Abstract

The Knill-Laflamme-Milburn (KLM) states have been proved to be a useful resource for quantum information processing [Nature 409, 46 (2001)]. For atomic KLM states, several schemes have been put forward based on the time-dependent unitary dynamics, but the dissipative generation of these states has not been reported. This work discusses the possibility for creating different forms of bipartite KLM states in neutral atom system, where the spontaneous emission of excited Rydberg states, combined with the Rydberg antiblockade mechanism, is actively exploited to engineer a steady KLM state from an arbitrary initial state. The numerical simulation of the master equation signifies that a fidelity above 99% is available with the current experimental parameters.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of two-atom Knill–Laflamme–Milburn states with cavity quantum electrodynamics

Liu-Yong Cheng, Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon
J. Opt. Soc. Am. B 29(7) 1584-1588 (2012)

Multiphoton Knill-Laflamme-Milburn states generated by nonlinear optics

Cai-Peng Shen, Xiao-Fei Gu, Qi Guo, Xiao-Yu Zhu, Shi-Lei Su, and Erjun Liang
J. Opt. Soc. Am. B 35(4) 694-701 (2018)

Rydberg-atom-based controlled arbitrary-phase gate and its applications

Xiao-Yu Zhu, Erjun Liang, and Shi-Lei Su
J. Opt. Soc. Am. B 36(7) 1937-1944 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [Crossref]
  2. E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
    [Crossref]
  3. P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
    [Crossref] [PubMed]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [Crossref] [PubMed]
  5. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [Crossref] [PubMed]
  6. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  7. N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
    [Crossref]
  8. J. Modławska and A. Grudka, “Nonmaximally entangled states can be better for multiple linear optical teleportation,” Phys. Rev. Lett. 100, 110503 (2008).
    [Crossref]
  9. J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
    [Crossref] [PubMed]
  10. J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
    [Crossref]
  11. A. Grudka and J. Modławska, “Optimal state in the knill-laflamme-milburn scheme of linear optical teleportation,” Phys. Rev. A 77, 014301 (2008).
    [Crossref]
  12. K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
    [Crossref]
  13. K. Lemr, “Preparation of knill-aflamme-ilburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
    [Crossref]
  14. S. Popescu, “Knill-laflamme-milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
    [Crossref] [PubMed]
  15. L.-Y. Cheng, H.-F. Wang, S. Zhang, and K.-H. Yeon, “Generation of two-atom knill–laflamme–milburn states with cavity quantum electrodynamics,” J. Opt. Soc. Am. B 29, 1584–1588 (2012).
    [Crossref]
  16. Q.-G. Liu, Q.-C. Wu, and X. Ji, “Preparation of knill–lafamme–milburn states based on superconducting qutrits,” J. Opt. Soc. Am. B 31, 672–677 (2014).
    [Crossref]
  17. B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Preparation of entangled states by quantum markov processes,” Phys. Rev. A 78, 042307 (2008).
    [Crossref]
  18. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878–883 (2008).
    [Crossref]
  19. F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
    [Crossref]
  20. G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
    [Crossref]
  21. M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
    [Crossref] [PubMed]
  22. X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
    [Crossref]
  23. M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
    [Crossref] [PubMed]
  24. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
    [Crossref] [PubMed]
  25. M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
    [Crossref]
  26. A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
    [Crossref]
  27. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
    [Crossref] [PubMed]
  28. C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-poissonian statistics of rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
    [Crossref] [PubMed]
  29. O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–75 (2013).
    [Crossref] [PubMed]
  30. C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98, 023002 (2007).
    [Crossref] [PubMed]
  31. A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
    [Crossref] [PubMed]
  32. X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, “Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission,” Phys. Rev. A 89, 012319 (2014).
    [Crossref]
  33. X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, “Ground-state blockade of rydberg atoms and application in entanglement generation,” Phys. Rev. A 96, 012328 (2017).
    [Crossref]
  34. S.-L. Su, Y. Gao, E. Liang, and S. Zhang, “Fast rydberg antiblockade regime and its applications in quantum logic gates,” Phys. Rev. A 95, 022319 (2017).
    [Crossref]
  35. J. Song, C. Li, Z.-J. Zhang, Y.-Y. Jiang, and Y. Xia, “Implementing stabilizer codes in noisy environments,” Phys. Rev. A 96, 032336 (2017).
    [Crossref]
  36. T. G. Walker and M. Saffman, “Consequences of zeeman degeneracy for the van der waals blockade between rydberg atoms,” Phys. Rev. A 77, 032723 (2008).
    [Crossref]
  37. M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
    [Crossref]
  38. G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
    [Crossref]
  39. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
    [Crossref] [PubMed]
  40. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
    [Crossref] [PubMed]
  41. X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via rydberg blockade,” Phys. Rev. A 82, 030306 (2010).
    [Crossref]
  42. X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, and A.-C. Ji, “Rydberg polaritons in a cavity: A superradiant solid,” Phys. Rev. Lett. 110, 090402 (2013).
    [Crossref] [PubMed]
  43. A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Usmani, A. Ourjoumtsev, and P. Grangier, “Quantum statistics of light transmitted through an intracavity rydberg medium,” New J. Phys. 16, 043020 (2014).
    [Crossref]
  44. G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, “Strongly correlated gases of rydberg-dressed atoms: Quantum and classical dynamics,” Phys. Rev. Lett. 104, 223002 (2010).
    [Crossref] [PubMed]

