Abstract

Divided aperture confocal microscopy (DACM) provides an improved imaging depth, imaging contrast, and working distance at the expense of spatial resolution. Here, we present a new method-divided aperture correlation-differential confocal microscopy (DACDCM) to improve the DACM resolution and the focusing capability, without changing the DACM configuration. DACDCM divides the DACM image spot into two round regions symmetrical about the optical axis. Then the light intensity signals received simultaneously from two round regions by a charge-coupled device (CCD) are processed by correlation manipulation and differential subtraction to improve the DACM spatial resolution and axial focusing capability, respectively. Theoretical analysis and preliminary experiments indicate that, for the excitation wavelength of λ = 632.8 nm, numerical aperture NA = 0.8, and normalized offset vM = 3.2 of the two regions, the DACDCM resolution is improved by 32.5% and 43.1% in the x and z directions, simultaneously, compared with that of the DACM. The axial focusing resolution used for the sample surface profile imaging was also significantly improved to 2 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional super-resolution correlation-differential confocal microscopy with nanometer axial focusing accuracy

Weiqian Zhao, Yingbin Sun, Yun Wang, Lirong Qiu, Rongjun Shao, and Han Cui
Opt. Express 26(12) 15759-15768 (2018)

Laser divided-aperture differential confocal sensing technology with improved axial resolution

Weiqian Zhao, Chao Liu, and Lirong Qiu
Opt. Express 20(23) 25979-25989 (2012)

Divided-aperture technique for fluorescence confocal microscopy through scattering media

