Abstract

We combined confocal surface plasmon coupled emission microscopy (C-SPCEM) together with fluorescence emission difference (FED) technique to pursuit super-resolution fluorescent image. Solid or hollow point spread function (PSF) for C-SPCEM is achieved with radially-polarized or circularly-polarized illumination. The reason why PSF can be manipulated by the polarization of illumination light is corroborated by the interaction of fluorescent emitter with vector focal field on the plasmonic substrate. After introduction of FED technique, PSF for C-SPECM can shrunk to around λ/4 in full-width half-maximum, which is unambiguously beyond Rayleigh’s diffraction limit. The super-resolution capability of C-SPCEM with FED technique is experimentally demonstrated by imaging aggregated fluorescent beads with 150 nm in diameter.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence emission difference with defocused surface plasmon-coupled emission microscopy

Baoliang Ge, Liangfu Zhu, Cuifang Kuang, Douguo Zhang, Yue Fang, Ye Ma, and Xu Liu
Opt. Express 23(25) 32561-32572 (2015)

Resolution-enhanced surface plasmon-coupled emission microscopy

Baoliang Ge, Ye Ma, Cuifang Kuang, Douguo Zhang, Kimani C. Toussaint, Shangting You, and Xu Liu
Opt. Express 23(10) 13159-13171 (2015)

Eliminating deformations in fluorescence emission difference microscopy

Shangting You, Cuifang Kuang, Zihao Rong, and Xu Liu
Opt. Express 22(21) 26375-26385 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).
  3. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
    [Crossref] [PubMed]
  4. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
    [Crossref] [PubMed]
  5. S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface Plasmon-Coupled Emission: What Can Directional Fluorescence Bring to the Analytical Sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
    [Crossref] [PubMed]
  6. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of Surface Plasmon Coupled Emission to Study of Muscle,” Biophys. J. 91(7), 2626–2635 (2006).
    [Crossref] [PubMed]
  7. W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
    [Crossref] [PubMed]
  8. W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett. 35(4), 517–519 (2010).
    [Crossref] [PubMed]
  9. Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
    [Crossref] [PubMed]
  10. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3(1), 1441 (2013).
    [Crossref] [PubMed]
  11. S. Segawa, Y. Kozawa, and S. Sato, “Demonstration of subtraction imaging in confocal microscopy with vector beams,” Opt. Lett. 39(15), 4529–4532 (2014).
    [Crossref] [PubMed]
  12. S. Segawa, Y. Kozawa, and S. Sato, “Resolution enhancement of confocal microscopy by subtraction method with vector beams,” Opt. Lett. 39(11), 3118–3121 (2014).
    [Crossref] [PubMed]
  13. B. Ge, Y. Ma, C. Kuang, D. Zhang, K. C. Toussaint, S. You, and X. Liu, “Resolution-enhanced surface plasmon-coupled emission microscopy,” Opt. Express 23(10), 13159–13171 (2015).
    [Crossref] [PubMed]
  14. B. Ge, L. Zhu, C. Kuang, D. Zhang, Y. Fang, Y. Ma, and X. Liu, “Fluorescence emission difference with defocused surface plasmon-coupled emission microscopy,” Opt. Express 23(25), 32561–32572 (2015).
    [Crossref] [PubMed]
  15. L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
    [Crossref] [PubMed]
  16. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]
  17. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [Crossref] [PubMed]
  18. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
    [Crossref]
  19. P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45(36), 9246–9252 (2006).
    [Crossref] [PubMed]
  20. S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf.) 63(1), 23–32 (2014).
    [Crossref] [PubMed]
  21. G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of field microscopy for rapid volumetric two-photon imaging,” Opt. Express 21(8), 10095–10104 (2013).
    [Crossref] [PubMed]
  22. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
    [Crossref]
  23. J. B. Mueller and F. Capasso, “Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface,” Phys. Rev. B 88(12), 121410 (2013).
    [Crossref]
  24. M. Gu and C. Sheppard, “Confocal fluorescent microscopy with a finite-sized circular detector,” J. Opt. Soc. Am. A 9(1), 151–153 (1992).
    [Crossref]
  25. X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
    [Crossref] [PubMed]
  26. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
    [Crossref] [PubMed]
  27. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4(8), 236–238 (1979).
    [Crossref] [PubMed]
  28. K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C. J. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6(1), 25816 (2016).
    [Crossref] [PubMed]
  29. C.-Y. Lin, K.-C. Chiu, C.-Y. Chang, S.-H. Chang, T.-F. Guo, and S.-J. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18(12), 12807–12817 (2010).
    [Crossref] [PubMed]
  30. K.-C. Chiu, C.-Y. Lin, C. Y. Dong, and S.-J. Chen, “Optimizing silver film for surface plasmon-coupled emission induced two-photon excited fluorescence imaging,” Opt. Express 19(6), 5386–5396 (2011).
    [Crossref] [PubMed]
  31. N. Wang and T. Kobayashi, “Subtraction threshold for an isotropic fluorescence emission difference microscope,” J. Opt. 17(12), 125302 (2015).
    [Crossref]

