Abstract

Brillouin spectroscopy and imaging has experienced a renaissance in recent years seeing vast improvements in methodology and increasing number of applications. With this resurgence has come the development of new spontaneous Brillouin instruments that often tout superior performance compared to established conventional systems such as tandem Fabry-Perot interferometers (TFPI). The performance of these new systems cannot always be thoroughly examined beyond the scope of the intended application, as applications often take precedence in reports. We therefore present evaluation of three modern Brillouin spectrometers: two VIPA-based spectrometers with wavelength-specific notch filters, and one scanning 6-pass TFPI. Performance analysis is presented along with a discussion about the dependence of measurements on excitation laser source and the various susceptibilities of each system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Background clean-up in Brillouin microspectroscopy of scattering medium

Zhaokai Meng, Andrew J. Traverso, and Vladislav V. Yakovlev
Opt. Express 22(5) 5410-5415 (2014)

Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging

Eitan Edrei, Malte C. Gather, and Giuliano Scarcelli
Opt. Express 25(6) 6895-6903 (2017)

Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy

Giuliano Scarcelli and Seok Hyun Yun
Opt. Express 19(11) 10913-10922 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 5–8 (2013).
    [Crossref]
  2. Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
    [Crossref] [PubMed]
  3. G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
    [Crossref] [PubMed]
  4. K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
    [Crossref] [PubMed]
  5. G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 61102 (2015).
    [Crossref]
  6. K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
    [Crossref] [PubMed]
  7. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (CRC Press, 1989).
  8. Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
    [Crossref]
  9. K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 20–23 (2005).
    [Crossref]
  10. Z. Meng and V. V. Yakovlev, “Precise determination of Brillouin scattering spectrum using a virtually imaged phase array (VIPA) spectrometer and charge-coupled device (CCD) camera,” Appl. Spectrosc. 70(8), 1356–1363 (2016).
    [Crossref] [PubMed]
  11. C. Song, E. Sánchez-Ortiga, M. R. Foreman, and P. Török, “Optimisation of a single stage VIPA spectrometers (Conference Presentation),” Proc. SPIE 10067, 100670N (2017).
  12. Z. N. Utegulov, J. M. Shaw, B. T. Draine, S. A. Kim, and W. L. Johnson, “Surface-plasmon enhancement of Brillouin light scattering from gold-nanodisk arrays on glass,” in M. I. Stockman, ed. (2007), p. 66411M.
  13. W. L. Johnson, S. A. Kim, Z. N. Utegulov, J. M. Shaw, and B. T. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113(33), 14651–14657 (2009).
    [Crossref]
  14. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
    [Crossref] [PubMed]
  15. Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
    [Crossref] [PubMed]
  16. M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
    [Crossref] [PubMed]
  17. I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41(5), 926–929 (2016).
    [Crossref] [PubMed]
  18. A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
    [Crossref] [PubMed]
  19. F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
    [Crossref]
  20. J. R. Sandercock, “Brillouin scattering study of SbSI using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
    [Crossref]
  21. A. J. Martin and W. Brenig, “Model for Brillouin scattering in amorphous solids,” Phys. Status Solidi 64(1), 163–172 (1974).
    [Crossref]
  22. M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually imaged phased array with graded reflectivity,” IEEE Photonics Technol. Lett. 11(11), 1443–1445 (1999).
    [Crossref]
  23. S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
    [Crossref]
  24. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
    [Crossref] [PubMed]
  25. K. Berghaus, S. H. Yun, and G. Scarcelli, “High speed sub-GHz spectrometer for Brillouin scattering analysis,” J. Vis. Exp. 106, 53468 (2016).
  26. M. J. Weber, Handbook of Optical Materials, 10th ed. (CRC press, 2003).
  27. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1999).
    [Crossref]
  28. G. W. Willard, “Ultrasonic absorption and velocity measurements in numerous liquids,” J. Acoust. Soc. Am. 12(3), 438–448 (1941).
    [Crossref]
  29. K. Liang, J. Xu, P. Zhang, Y. Wang, Q. Niu, L. Peng, and B. Zhou, “Temperature dependence of the Rayleigh Brillouin spectrum linewidth in air and nitrogen,” Sensors (Basel) 17(7), 1503 (2017).
    [Crossref] [PubMed]
  30. A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction VIPA-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108, 1–9 (2016).
    [Crossref]