Wei Gong, Ke Si, and Colin J. R. Sheppard
Appl. Opt. 49(4) 752-757 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
    [Crossref] [PubMed]
  2. J. G. White and W. B. Amos, “Confocal microscopy comes of age,” Nature 328(6126), 183–184 (1987).
    [Crossref]
  3. A. E. Dixon, S. Danaskinos, and M. R. Atkinson, “A scanning confocal microscope for transmission and reflecting imaging,” Nature 351(6327), 551–553 (1991).
    [Crossref]
  4. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
    [Crossref] [PubMed]
  5. G. Scarcelli and S. H. Yun, “Confocal Brillouin Microscopy for Three-dimensional Mechanical Imaging,” Nat. Photonics 2(1), 39–43 (2007).
    [Crossref] [PubMed]
  6. S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).
  7. U. Birk, J. v. Hase, and C. Cremer, “Super-resolution microscopy with very large working distance by means of distributed aperture illumination,” Sci. Rep. 7, 1–7 (2017).
  8. C. J. Koester, “Scanning mirror microscope with optical sectioning characteristics: applications in ophthalmology,” Appl. Opt. 19(11), 1749–1757 (1980).
    [Crossref] [PubMed]
  9. C. J. Sheppard and D. K. Hamilton, “High resolution stereoscopic imaging,” Appl. Opt. 22(6), 886–887 (1983).
    [Crossref] [PubMed]
  10. C. J. R. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16(21), 17031–17038 (2008).
    [Crossref] [PubMed]
  11. W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt. 48(20), 3998–4002 (2009).
    [Crossref] [PubMed]
  12. W. Gong, K. Si, and C. J. Sheppard, “Divided-aperture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49(4), 752–757 (2010).
    [Crossref] [PubMed]
  13. C. J. Koester, S. M. Khanna, H. D. Rosskothen, R. B. Tackaberry, and M. Ulfendahl, “Confocal slit divided-aperture microscope: applications in ear research,” Appl. Opt. 33(4), 702–708 (1994).
    [Crossref] [PubMed]
  14. J. F. Aguilar, “Confocal profiling of grooves and ridges with circular section using the divided aperture technique,” Rev. Mex. Fis. 51, 420–425 (2005).
  15. S. Shen, B. Zhu, Y. Zheng, W. Gong, and K. Si, “Stripe-shaped apertures in confocal microscopy,” Appl. Opt. 55(27), 7613–7618 (2016).
    [Crossref] [PubMed]
  16. Y. Ma, C. Kuang, W. Gong, L. Xue, Y. Zheng, Y. Wang, K. Si, and X. Liu, “Improvements of axial resolution in confocal microscopy with fan-shaped apertures,” Appl. Opt. 54(6), 1354–1362 (2015).
    [Crossref] [PubMed]
  17. E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun. 111(5-6), 536–547 (1994).
    [Crossref]
  18. S. Lindek, C. Cremer, and E. H. K. Stelzer, “Confocal theta fluorescence microscopy with annular apertures,” Appl. Opt. 35(1), 126–130 (1996).
    [Crossref] [PubMed]
  19. P. J. Dwyer, C. A. DiMarzio, J. M. Zavislan, W. J. Fox, and M. Rajadhyaksha, “Confocal reflectance theta line scanning microscope for imaging human skin in vivo,” Opt. Lett. 31(7), 942–944 (2006).
    [Crossref] [PubMed]
  20. P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal theta line-scanning microscope for imaging human tissues,” Appl. Opt. 46(10), 1843–1851 (2007).
    [Crossref] [PubMed]
  21. T. D. Wang, M. J. Mandella, C. H. Contag, G. S. Kino, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett. 28(6), 414–416 (2003).
    [Crossref] [PubMed]
  22. L. K. Wong, M. J. Mandella, G. S. Kino, and T. D. Wang, “Improved rejection of multiply scattered photons in confocal microscopy using dual-axes architecture,” Opt. Lett. 32(12), 1674–1676 (2007).
    [Crossref] [PubMed]
  23. H. Ra, W. Piyawattanametha, M. J. Mandella, P. L. Hsiung, J. Hardy, T. D. Wang, C. H. Contag, G. S. Kino, and O. Solgaard, “Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope,” Opt. Express 16(10), 7224–7232 (2008).
    [Crossref] [PubMed]
  24. S. Y. Leigh and J. T. C. Liu, “Multi-color miniature dual-axis confocal microscope for point-of-care pathology,” Opt. Lett. 37(12), 2430–2432 (2012).
    [Crossref] [PubMed]
  25. D. Wang, Y. Chen, Y. Wang, and J. T. C. Liu, “Comparison of line-scanned and point-scanned dual-axis confocal microscope performance,” Opt. Lett. 38(24), 5280–5283 (2013).
    [Crossref] [PubMed]
  26. D. Wang, D. Meza, Y. Wang, L. Gao, and J. T. C. Liu, “Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution,” Opt. Lett. 39(18), 5431–5434 (2014).
    [Crossref] [PubMed]
  27. D. S. Simon and A. V. Sergienko, “The correlation confocal microscope,” Opt. Express 18(10), 9765–9779 (2010).
    [Crossref] [PubMed]
  28. O. Schwartz and D. Oron, “Improved resolution in fluorescence microscopy using quantum correlations,” Phys. Rev. A 85(3), 033812 (2012).
    [Crossref]
  29. K. Si, W. Gong, and C. J. R. Sheppard, “Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils,” Appl. Opt. 48(5), 810–817 (2009).
    [Crossref] [PubMed]
  30. C. J. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16(21), 17031–17038 (2008).
    [Crossref] [PubMed]
  31. W. Gong, K. Si, and C. J. R. Sheppard, “Improvements in confocal microscopy imaging using serrated divided apertures,” Opt. Commun. 282(19), 3846–3849 (2009).
    [Crossref]
  32. W. Gong, K. Si, and C. J. R. Sheppard, “Divided-aperture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49(4), 752–757 (2010).
    [Crossref] [PubMed]

2017 (1)

U. Birk, J. v. Hase, and C. Cremer, “Super-resolution microscopy with very large working distance by means of distributed aperture illumination,” Sci. Rep. 7, 1–7 (2017).

2016 (1)

2015 (2)

Y. Ma, C. Kuang, W. Gong, L. Xue, Y. Zheng, Y. Wang, K. Si, and X. Liu, “Improvements of axial resolution in confocal microscopy with fan-shaped apertures,” Appl. Opt. 54(6), 1354–1362 (2015).
[Crossref] [PubMed]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

2014 (1)

2013 (1)

2012 (2)

S. Y. Leigh and J. T. C. Liu, “Multi-color miniature dual-axis confocal microscope for point-of-care pathology,” Opt. Lett. 37(12), 2430–2432 (2012).
[Crossref] [PubMed]

O. Schwartz and D. Oron, “Improved resolution in fluorescence microscopy using quantum correlations,” Phys. Rev. A 85(3), 033812 (2012).
[Crossref]

2010 (3)

2009 (3)

2008 (3)

2007 (3)

2006 (1)

2005 (1)

J. F. Aguilar, “Confocal profiling of grooves and ridges with circular section using the divided aperture technique,” Rev. Mex. Fis. 51, 420–425 (2005).