2016 (1)

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C. J. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6(1), 25816 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (4)

S. Segawa, Y. Kozawa, and S. Sato, “Demonstration of subtraction imaging in confocal microscopy with vector beams,” Opt. Lett. 39(15), 4529–4532 (2014).
[Crossref] [PubMed]

S. Segawa, Y. Kozawa, and S. Sato, “Resolution enhancement of confocal microscopy by subtraction method with vector beams,” Opt. Lett. 39(11), 3118–3121 (2014).
[Crossref] [PubMed]

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf.) 63(1), 23–32 (2014).
[Crossref] [PubMed]

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

2013 (5)

J. B. Mueller and F. Capasso, “Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface,” Phys. Rev. B 88(12), 121410 (2013).
[Crossref]

G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of field microscopy for rapid volumetric two-photon imaging,” Opt. Express 21(8), 10095–10104 (2013).
[Crossref] [PubMed]

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3(1), 1441 (2013).
[Crossref] [PubMed]

2012 (1)

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface Plasmon-Coupled Emission: What Can Directional Fluorescence Bring to the Analytical Sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

2007 (1)

2006 (3)

2005 (1)

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

2004 (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

2001 (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

1992 (1)

1979 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Antipov, A.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C. J. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6(1), 25816 (2016).
[Crossref] [PubMed]

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bianchini, P.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C. J. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6(1), 25816 (2016).
[Crossref] [PubMed]

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Borejdo, J.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of Surface Plasmon Coupled Emission to Study of Muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

Cai, W.-P.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface Plasmon-Coupled Emission: What Can Directional Fluorescence Bring to the Analytical Sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

Calander, N.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of Surface Plasmon Coupled Emission to Study of Muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

Cao, S.-H.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface Plasmon-Coupled Emission: What Can Directional Fluorescence Bring to the Analytical Sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

Capasso, F.

J. B. Mueller and F. Capasso, “Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface,” Phys. Rev. B 88(12), 121410 (2013).
[Crossref]

Chang, C.-Y.

Chang, S.-H.

Chen, S.-J.

Chen, Y.

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

Chiu, K.-C.

Chung, E.

De Koninck, Y.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dholakia, K.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Diaspro, A.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C. J. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6(1), 25816 (2016).
[Crossref] [PubMed]

Dong, C. Y.

Du, L.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

Dufour, P.

Eagen, C. F.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Fang, H.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

Fang, Y.

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Ge, B.

Ge, J.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3(1), 1441 (2013).
[Crossref] [PubMed]

Gryczynski, I.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of Surface Plasmon Coupled Emission to Study of Muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Gryczynski, Z.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of Surface Plasmon Coupled Emission to Study of Muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Gu, M.

Gu, Z.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3(1), 1441 (2013).
[Crossref] [PubMed]

Guo, T.-F.

Han, L.

Hao, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3(1), 1441 (2013).
[Crossref] [PubMed]

Hibi, T.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf.) 63(1), 23–32 (2014).
[Crossref] [PubMed]

Horanai, H.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf.) 63(1), 23–32 (2014).
[Crossref] [PubMed]

Ipponjima, S.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf.) 63(1), 23–32 (2014).
[Crossref] [PubMed]

Kim, Y.-H.

Kobayashi, T.

N. Wang and T. Kobayashi, “Subtraction threshold for an isotropic fluorescence emission difference microscope,” J. Opt. 17(12), 125302 (2015).
[Crossref]

Korobchevskaya, K.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C. J. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6(1), 25816 (2016).
[Crossref] [PubMed]

Kozawa, Y.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf.) 63(1), 23–32 (2014).
[Crossref] [PubMed]

S. Segawa, Y. Kozawa, and S. Sato, “Resolution enhancement of confocal microscopy by subtraction method with vector beams,” Opt. Lett. 39(11), 3118–3121 (2014).
[Crossref] [PubMed]

S. Segawa, Y. Kozawa, and S. Sato, “Demonstration of subtraction imaging in confocal microscopy with vector beams,” Opt. Lett. 39(15), 4529–4532 (2014).
[Crossref] [PubMed]

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Kuang, C.