2017 (4)

C. Song, E. Sánchez-Ortiga, M. R. Foreman, and P. Török, “Optimisation of a single stage VIPA spectrometers (Conference Presentation),” Proc. SPIE 10067, 100670N (2017).

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

K. Liang, J. Xu, P. Zhang, Y. Wang, Q. Niu, L. Peng, and B. Zhou, “Temperature dependence of the Rayleigh Brillouin spectrum linewidth in air and nitrogen,” Sensors (Basel) 17(7), 1503 (2017).
[Crossref] [PubMed]

2016 (6)

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction VIPA-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108, 1–9 (2016).
[Crossref]

K. Berghaus, S. H. Yun, and G. Scarcelli, “High speed sub-GHz spectrometer for Brillouin scattering analysis,” J. Vis. Exp. 106, 53468 (2016).

I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41(5), 926–929 (2016).
[Crossref] [PubMed]

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Z. Meng and V. V. Yakovlev, “Precise determination of Brillouin scattering spectrum using a virtually imaged phase array (VIPA) spectrometer and charge-coupled device (CCD) camera,” Appl. Spectrosc. 70(8), 1356–1363 (2016).
[Crossref] [PubMed]

2015 (5)

K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 61102 (2015).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 5–8 (2013).
[Crossref]

2011 (1)

2009 (1)

W. L. Johnson, S. A. Kim, Z. N. Utegulov, J. M. Shaw, and B. T. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113(33), 14651–14657 (2009).
[Crossref]

2007 (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

2005 (1)

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 20–23 (2005).
[Crossref]

2004 (1)

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

1999 (2)

M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually imaged phased array with graded reflectivity,” IEEE Photonics Technol. Lett. 11(11), 1443–1445 (1999).
[Crossref]

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1999).
[Crossref]

1974 (1)

A. J. Martin and W. Brenig, “Model for Brillouin scattering in amorphous solids,” Phys. Status Solidi 64(1), 163–172 (1974).
[Crossref]

1970 (1)

J. R. Sandercock, “Brillouin scattering study of SbSI using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
[Crossref]

1941 (1)

G. W. Willard, “Ultrasonic absorption and velocity measurements in numerous liquids,” J. Acoust. Soc. Am. 12(3), 438–448 (1941).
[Crossref]

Akhter, A. N.

M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually imaged phased array with graded reflectivity,” IEEE Photonics Technol. Lett. 11(11), 1443–1445 (1999).
[Crossref]

Antonacci, G.

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 61102 (2015).
[Crossref]

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 5–8 (2013).
[Crossref]

Ballmann, C. W.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Belkhadir, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Berghaus, K.

K. Berghaus, S. H. Yun, and G. Scarcelli, “High speed sub-GHz spectrometer for Brillouin scattering analysis,” J. Vis. Exp. 106, 53468 (2016).

K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
[Crossref] [PubMed]

Bilenca, A.

Brenig, W.

A. J. Martin and W. Brenig, “Model for Brillouin scattering in amorphous solids,” Phys. Status Solidi 64(1), 163–172 (1974).
[Crossref]

Caponi, S.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Cardinali, G.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Comez, L.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Corezzi, S.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Corte, L.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Draine, B. T.

W. L. Johnson, S. A. Kim, Z. N. Utegulov, J. M. Shaw, and B. T. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113(33), 14651–14657 (2009).
[Crossref]

Elsayad, K.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Emiliani, C.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Fiore, A.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction VIPA-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108, 1–9 (2016).
[Crossref]

Fioretto, D.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Foreman, M. R.