2003 (1)

1996 (1)

1994 (2)

E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun. 111(5-6), 536–547 (1994).
[Crossref]

C. J. Koester, S. M. Khanna, H. D. Rosskothen, R. B. Tackaberry, and M. Ulfendahl, “Confocal slit divided-aperture microscope: applications in ear research,” Appl. Opt. 33(4), 702–708 (1994).
[Crossref] [PubMed]

1991 (1)

A. E. Dixon, S. Danaskinos, and M. R. Atkinson, “A scanning confocal microscope for transmission and reflecting imaging,” Nature 351(6327), 551–553 (1991).
[Crossref]

1990 (1)

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

1987 (1)

J. G. White and W. B. Amos, “Confocal microscopy comes of age,” Nature 328(6126), 183–184 (1987).
[Crossref]

1985 (1)

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

1983 (1)

1980 (1)

Aguilar, J. F.

J. F. Aguilar, “Confocal profiling of grooves and ridges with circular section using the divided aperture technique,” Rev. Mex. Fis. 51, 420–425 (2005).

Amos, W. B.

J. G. White and W. B. Amos, “Confocal microscopy comes of age,” Nature 328(6126), 183–184 (1987).
[Crossref]

Arndt-Jovin, D. J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Atkinson, M. R.

A. E. Dixon, S. Danaskinos, and M. R. Atkinson, “A scanning confocal microscope for transmission and reflecting imaging,” Nature 351(6327), 551–553 (1991).
[Crossref]

Bates, M.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Bewersdorf, J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Birk, U.

U. Birk, J. v. Hase, and C. Cremer, “Super-resolution microscopy with very large working distance by means of distributed aperture illumination,” Sci. Rep. 7, 1–7 (2017).

Booth, M. J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Brakenhoff, G. J.

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

Castello, M.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Chen, Y.

Cognet, L.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Contag, C. H.

Cordes, T.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Cremer, C.

U. Birk, J. v. Hase, and C. Cremer, “Super-resolution microscopy with very large working distance by means of distributed aperture illumination,” Sci. Rep. 7, 1–7 (2017).

S. Lindek, C. Cremer, and E. H. K. Stelzer, “Confocal theta fluorescence microscopy with annular apertures,” Appl. Opt. 35(1), 126–130 (1996).
[Crossref] [PubMed]

Danaskinos, S.

A. E. Dixon, S. Danaskinos, and M. R. Atkinson, “A scanning confocal microscope for transmission and reflecting imaging,” Nature 351(6327), 551–553 (1991).
[Crossref]

Davis, S. J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

de Mul, F. F. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Diaspro, A.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

DiMarzio, C. A.

Dixon, A. E.

A. E. Dixon, S. Danaskinos, and M. R. Atkinson, “A scanning confocal microscope for transmission and reflecting imaging,” Nature 351(6327), 551–553 (1991).
[Crossref]

Dwyer, P. J.

Eggeling, C.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Ewers, H.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Fox, W. J.

Gao, L.

Gong, W.

S. Shen, B. Zhu, Y. Zheng, W. Gong, and K. Si, “Stripe-shaped apertures in confocal microscopy,” Appl. Opt. 55(27), 7613–7618 (2016).
[Crossref] [PubMed]

Y. Ma, C. Kuang, W. Gong, L. Xue, Y. Zheng, Y. Wang, K. Si, and X. Liu, “Improvements of axial resolution in confocal microscopy with fan-shaped apertures,” Appl. Opt. 54(6), 1354–1362 (2015).
[Crossref] [PubMed]

W. Gong, K. Si, and C. J. Sheppard, “Divided-aperture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49(4), 752–757 (2010).
[Crossref] [PubMed]

W. Gong, K. Si, and C. J. R. Sheppard, “Divided-aperture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49(4), 752–757 (2010).
[Crossref] [PubMed]