2017 (4)

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
[Crossref]

X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, “Ground-state blockade of rydberg atoms and application in entanglement generation,” Phys. Rev. A 96, 012328 (2017).
[Crossref]

S.-L. Su, Y. Gao, E. Liang, and S. Zhang, “Fast rydberg antiblockade regime and its applications in quantum logic gates,” Phys. Rev. A 95, 022319 (2017).
[Crossref]

J. Song, C. Li, Z.-J. Zhang, Y.-Y. Jiang, and Y. Xia, “Implementing stabilizer codes in noisy environments,” Phys. Rev. A 96, 032336 (2017).
[Crossref]

2014 (3)

Q.-G. Liu, Q.-C. Wu, and X. Ji, “Preparation of knill–lafamme–milburn states based on superconducting qutrits,” J. Opt. Soc. Am. B 31, 672–677 (2014).
[Crossref]

X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, “Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission,” Phys. Rev. A 89, 012319 (2014).
[Crossref]

A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Usmani, A. Ourjoumtsev, and P. Grangier, “Quantum statistics of light transmitted through an intracavity rydberg medium,” New J. Phys. 16, 043020 (2014).
[Crossref]

2013 (4)

X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, and A.-C. Ji, “Rydberg polaritons in a cavity: A superradiant solid,” Phys. Rev. Lett. 110, 090402 (2013).
[Crossref] [PubMed]

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-poissonian statistics of rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–75 (2013).
[Crossref] [PubMed]

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

K. Lemr, “Preparation of knill-aflamme-ilburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
[Crossref]

2010 (6)

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, “Strongly correlated gases of rydberg-dressed atoms: Quantum and classical dynamics,” Phys. Rev. Lett. 104, 223002 (2010).
[Crossref] [PubMed]

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via rydberg blockade,” Phys. Rev. A 82, 030306 (2010).
[Crossref]

2009 (3)

F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
[Crossref]

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
[Crossref]

2008 (6)

T. G. Walker and M. Saffman, “Consequences of zeeman degeneracy for the van der waals blockade between rydberg atoms,” Phys. Rev. A 77, 032723 (2008).
[Crossref]

B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Preparation of entangled states by quantum markov processes,” Phys. Rev. A 78, 042307 (2008).
[Crossref]

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878–883 (2008).
[Crossref]

A. Grudka and J. Modławska, “Optimal state in the knill-laflamme-milburn scheme of linear optical teleportation,” Phys. Rev. A 77, 014301 (2008).
[Crossref]

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[Crossref]

J. Modławska and A. Grudka, “Nonmaximally entangled states can be better for multiple linear optical teleportation,” Phys. Rev. Lett. 100, 110503 (2008).
[Crossref]

2007 (2)

S. Popescu, “Knill-laflamme-milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
[Crossref] [PubMed]

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98, 023002 (2007).
[Crossref] [PubMed]

2004 (1)

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[Crossref]

2003 (1)

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

2002 (2)

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
[Crossref]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

2000 (2)

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

1999 (1)

N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[Crossref]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

1992 (1)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

1935 (2)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Ates, C.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98, 023002 (2007).
[Crossref] [PubMed]

Beige, A.

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

Bimbard, E.

A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Usmani, A. Ourjoumtsev, and P. Grangier, “Quantum statistics of light transmitted through an intracavity rydberg medium,” New J. Phys. 16, 043020 (2014).
[Crossref]

Boddeda, R.