C. Song, E. Sánchez-Ortiga, M. R. Foreman, and P. Török, “Optimisation of a single stage VIPA spectrometers (Conference Presentation),” Proc. SPIE 10067, 100670N (2017).

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 5–8 (2013).
[Crossref]

Gallemí, M.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Gashev, A. A.

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

Gobbell, C.

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

Greb, T.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Jaillais, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Johnson, W. L.

W. L. Johnson, S. A. Kim, Z. N. Utegulov, J. M. Shaw, and B. T. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113(33), 14651–14657 (2009).
[Crossref]

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Kim, S. A.

W. L. Johnson, S. A. Kim, Z. N. Utegulov, J. M. Shaw, and B. T. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113(33), 14651–14657 (2009).
[Crossref]

Kong, J.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Köser, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1999).
[Crossref]

Koski, K. J.

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 20–23 (2005).
[Crossref]

Lepert, G.

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 61102 (2015).
[Crossref]

Liang, K.

K. Liang, J. Xu, P. Zhang, Y. Wang, Q. Niu, L. Peng, and B. Zhou, “Temperature dependence of the Rayleigh Brillouin spectrum linewidth in air and nitrogen,” Sensors (Basel) 17(7), 1503 (2017).
[Crossref] [PubMed]

Lin, C.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually imaged phased array with graded reflectivity,” IEEE Photonics Technol. Lett. 11(11), 1443–1445 (1999).
[Crossref]

Martin, A. J.

A. J. Martin and W. Brenig, “Model for Brillouin scattering in amorphous solids,” Phys. Status Solidi 64(1), 163–172 (1974).
[Crossref]

Mattana, S.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Meng, Z.

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

Z. Meng and V. V. Yakovlev, “Precise determination of Brillouin scattering spectrum using a virtually imaged phase array (VIPA) spectrometer and charge-coupled device (CCD) camera,” Appl. Spectrosc. 70(8), 1356–1363 (2016).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Morresi, A.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Niu, Q.

K. Liang, J. Xu, P. Zhang, Y. Wang, Q. Niu, L. Peng, and B. Zhou, “Temperature dependence of the Rayleigh Brillouin spectrum linewidth in air and nitrogen,” Sensors (Basel) 17(7), 1503 (2017).
[Crossref] [PubMed]

Palombo, F.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Paolantoni, M.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Paterson, C.

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 61102 (2015).
[Crossref]

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 5–8 (2013).
[Crossref]

Peng, L.

K. Liang, J. Xu, P. Zhang, Y. Wang, Q. Niu, L. Peng, and B. Zhou, “Temperature dependence of the Rayleigh Brillouin spectrum linewidth in air and nitrogen,” Sensors (Basel) 17(7), 1503 (2017).
[Crossref] [PubMed]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Remer, I.

Rheims, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1999).
[Crossref]

Roscini, L.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Sánchez Guajardo, E. R.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Sánchez-Ortiga, E.

C. Song, E. Sánchez-Ortiga, M. R. Foreman, and P. Török, “Optimisation of a single stage VIPA spectrometers (Conference Presentation),” Proc. SPIE 10067, 100670N (2017).

Sandercock, J. R.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

J. R. Sandercock, “Brillouin scattering study of SbSI using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
[Crossref]

Sassi, P.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Scarcelli, G.

K. Berghaus, S. H. Yun, and G. Scarcelli, “High speed sub-GHz spectrometer for Brillouin scattering analysis,” J. Vis. Exp. 106, 53468 (2016).

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction VIPA-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108, 1–9 (2016).
[Crossref]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Scarponi, F.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Scully, M. O.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Shao, P.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction VIPA-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108, 1–9 (2016).
[Crossref]

Shaw, J. M.

W. L. Johnson, S. A. Kim, Z. N. Utegulov, J. M. Shaw, and B. T. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113(33), 14651–14657 (2009).
[Crossref]

Shirasaki, M.

M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually imaged phased array with graded reflectivity,” IEEE Photonics Technol. Lett. 11(11), 1443–1445 (1999).
[Crossref]

Song, C.