K. Si, W. Gong, and C. J. R. Sheppard, “Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils,” Appl. Opt. 48(5), 810–817 (2009).
[Crossref] [PubMed]

W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt. 48(20), 3998–4002 (2009).
[Crossref] [PubMed]

W. Gong, K. Si, and C. J. R. Sheppard, “Improvements in confocal microscopy imaging using serrated divided apertures,” Opt. Commun. 282(19), 3846–3849 (2009).
[Crossref]

C. J. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16(21), 17031–17038 (2008).
[Crossref] [PubMed]

C. J. R. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16(21), 17031–17038 (2008).
[Crossref] [PubMed]

Greve, J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Hamilton, D. K.

Hardy, J.

Hase, J. v.

U. Birk, J. v. Hase, and C. Cremer, “Super-resolution microscopy with very large working distance by means of distributed aperture illumination,” Sci. Rep. 7, 1–7 (2017).

Heintzmann, R.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Hell, S. W.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Hess, H.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Honigmann, A.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Hsiung, P. L.

Jakobs, S.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Jovin, T. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Khanna, S. M.

Kino, G. S.

Klenerman, D.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Koester, C. J.

Kuang, C.

Leigh, S. Y.

Lindek, S.

S. Lindek, C. Cremer, and E. H. K. Stelzer, “Confocal theta fluorescence microscopy with annular apertures,” Appl. Opt. 35(1), 126–130 (1996).
[Crossref] [PubMed]

E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun. 111(5-6), 536–547 (1994).
[Crossref]

Linnemans, W. A.

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

Liu, J. T. C.

Liu, X.

Lounis, B.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Ma, Y.

Mandella, M. J.

Meza, D.

Nanninga, N.

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

Oron, D.

O. Schwartz and D. Oron, “Improved resolution in fluorescence microscopy using quantum correlations,” Phys. Rev. A 85(3), 033812 (2012).
[Crossref]

Otto, C.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Piyawattanametha, W.

Puppels, G. J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Ra, H.

Rajadhyaksha, M.

Robert-Nicoud, M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Rosskothen, H. D.

Sahl, S. J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Scarcelli, G.

G. Scarcelli and S. H. Yun, “Confocal Brillouin Microscopy for Three-dimensional Mechanical Imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Schwartz, O.

O. Schwartz and D. Oron, “Improved resolution in fluorescence microscopy using quantum correlations,” Phys. Rev. A 85(3), 033812 (2012).
[Crossref]

Sergienko, A. V.

Shen, S.

Sheppard, C. J.

Sheppard, C. J. R.

Shtengel, G.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Si, K.

S. Shen, B. Zhu, Y. Zheng, W. Gong, and K. Si, “Stripe-shaped apertures in confocal microscopy,” Appl. Opt. 55(27), 7613–7618 (2016).
[Crossref] [PubMed]

Y. Ma, C. Kuang, W. Gong, L. Xue, Y. Zheng, Y. Wang, K. Si, and X. Liu, “Improvements of axial resolution in confocal microscopy with fan-shaped apertures,” Appl. Opt. 54(6), 1354–1362 (2015).
[Crossref] [PubMed]

W. Gong, K. Si, and C. J. R. Sheppard, “Divided-aperture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49(4), 752–757 (2010).
[Crossref] [PubMed]

W. Gong, K. Si, and C. J. Sheppard, “Divided-aperture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49(4), 752–757 (2010).
[Crossref] [PubMed]

K. Si, W. Gong, and C. J. R. Sheppard, “Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils,” Appl. Opt. 48(5), 810–817 (2009).
[Crossref] [PubMed]

W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt. 48(20), 3998–4002 (2009).
[Crossref] [PubMed]

W. Gong, K. Si, and C. J. R. Sheppard, “Improvements in confocal microscopy imaging using serrated divided apertures,” Opt. Commun. 282(19), 3846–3849 (2009).
[Crossref]

C. J. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16(21), 17031–17038 (2008).
[Crossref] [PubMed]

C. J. R. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16(21), 17031–17038 (2008).
[Crossref] [PubMed]

Simon, D. S.

Solgaard, O.

Stelzer, E. H. K.