A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Usmani, A. Ourjoumtsev, and P. Grangier, “Quantum statistics of light transmitted through an intracavity rydberg medium,” New J. Phys. 16, 043020 (2014).
[Crossref]

Boninsegni, M.

G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, “Strongly correlated gases of rydberg-dressed atoms: Quantum and classical dynamics,” Phys. Rev. Lett. 104, 223002 (2010).
[Crossref] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Brion, E.

A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Usmani, A. Ourjoumtsev, and P. Grangier, “Quantum statistics of light transmitted through an intracavity rydberg medium,” New J. Phys. 16, 043020 (2014).
[Crossref]

Browaeys, A.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
[Crossref]

Buchler, H. P.

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878–883 (2008).
[Crossref]

Büchler, H. P.

B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Preparation of entangled states by quantum markov processes,” Phys. Rev. A 78, 042307 (2008).
[Crossref]

Calsamiglia, J.

N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[Crossref]

Carr, A. W.

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

Cheng, L.-Y.

Chotia, A.

A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
[Crossref]

Cirac, J. I.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

Comparat, D.

A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
[Crossref]

Cote, R.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

Côté, R.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Diehl, S.

B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Preparation of entangled states by quantum markov processes,” Phys. Rev. A 78, 042307 (2008).
[Crossref]

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878–883 (2008).
[Crossref]

Donegan, M. M.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[Crossref]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

Duan, L. M.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

Eggert, S.

X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, and A.-C. Ji, “Rydberg polaritons in a cavity: A superradiant solid,” Phys. Rev. Lett. 110, 090402 (2013).
[Crossref] [PubMed]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Evellin, C.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Evers, J.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-poissonian statistics of rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Firstenberg, O.

O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–75 (2013).
[Crossref] [PubMed]

Fitch, M. J.

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

Fiurášek, J.

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[Crossref]

Fleischhauer, M.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

Franson, J. D.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[Crossref]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

Gaetan, A.

A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
[Crossref]

Gaëtan, A.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Gao, Y.

S.-L. Su, Y. Gao, E. Liang, and S. Zhang, “Fast rydberg antiblockade regime and its applications in quantum logic gates,” Phys. Rev. A 95, 022319 (2017).
[Crossref]

Gärttner, M.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-poissonian statistics of rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Gill, A. T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via rydberg blockade,” Phys. Rev. A 82, 030306 (2010).
[Crossref]

Gorshkov, A. V.

O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–75 (2013).
[Crossref] [PubMed]

Grangier, P.

A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Usmani, A. Ourjoumtsev, and P. Grangier, “Quantum statistics of light transmitted through an intracavity rydberg medium,” New J. Phys. 16, 043020 (2014).
[Crossref]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
[Crossref]

Grankin, A.

A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Usmani, A. Ourjoumtsev, and P. Grangier, “Quantum statistics of light transmitted through an intracavity rydberg medium,” New J. Phys. 16, 043020 (2014).
[Crossref]

Grudka, A.

J. Modławska and A. Grudka, “Nonmaximally entangled states can be better for multiple linear optical teleportation,” Phys. Rev. Lett. 100, 110503 (2008).
[Crossref]

A. Grudka and J. Modławska, “Optimal state in the knill-laflamme-milburn scheme of linear optical teleportation,” Phys. Rev. A 77, 014301 (2008).
[Crossref]

Günter, G.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-poissonian statistics of rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Henage, T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Hofmann, C. S.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-poissonian statistics of rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Ignacio Cirac, J.

F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
[Crossref]

Isenhower, L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via rydberg blockade,” Phys. Rev. A 82, 030306 (2010).
[Crossref]

Jacobs, B. C.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[Crossref]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

Jaksch, D.

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

Ji, A.-C.

X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, and A.-C. Ji, “Rydberg polaritons in a cavity: A superradiant solid,” Phys. Rev. Lett. 110, 090402 (2013).
[Crossref] [PubMed]

Ji, X.

Ji, Y. Q.

X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, “Ground-state blockade of rydberg atoms and application in entanglement generation,” Phys. Rev. A 96, 012328 (2017).
[Crossref]

Jiang, Y.-Y.

J. Song, C. Li, Z.-J. Zhang, Y.-Y. Jiang, and Y. Xia, “Implementing stabilizer codes in noisy environments,” Phys. Rev. A 96, 032336 (2017).
[Crossref]

Johnson, T. A.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Kantian, A.

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878–883 (2008).
[Crossref]

B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Preparation of entangled states by quantum markov processes,” Phys. Rev. A 78, 042307 (2008).
[Crossref]

Kastoryano, M. J.