C. Song, E. Sánchez-Ortiga, M. R. Foreman, and P. Török, “Optimisation of a single stage VIPA spectrometers (Conference Presentation),” Proc. SPIE 10067, 100670N (2017).

Steelman, Z.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Steelman, Z. A.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Thompson, J. V.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Török, P.

C. Song, E. Sánchez-Ortiga, M. R. Foreman, and P. Török, “Optimisation of a single stage VIPA spectrometers (Conference Presentation),” Proc. SPIE 10067, 100670N (2017).

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 61102 (2015).
[Crossref]

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 5–8 (2013).
[Crossref]

Traverso, A. J.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Troyanova-Wood, M.

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

Troyanova-Wood, M. A.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Urbanelli, L.

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Utegulov, Z. N.

W. L. Johnson, S. A. Kim, Z. N. Utegulov, J. M. Shaw, and B. T. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113(33), 14651–14657 (2009).
[Crossref]

Wang, Y.

K. Liang, J. Xu, P. Zhang, Y. Wang, Q. Niu, L. Peng, and B. Zhou, “Temperature dependence of the Rayleigh Brillouin spectrum linewidth in air and nitrogen,” Sensors (Basel) 17(7), 1503 (2017).
[Crossref] [PubMed]

Weiner, A. M.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

Werner, S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Willard, G. W.

G. W. Willard, “Ultrasonic absorption and velocity measurements in numerous liquids,” J. Acoust. Soc. Am. 12(3), 438–448 (1941).
[Crossref]

Wriedt, T.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1999).
[Crossref]

Xiao, S.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

Xu, J.

K. Liang, J. Xu, P. Zhang, Y. Wang, Q. Niu, L. Peng, and B. Zhou, “Temperature dependence of the Rayleigh Brillouin spectrum linewidth in air and nitrogen,” Sensors (Basel) 17(7), 1503 (2017).
[Crossref] [PubMed]

Yakovlev, V. V.

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Z. Meng and V. V. Yakovlev, “Precise determination of Brillouin scattering spectrum using a virtually imaged phase array (VIPA) spectrometer and charge-coupled device (CCD) camera,” Appl. Spectrosc. 70(8), 1356–1363 (2016).
[Crossref] [PubMed]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Yarger, J. L.

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 20–23 (2005).
[Crossref]

Yun, S. H.

K. Berghaus, S. H. Yun, and G. Scarcelli, “High speed sub-GHz spectrometer for Brillouin scattering analysis,” J. Vis. Exp. 106, 53468 (2016).

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction VIPA-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108, 1–9 (2016).
[Crossref]

K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Zhang, J.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction VIPA-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108, 1–9 (2016).
[Crossref]

K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
[Crossref] [PubMed]

Zhang, L.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Zhang, P.

K. Liang, J. Xu, P. Zhang, Y. Wang, Q. Niu, L. Peng, and B. Zhou, “Temperature dependence of the Rayleigh Brillouin spectrum linewidth in air and nitrogen,” Sensors (Basel) 17(7), 1503 (2017).
[Crossref] [PubMed]

Zhou, B.

K. Liang, J. Xu, P. Zhang, Y. Wang, Q. Niu, L. Peng, and B. Zhou, “Temperature dependence of the Rayleigh Brillouin spectrum linewidth in air and nitrogen,” Sensors (Basel) 17(7), 1503 (2017).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Anal. Chem. (1)

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

K. J. Koski and J. L. Yarger, “Brillouin imaging,” Appl. Phys. Lett. 87(6), 20–23 (2005).
[Crossref]

G. Antonacci, M. R. Foreman, C. Paterson, and P. Török, “Spectral broadening in Brillouin imaging,” Appl. Phys. Lett. 103(22), 5–8 (2013).
[Crossref]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 61102 (2015).
[Crossref]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction VIPA-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108, 1–9 (2016).
[Crossref]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually imaged phased array with graded reflectivity,” IEEE Photonics Technol. Lett. 11(11), 1443–1445 (1999).
[Crossref]