S. Lindek, C. Cremer, and E. H. K. Stelzer, “Confocal theta fluorescence microscopy with annular apertures,” Appl. Opt. 35(1), 126–130 (1996).
[Crossref] [PubMed]

E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun. 111(5-6), 536–547 (1994).
[Crossref]

Tackaberry, R. B.

Testa, I.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Tinnefeld, P.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Ulfendahl, M.

van der Voort, H. T. M.

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

van Spronsen, E. A.

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

Vicidomini, G.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Wang, D.

Wang, T. D.

Wang, Y.

White, J. G.

J. G. White and W. B. Amos, “Confocal microscopy comes of age,” Nature 328(6126), 183–184 (1987).
[Crossref]

Willig, K. I.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Wong, L. K.

Xue, L.

Yun, S. H.

G. Scarcelli and S. H. Yun, “Confocal Brillouin Microscopy for Three-dimensional Mechanical Imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Zavislan, J. M.

Zheng, Y.

Zhu, B.

Zhuang, X.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Appl. Opt. (11)

C. J. Koester, “Scanning mirror microscope with optical sectioning characteristics: applications in ophthalmology,” Appl. Opt. 19(11), 1749–1757 (1980).
[Crossref] [PubMed]

C. J. Sheppard and D. K. Hamilton, “High resolution stereoscopic imaging,” Appl. Opt. 22(6), 886–887 (1983).
[Crossref] [PubMed]

W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt. 48(20), 3998–4002 (2009).
[Crossref] [PubMed]

W. Gong, K. Si, and C. J. Sheppard, “Divided-aperture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49(4), 752–757 (2010).
[Crossref] [PubMed]

C. J. Koester, S. M. Khanna, H. D. Rosskothen, R. B. Tackaberry, and M. Ulfendahl, “Confocal slit divided-aperture microscope: applications in ear research,” Appl. Opt. 33(4), 702–708 (1994).
[Crossref] [PubMed]

S. Shen, B. Zhu, Y. Zheng, W. Gong, and K. Si, “Stripe-shaped apertures in confocal microscopy,” Appl. Opt. 55(27), 7613–7618 (2016).
[Crossref] [PubMed]

Y. Ma, C. Kuang, W. Gong, L. Xue, Y. Zheng, Y. Wang, K. Si, and X. Liu, “Improvements of axial resolution in confocal microscopy with fan-shaped apertures,” Appl. Opt. 54(6), 1354–1362 (2015).
[Crossref] [PubMed]

S. Lindek, C. Cremer, and E. H. K. Stelzer, “Confocal theta fluorescence microscopy with annular apertures,” Appl. Opt. 35(1), 126–130 (1996).
[Crossref] [PubMed]

P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal theta line-scanning microscope for imaging human tissues,” Appl. Opt. 46(10), 1843–1851 (2007).
[Crossref] [PubMed]

K. Si, W. Gong, and C. J. R. Sheppard, “Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils,” Appl. Opt. 48(5), 810–817 (2009).
[Crossref] [PubMed]

W. Gong, K. Si, and C. J. R. Sheppard, “Divided-aperture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49(4), 752–757 (2010).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D Appl. Phys. 48, 443001 (2015).

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin Microscopy for Three-dimensional Mechanical Imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Nature (4)

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, W. A. Linnemans, and N. Nanninga, “Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy,” Nature 317(6039), 748–749 (1985).
[Crossref] [PubMed]

J. G. White and W. B. Amos, “Confocal microscopy comes of age,” Nature 328(6126), 183–184 (1987).
[Crossref]

A. E. Dixon, S. Danaskinos, and M. R. Atkinson, “A scanning confocal microscope for transmission and reflecting imaging,” Nature 351(6327), 551–553 (1991).
[Crossref]

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[Crossref] [PubMed]

Opt. Commun. (2)

E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun. 111(5-6), 536–547 (1994).
[Crossref]

W. Gong, K. Si, and C. J. R. Sheppard, “Improvements in confocal microscopy imaging using serrated divided apertures,” Opt. Commun. 282(19), 3846–3849 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. A (1)

O. Schwartz and D. Oron, “Improved resolution in fluorescence microscopy using quantum correlations,” Phys. Rev. A 85(3), 033812 (2012).
[Crossref]

Rev. Mex. Fis. (1)

J. F. Aguilar, “Confocal profiling of grooves and ridges with circular section using the divided aperture technique,” Rev. Mex. Fis. 51, 420–425 (2005).