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Kraus, B.

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878–883 (2008).
[Crossref]

B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Preparation of entangled states by quantum markov processes,” Phys. Rev. A 78, 042307 (2008).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Lemr, K.

K. Lemr, “Preparation of knill-aflamme-ilburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
[Crossref]

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[Crossref]

Lesanovsky, I.

G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, “Strongly correlated gases of rydberg-dressed atoms: Quantum and classical dynamics,” Phys. Rev. Lett. 104, 223002 (2010).
[Crossref] [PubMed]

Li, C.

J. Song, C. Li, Z.-J. Zhang, Y.-Y. Jiang, and Y. Xia, “Implementing stabilizer codes in noisy environments,” Phys. Rev. A 96, 032336 (2017).
[Crossref]

Li, D. X.

X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, “Ground-state blockade of rydberg atoms and application in entanglement generation,” Phys. Rev. A 96, 012328 (2017).
[Crossref]

Liang, E.

S.-L. Su, Y. Gao, E. Liang, and S. Zhang, “Fast rydberg antiblockade regime and its applications in quantum logic gates,” Phys. Rev. A 95, 022319 (2017).
[Crossref]

Liang, Q.-Y.

O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–75 (2013).
[Crossref] [PubMed]

Liu, Q.-G.

Liu, W.-M.

X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, and A.-C. Ji, “Rydberg polaritons in a cavity: A superradiant solid,” Phys. Rev. Lett. 110, 090402 (2013).
[Crossref] [PubMed]

Lukin, M. D.

O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–75 (2013).
[Crossref] [PubMed]

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

Lütkenhaus, N.

N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[Crossref]

Micheli, A.

G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, “Strongly correlated gases of rydberg-dressed atoms: Quantum and classical dynamics,” Phys. Rev. Lett. 104, 223002 (2010).
[Crossref] [PubMed]

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878–883 (2008).
[Crossref]

B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Preparation of entangled states by quantum markov processes,” Phys. Rev. A 78, 042307 (2008).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Miroshnychenko, Y.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
[Crossref]

Modlawska, J.

J. Modławska and A. Grudka, “Nonmaximally entangled states can be better for multiple linear optical teleportation,” Phys. Rev. Lett. 100, 110503 (2008).
[Crossref]

A. Grudka and J. Modławska, “Optimal state in the knill-laflamme-milburn scheme of linear optical teleportation,” Phys. Rev. A 77, 014301 (2008).
[Crossref]

Mølmer, K.

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]

Oh, C. H.

X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, “Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission,” Phys. Rev. A 89, 012319 (2014).
[Crossref]

Ourjoumtsev, A.

A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Usmani, A. Ourjoumtsev, and P. Grangier, “Quantum statistics of light transmitted through an intracavity rydberg medium,” New J. Phys. 16, 043020 (2014).
[Crossref]

Pattard, T.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98, 023002 (2007).
[Crossref] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Peyronel, T.

O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–75 (2013).
[Crossref] [PubMed]

Pillet, P.

A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
[Crossref]

Pittman, T. B.

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Pohl, T.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98, 023002 (2007).
[Crossref] [PubMed]

Popescu, S.

S. Popescu, “Knill-laflamme-milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
[Crossref] [PubMed]

Preskill, J.

P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

Pupillo, G.

G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, “Strongly correlated gases of rydberg-dressed atoms: Quantum and classical dynamics,” Phys. Rev. Lett. 104, 223002 (2010).
[Crossref] [PubMed]

Reiter, F.

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

Robert-de Saint-Vincent, M.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-poissonian statistics of rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Rolston, S. L.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Rost, J. M.

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98, 023002 (2007).
[Crossref] [PubMed]

Saffman, M.

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via rydberg blockade,” Phys. Rev. A 82, 030306 (2010).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

T. G. Walker and M. Saffman, “Consequences of zeeman degeneracy for the van der waals blockade between rydberg atoms,” Phys. Rev. A 77, 032723 (2008).
[Crossref]

Schempp, H.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-poissonian statistics of rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Schrödinger, E.

E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Shao, X. Q.

X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, “Ground-state blockade of rydberg atoms and application in entanglement generation,” Phys. Rev. A 96, 012328 (2017).
[Crossref]

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
[Crossref]

X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, “Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission,” Phys. Rev. A 89, 012319 (2014).
[Crossref]

Shor, P. W.

P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

Song, J.