Lakowicz, J. R.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Lei, D. Y.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

Li, H.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3(1), 1441 (2013).
[Crossref] [PubMed]

Li, S.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3(1), 1441 (2013).
[Crossref] [PubMed]

Li, Y.-Q.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface Plasmon-Coupled Emission: What Can Directional Fluorescence Bring to the Analytical Sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

Li, Z.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C. J. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6(1), 25816 (2016).
[Crossref] [PubMed]

Lin, C.-Y.

Liu, Q.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface Plasmon-Coupled Emission: What Can Directional Fluorescence Bring to the Analytical Sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

Liu, W.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3(1), 1441 (2013).
[Crossref] [PubMed]

Liu, X.

Ma, Y.

Maier, S. A.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

Malicka, J.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

McCarthy, N.

Min, C.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

Ming, H.

Mueller, J. B.

J. B. Mueller and F. Capasso, “Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface,” Phys. Rev. B 88(12), 121410 (2013).
[Crossref]

Muthu, P.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of Surface Plasmon Coupled Emission to Study of Muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

Nemoto, T.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf.) 63(1), 23–32 (2014).
[Crossref] [PubMed]

Peres, C.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C. J. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6(1), 25816 (2016).
[Crossref] [PubMed]

Piché, M.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Rui, G.

Sato, S.

S. Segawa, Y. Kozawa, and S. Sato, “Demonstration of subtraction imaging in confocal microscopy with vector beams,” Opt. Lett. 39(15), 4529–4532 (2014).
[Crossref] [PubMed]

S. Segawa, Y. Kozawa, and S. Sato, “Resolution enhancement of confocal microscopy by subtraction method with vector beams,” Opt. Lett. 39(11), 3118–3121 (2014).
[Crossref] [PubMed]

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf.) 63(1), 23–32 (2014).
[Crossref] [PubMed]

Segawa, S.

Sheppard, C.

Sheppard, C. J.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C. J. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6(1), 25816 (2016).
[Crossref] [PubMed]

W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett. 35(4), 517–519 (2010).
[Crossref] [PubMed]

Sheppard, C. J. R.

Sibbett, W.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

So, P. T.

So, P. T. C.

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Stoyanova, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Tang, D.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

Tang, W. T.

Thériault, G.

Toussaint, K. C.

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Wang, N.

N. Wang and T. Kobayashi, “Subtraction threshold for an isotropic fluorescence emission difference microscope,” J. Opt. 17(12), 125302 (2015).
[Crossref]

Wang, P.

Wang, Q.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3(1), 1441 (2013).
[Crossref] [PubMed]

Weber, W. H.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Xie, X.

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

Yang, K.

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

Yokoyama, H.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf.) 63(1), 23–32 (2014).
[Crossref] [PubMed]

You, S.

Yuan, G.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

Yuan, X.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

Zhan, Q.

Zhang, D.

Zhang, X.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

Zhou, J.

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

Zhu, L.

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface Plasmon-Coupled Emission: What Can Directional Fluorescence Bring to the Analytical Sciences?” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 5(1), 317–336 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Biophys. J. (1)

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of Surface Plasmon Coupled Emission to Study of Muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

J. Opt. (1)

N. Wang and T. Kobayashi, “Subtraction threshold for an isotropic fluorescence emission difference microscope,” J. Opt. 17(12), 125302 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

Microscopy (Oxf.) (1)

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf.) 63(1), 23–32 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. B (1)

J. B. Mueller and F. Capasso, “Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface,” Phys. Rev. B 88(12), 121410 (2013).
[Crossref]

Phys. Rev. Lett. (2)

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[Crossref] [PubMed]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Sci. Rep. (3)

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3(1), 3064 (2013).
[Crossref] [PubMed]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3(1), 1441 (2013).
[Crossref] [PubMed]