Sci. Rep. (1)

U. Birk, J. v. Hase, and C. Cremer, “Super-resolution microscopy with very large working distance by means of distributed aperture illumination,” Sci. Rep. 7, 1–7 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of a DACDCM. (a) The DACM image principle. (b)-(d) the respective Airy spot pattern received by the CCD when the sample S is on the out-of- focal plane S2, focal plane S0, and out-of- focal plane S1. (e) Three intensity curves IA(x,y,z,-vM), IC(x,y,z), and IB(x,y,z, + vM). (f) The correlation intensity detection curve IR(x,y,z,vM). (g) The differential intensity detection curve ID(x,y,z,vM). Where (x, y, z) are the DACM system coordinates, (xi, yi, zi) are the coordinates in the illumination space, and (xc, yc, zc) are the coordinates in the detection space.
Fig. 2
Fig. 2 Simulations of the DACDCM and DACM intensity response properties. (a) Simulated intensity response of DACDCM and DACM in the x-direction. (b) Simulated normalized intensity response of DACDCM and DACM in the x-direction. (c) Simulated axial intensity response of DACDCM and DACM in the z-direction obtained through the simulation. (d) Simulated normalized axial intensity response of DACDCM and DACM in the z-direction. (e) Simulated axial focusing curves of DACDCM in the differential subtraction mode and DACM in the z-direction. (f) Simulated normalized axial focusing curves of DACDCM in the differential subtraction mode and DACM in the z-direction.
Fig. 3
Fig. 3 Measured intensity response and axial focusing curves of the DACDCM and DACM. (a) Measured intensity response of DACDCM and DACM in the x-direction. (b) Measured normalized intensity response of DACDCM and DACM in the x-direction. (c) Measured axial intensity response of DACDCM and DACM in the z-direction. (d) Measured normalized axial intensity response of DACDCM and DACM in the z-direction. (e) Measured axial focusing curves of DACDCM in the differential subtraction mode and DACM in the z-direction. (f) Measured axial resolution curve of DACDCM in the differential subtraction mode.
Fig. 4
Fig. 4 3D profile of the step measured by AFM, DACM, and DACDCM. (a) Profile of the step with 100-nm height measured by AFM. (b) Profile of the step with 20-nm height measured by AFM. (c) Profile of the step with 100-nm height measured by DACM. (d) Profile of the step with 20-nm height measured by DACM. (e) Profile of the step with 100-nm height measured by DACDCM. (f) Profile of the step with 20-nm height measured by DACDCM. In which, the color bar represents the measured height and it is able to adaptive height change.

Tables (2)

Tables Icon

Table 1 Theoretical resolution enhancement.

Tables Icon

Table 2 Measured resolution enhancement.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I( x,y,z, v M )= | h i ( x,y,z )× h c ( x,y,z, v M ) | 2 = | 2π J 1 ( v i ) v i | 2 × | CA P c (ξ,η)exp{ i[ ( v cx + v M )ξ+ v cy η ] } dξdη | 2
{ v ix = 2π λ sin[ arctan( rR f o ) ][ xcos[ arctan( lR f o ) ]zsin[ arctan( lR f o ) ] ] v iy = 2π λ sin[ arctan( rR f o ) ]y u i = 8π λ sin 2 [ 1 2 arctan( rR f o ) ]xsin[ arctan( lR f o ) ]+zcos[ arctan( lR f o ) ]
{ v cx = 2π λ sin[ arctan( rR f o ) ][ xcos[ arctan( lR f o ) ]+zsin[ arctan( lR f o ) ] ] v cy = 2π λ sin[ arctan( rR f o ) ]y u c = 8π λ sin 2 [ 1 2 arctan( rR f o ) ][ xsin[ arctan( lR f o ) ]+zcos[ arctan( lR f o ) ] ]
I R ( x,y,z, v M )= I A ( x,y,z, v M )× I B ( x,y,z,+ v M )
I D ( x,y,z, v M )= I B ( x,y,z,+ v M ) I A ( x,y,z, v M )

Metrics