J. Song, C. Li, Z.-J. Zhang, Y.-Y. Jiang, and Y. Xia, “Implementing stabilizer codes in noisy environments,” Phys. Rev. A 96, 032336 (2017).
[Crossref]

Sørensen, A. S.

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

Su, S.-L.

S.-L. Su, Y. Gao, E. Liang, and S. Zhang, “Fast rydberg antiblockade regime and its applications in quantum logic gates,” Phys. Rev. A 95, 022319 (2017).
[Crossref]

Sun, Q.

X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, and A.-C. Ji, “Rydberg polaritons in a cavity: A superradiant solid,” Phys. Rev. Lett. 110, 090402 (2013).
[Crossref] [PubMed]

Suominen, K.-A.

N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[Crossref]

Urban, E.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Usmani, I.

A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Usmani, A. Ourjoumtsev, and P. Grangier, “Quantum statistics of light transmitted through an intracavity rydberg medium,” New J. Phys. 16, 043020 (2014).
[Crossref]

Vacanti, G.

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

Verstraete, F.

F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
[Crossref]

Vidal, G.

G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
[Crossref]

Viteau, M.

A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
[Crossref]

Vuletic, V.

O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–75 (2013).
[Crossref] [PubMed]

Walker, T. G.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via rydberg blockade,” Phys. Rev. A 82, 030306 (2010).
[Crossref]

T. G. Walker and M. Saffman, “Consequences of zeeman degeneracy for the van der waals blockade between rydberg atoms,” Phys. Rev. A 77, 032723 (2008).
[Crossref]

Wang, H.-F.

Weidemüller, M.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-poissonian statistics of rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Wen, Y.-C.

X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, and A.-C. Ji, “Rydberg polaritons in a cavity: A superradiant solid,” Phys. Rev. Lett. 110, 090402 (2013).
[Crossref] [PubMed]

Werner, R. F.

G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
[Crossref]

Whitlock, S.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-poissonian statistics of rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

Wilk, T.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
[Crossref]

Wolf, M. M.

F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
[Crossref]

Wolters, J.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Wu, J. H.

X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, “Ground-state blockade of rydberg atoms and application in entanglement generation,” Phys. Rev. A 96, 012328 (2017).
[Crossref]

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
[Crossref]

Wu, Q.-C.

Xia, Y.

J. Song, C. Li, Z.-J. Zhang, Y.-Y. Jiang, and Y. Xia, “Implementing stabilizer codes in noisy environments,” Phys. Rev. A 96, 032336 (2017).
[Crossref]

Yeon, K.-H.

Yi, X. X.

X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, “Ground-state blockade of rydberg atoms and application in entanglement generation,” Phys. Rev. A 96, 012328 (2017).
[Crossref]

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
[Crossref]

Zhang, S.

S.-L. Su, Y. Gao, E. Liang, and S. Zhang, “Fast rydberg antiblockade regime and its applications in quantum logic gates,” Phys. Rev. A 95, 022319 (2017).
[Crossref]

X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, “Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission,” Phys. Rev. A 89, 012319 (2014).
[Crossref]

L.-Y. Cheng, H.-F. Wang, S. Zhang, and K.-H. Yeon, “Generation of two-atom knill–laflamme–milburn states with cavity quantum electrodynamics,” J. Opt. Soc. Am. B 29, 1584–1588 (2012).
[Crossref]

Zhang, X. L.

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via rydberg blockade,” Phys. Rev. A 82, 030306 (2010).
[Crossref]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

Zhang, X.-F.

X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, and A.-C. Ji, “Rydberg polaritons in a cavity: A superradiant solid,” Phys. Rev. Lett. 110, 090402 (2013).
[Crossref] [PubMed]

Zhang, Z.-J.

J. Song, C. Li, Z.-J. Zhang, Y.-Y. Jiang, and Y. Xia, “Implementing stabilizer codes in noisy environments,” Phys. Rev. A 96, 032336 (2017).
[Crossref]

Zheng, T. Y.

X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, “Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission,” Phys. Rev. A 89, 012319 (2014).
[Crossref]

Zoller, P.