J. Acoust. Soc. Am. (1)

G. W. Willard, “Ultrasonic absorption and velocity measurements in numerous liquids,” J. Acoust. Soc. Am. 12(3), 438–448 (1941).
[Crossref]

J. Biophotonics (2)

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

M. Troyanova-Wood, C. Gobbell, Z. Meng, A. A. Gashev, and V. V. Yakovlev, “Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet-induced obese rats,” J. Biophotonics 10(12), 1694–1702 (2017).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

W. L. Johnson, S. A. Kim, Z. N. Utegulov, J. M. Shaw, and B. T. Draine, “Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering,” J. Phys. Chem. C 113(33), 14651–14657 (2009).
[Crossref]

J. Vis. Exp. (1)

K. Berghaus, S. H. Yun, and G. Scarcelli, “High speed sub-GHz spectrometer for Brillouin scattering analysis,” J. Vis. Exp. 106, 53468 (2016).

Meas. Sci. Technol. (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1999).
[Crossref]

Nat. Methods (1)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

J. R. Sandercock, “Brillouin scattering study of SbSI using a double-passed, stabilised scanning interferometer,” Opt. Commun. 2(2), 73–76 (1970).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. X (1)

F. Scarponi, S. Mattana, S. Corezzi, S. Caponi, L. Comez, P. Sassi, A. Morresi, M. Paolantoni, L. Urbanelli, C. Emiliani, L. Roscini, L. Corte, G. Cardinali, F. Palombo, J. R. Sandercock, and D. Fioretto, “High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy,” Phys. Rev. X 7(3), 031015 (2017).
[Crossref]

Phys. Status Solidi (1)

A. J. Martin and W. Brenig, “Model for Brillouin scattering in amorphous solids,” Phys. Status Solidi 64(1), 163–172 (1974).
[Crossref]

Proc. SPIE (1)

C. Song, E. Sánchez-Ortiga, M. R. Foreman, and P. Török, “Optimisation of a single stage VIPA spectrometers (Conference Presentation),” Proc. SPIE 10067, 100670N (2017).

Sci. Signal. (1)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Liang, J. Xu, P. Zhang, Y. Wang, Q. Niu, L. Peng, and B. Zhou, “Temperature dependence of the Rayleigh Brillouin spectrum linewidth in air and nitrogen,” Sensors (Basel) 17(7), 1503 (2017).
[Crossref] [PubMed]

Other (3)

Z. N. Utegulov, J. M. Shaw, B. T. Draine, S. A. Kim, and W. L. Johnson, “Surface-plasmon enhancement of Brillouin light scattering from gold-nanodisk arrays on glass,” in M. I. Stockman, ed. (2007), p. 66411M.

M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (CRC Press, 1989).

M. J. Weber, Handbook of Optical Materials, 10th ed. (CRC press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic diagram of VIPA-based Brillouin spectrometer (left - red) and a scanning 6-pass TFPI-based micro-Brillouin spectrometer (right - green). Abbreviations: (P)BS – (polarizing) beamsplitter; L – lens, 85RB – single-isotope rubidium-filled cell; CL – cylindrical lens, PR – prism, FP – Fabry-Perot cavity, M – mirror.
Fig. 2
Fig. 2 Raw spectra and the Lorentzian fit examples for TFPI spectra – left, and VIPA spectra – right. Acquisition times for these examples are at 0.512 s and 0.1 s, respectively. The x-axis is provided as pixel number, as this is a spectrum from raw data, and not post-fit analysis.
Fig. 3
Fig. 3 Standard deviations for Brillouin shifts (A) and linewidths (B) from 532nm TFPI – with black squares (Torus) and red circles (Verdi) for the two laser sources, blue triangles for VIPA-based system; 780 nm VIPA-based Brillouin shifts (C) and linewidths (D) – with black squares for original ECDL laser and red diamonds for new iTLA-based laser setup.

Metrics