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C. J. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6(1), 25816 (2016).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Calculated magnitude of the transmission coefficient versus incident angles for p-polarized light incident on the dielectric–metal interface. The surface plasmon resonance condition is satisfied at θsp = 45.8°. Measured intensity distribution at the back focal plane of the objective lens after reflection with RP beam (b) and CP beam (c). The dark rings correspond to the surface plasmon resonance excitation.
Fig. 2
Fig. 2 The electric field intensity on the focal plane for RP illumination. (a) The transverse component; (b) The longitudinal component; (c) The total field. (d) The intensity profiles of different field components.
Fig. 3
Fig. 3 The electric field intensity on the focal plane for CP illumination. (a) The transverse component; (b) The longitudinal component; (c) The total field. (d) The intensity profiles of different field components.
Fig. 4
Fig. 4 (a) An oscillating electric dipole is situated on the z axis at a distance d from a metal/dielectric interface in the x, y plane. The far-field patterns emitted by an out-of-plane and an in-plane dipole are plotted in Fig. 4(b) and 4(c), respectively.
Fig. 5
Fig. 5 Calculated PSF for C-SPCEM according to Eq. (10). The illumination light is (a) radially polarized and (b) circularly polarized respectively.
Fig. 6
Fig. 6 (a) The subtracted PSF for C-SPCEM excited by RP and CP beams. (b) Intensity profiles of different PSFs. The black line corresponds to PSFc-SP for RP beam. The red line corresponds to PSFc-SP for CP beam. The blue line corresponds to PSFc-SP of FED microscopy with γ=0.25.
Fig. 7
Fig. 7 (a) Schematic diagram of the experimental setup, (b) LP beam converted into RP by RPC and (c) LP beam converted into CP by QWP.
Fig. 8
Fig. 8 Images of a 150 nm fluorescent bead with confocal aperture diameter of 100 µm. (a) and (b) are RP and CP illuminations, respectively. (c) is the subtracted result of (a) and (b). (d) The intensity profiles of (a), (b) and (c). (e) The statistical FWHM for PSFc-sp excited by RP beam and for FED. Scale bar: 500 nm.
Fig. 9
Fig. 9 Images of two FPSs aggregate together obtained by C-SCPEM with RP illumination (a) and with FED technique with γ = 0.2 (b). Two different sets of normalized intensity profiles along lines indicated by white arrows are shown in (a) and by yellow arrows are shown in (b). The black lines and blue lines represent the normalized intensity profiles obtained by C-SPCEM with RP illumination and with FED technique, respectively. Scale bar: 1µm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E r (r,φ,z)=2A 0 θ max P(θ) t p (θ)sinθcosθ J 1 ( k 1 rsinθ)exp[iz ( k 2 2 k 1 2 sin 2 θ) 1/2 ] dθ
E z (r,φ,z)=i2A 0 θ max P(θ) t p (θ) sin 2 θ J 0 ( k 1 rsinθ)exp[iz ( k 2 2 k 1 2 sin 2 θ) 1/2 ] dθ
E r (r,φ,z)=2AP( θ sp ) t p ( θ sp )sin( θ sp )cos( θ sp ) J 1 ( k 1 rsin θ sp )exp[iz ( k 2 2 k 1 2 sin 2 θ sp ) 1/2 ]
E z (r,φ,z)=i2AP( θ sp ) t p ( θ sp )( sin 2 ( θ sp ) J 0 ( k 1 rsin θ sp )exp[iz ( k 2 2 k 1 2 sin 2 θ sp ) 1/2 ]
E(r,φ,z)=iA{ [ I 0 +cos(2φ) I 2 +isin(2φ) I 2 ] e x +[sin(2φ) I 2 +i( I 0 cos(2φ) I 2 ] e y +(2icosφ I 1 2sinφ I 1 ) e z }
I 0 = 0 θ max P(θ) t p (θ)sinθcosθ J 0 ( k 1 rsinθ) e iz k 2 2 k 1 2 sin θ 2 dθ
I 1 = 0 θ max P(θ) t p (θ) sin 2 θ J 1 ( k 1 rsinθ) e iz k 2 2 k 1 2 sin θ 2 dθ
I 2 = 0 θ max P(θ) t p (θ)sinθ(cosθ) J 2 ( k 1 rsinθ) e iz k 2 2 k 1 2 sin θ 2 dθ
PS F c (x,y)=PS F ill (x,y)×[PS F det (x,y)p(x,y)]
PS F cSP (x,y)= | E ill out | 2 + | E ill in | 2
I FED = I solid γ× I donut
PS F cSP FED =PS F cSP RP γ×PS F cSP CP

Metrics