspheres in water: laser radiation pressure and hydrodynamic forces,” in Scattering of Shaped Light Beams and Applications, G. Gouesbet and G. Grehan, eds. (2000), pp. 45–65.

G. Gouesbet and G. Grehan, Generalized Lorenz-Mie Theories, 2 ed. (Springer International Publishing, 2017), p. 331.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Factors affecting the dynamics of a spherical particle in viscous fluid illuminated by a low-NA beam. (a) Diagram showing the different types of forces exerted on a sphere in viscous fluid, illuminated by a weakly focused laser beam. (b) Theoretical depth-dependent profile of Frad exerted by a weakly focused Gaussian beam (w0: 3.2 µm; λ: 789 nm; P: 100 mW) on a dielectric bead (a: 1.5 µm; nbead: 1.5786; ρbead: 1.05 g/cm3) obtained from GLMT. (c) Axial bead trajectory as a result of Frad in (b) obtained from Eq. 2(b) (ρmed: 1 g/cm3; ηmed: 1 mPa∙s; nmed: 1.3294).
Fig. 2
Fig. 2 Experimental setup and sample configuration. The optical setup consisted of an SD-OCT system and a forcing beam combined in free space with the OCT sample arm beam. The forcing beam and the OCT beam were co-aligned at the sample. SLD: superluminescent diode, LD: laser diode, PR: photoreceiver, LP: long-pass dichroic filter, BCM: beam control module, XY: two-axis galvanometer.
Fig. 3
Fig. 3 Dynamics of beads accelerated by radiation pressure in media with different viscosity. M-mode OCT images in (a) water (ηmed: 1.1 ± 0.1 mPa∙s), (b) 10% glycerol (ηmed: 1.3 ± 0.1 mPa∙s), and (c) 30% glycerol (ηmed: 2.4 ± 0.1 mPa∙s). Red dotted lines indicate the moment when the forcing beam was turned on. Blue arrows indicate glass surfaces. Green arrows indicate beads whose motions were plotted in (d)-(f). Scale bar: 200 µm (vertical) and 3 s (horizontal). (d) Axial position of a bead in each sample as a function of time. (e)-(f) Axial velocity and acceleration obtained by first and second derivatives of trajectories in (d). Red arrows in (e) point to the two local maxima in the velocity profiles, inset shows a zoomed-in view of the two local maxima from measurements of multiple beads (see Section 4.2 and 5.1 for further information).
Fig. 4
Fig. 4 Depth-dependent profiles of radiation-pressure force and the point spread function (PSF) of the 789-nm forcing beam. (a) Comparison of measured Frad(z) (a: 3 µm; medium: 10% glycerol) to the theoretical prediction by GLMT for a Gaussian beam with zR = b/2. (b) Depth-dependent profiles of reflected confocal intensity, Itot(z), and 1/e2 radius, w(z), of the forcing beam. From the fit curve of measured data, the forcing beam w0 = 3.37 µm and b = 121.44 µm. En face images of the PSF are provided at selected depths; each image was normalized by its maximum intensity and has a field-of-view of 30 µm × 30 µm. In (a-b), red arrows point to the local maxima above the focal plane that manifested in the measurements of both Itot(z) and Frad(z).
Fig. 5
Fig. 5 Effects of beam power, wavelength, bead size, and refractive index on radiation-pressure force. (a) Frad at the focal plane as function of forcing beam power (a: 1.5 µm; medium: 10% glycerol). (b) Frad at the focal plane as a function of bead diameter (P: 140 mW; medium: 10% glycerol). (c) Frad at the focal plane as a function of relative refractive index (a: 1.5 um; P: 140 mW). (d) Comparison of depth-dependent Frad from the forcing beam with wavelength of 789 nm versus 976 nm (a: 1.5 um; P: 54, 79, 140 mW; medium: water). Plotted data points represent median values of Frad(z) obtained from N = 16 beads for 789 nm and N = 15 beads for 976 nm. Inset shows GLMT predictions of Frad(z) per unit power for the two cases. In (a-c), vertical error bars represent ± 1 standard deviation of results obtained from N = 10-16 beads (except in (b), N = 5 for 2a = 0.46 µm and in (c), N = 7 for DMSO). In (b), horizontal error bars represent the bead size distribution reported by the manufacturers.

Tables (1)

Tables Icon

Table 1 List of fluid samples and relevant properties.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F rad ( z )= P π a 2 ( 1 e 2 a 2 w 2 ( z ) ) n med C pr,z ( z ) c z ^ ,
m z ¨ ( t )={ F rad + F w F B F D } z ^ ,
4 3 π a 3 ρ bead z ¨ ( t )= F rad ( t )+ 4 3 π a 3 g( ρ bead ρ med )6πa η med z ˙ ( t ),
w( z )= w 0 1+4 ( z b ) 2 .

Metrics