G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, “Strongly correlated gases of rydberg-dressed atoms: Quantum and classical dynamics,” Phys. Rev. Lett. 104, 223002 (2010).
[Crossref] [PubMed]

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878–883 (2008).
[Crossref]

B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Preparation of entangled states by quantum markov processes,” Phys. Rev. A 78, 042307 (2008).
[Crossref]

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

K. Lemr, “Preparation of knill-aflamme-ilburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
[Crossref]

Math. Proc. Cambridge Philos. Soc. (1)

E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Nat. Phys. (3)

S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler, and P. Zoller, “Quantum states and phases in driven open quantum systems with cold atoms,” Nat. Phys. 4, 878–883 (2008).
[Crossref]

F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009).
[Crossref]

A. Gaetan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009).
[Crossref]

Nature (2)

O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletic, “Attractive photons in a quantum nonlinear medium,” Nature 502, 71–75 (2013).
[Crossref] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

New J. Phys. (2)

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

A. Grankin, E. Brion, E. Bimbard, R. Boddeda, I. Usmani, A. Ourjoumtsev, and P. Grangier, “Quantum statistics of light transmitted through an intracavity rydberg medium,” New J. Phys. 16, 043020 (2014).
[Crossref]

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Phys. Rev. A (13)

B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, “Preparation of entangled states by quantum markov processes,” Phys. Rev. A 78, 042307 (2008).
[Crossref]

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
[Crossref]

G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
[Crossref]

X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, “Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission,” Phys. Rev. A 89, 012319 (2014).
[Crossref]

X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, “Ground-state blockade of rydberg atoms and application in entanglement generation,” Phys. Rev. A 96, 012328 (2017).
[Crossref]

S.-L. Su, Y. Gao, E. Liang, and S. Zhang, “Fast rydberg antiblockade regime and its applications in quantum logic gates,” Phys. Rev. A 95, 022319 (2017).
[Crossref]

J. Song, C. Li, Z.-J. Zhang, Y.-Y. Jiang, and Y. Xia, “Implementing stabilizer codes in noisy environments,” Phys. Rev. A 96, 032336 (2017).
[Crossref]

T. G. Walker and M. Saffman, “Consequences of zeeman degeneracy for the van der waals blockade between rydberg atoms,” Phys. Rev. A 77, 032723 (2008).
[Crossref]

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[Crossref]

A. Grudka and J. Modławska, “Optimal state in the knill-laflamme-milburn scheme of linear optical teleportation,” Phys. Rev. A 77, 014301 (2008).
[Crossref]

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[Crossref]

N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[Crossref]

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via rydberg blockade,” Phys. Rev. A 82, 030306 (2010).
[Crossref]

Phys. Rev. Lett. (17)

X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, and A.-C. Ji, “Rydberg polaritons in a cavity: A superradiant solid,” Phys. Rev. Lett. 110, 090402 (2013).
[Crossref] [PubMed]

G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, “Strongly correlated gases of rydberg-dressed atoms: Quantum and classical dynamics,” Phys. Rev. Lett. 104, 223002 (2010).
[Crossref] [PubMed]

J. Modławska and A. Grudka, “Nonmaximally entangled states can be better for multiple linear optical teleportation,” Phys. Rev. Lett. 100, 110503 (2008).
[Crossref]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

S. Popescu, “Knill-laflamme-milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
[Crossref] [PubMed]

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett. 98, 023002 (2007).
[Crossref] [PubMed]

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).
[Crossref] [PubMed]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[Crossref] [PubMed]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-not quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[Crossref] [PubMed]

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-poissonian statistics of rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Diagrammatic illustration of the dissipative scheme and the KLM state is | E 1 = ( | 00 + | 10 + | 11 ) / 3 . (b) The effective transitions of the reduced system.
Fig. 2
Fig. 2 (a) The evolutions of the negativity of system governed by the full master equation. (b) The evolution of the purity of system, Tr[ρ2(t)], governed by the full master equation. (c) and (d) show the populations of states |E1〉, |E2〉, |E3〉 and |E4〉 as functions of Ωt governed by the full and effective master equations, respectively. For all figures, the initial states are chosen arbitrarily as ρ0 = a|00〉〈00| + b|11〉〈11| + c|10〉〈10| + d|01〉〈01|, where a = 0.3, b = 0.15, c = 0.45, and d = 0.1. The relevant parameters: Δ = 70Ω, δ = 0.02Ω, and γ = 0.05Ω.
Fig. 3
Fig. 3 (a) The population of the KLM state |E1〉 as a function of Ωt with different detuning parameters Δ. The initial state is the same as that of Fig. 2. The relevant parameters are chosen as δ = 0.02Ω, and γ = 0.05Ω. (b) Contour plot (dashed lines) of the steady-state fidelity of the bipartite KLM state, where the fidelity is defined as F = Tr [ ρ E ρ ( t ) ρ E ] and we have set Δ = 50Ω.
Fig. 4
Fig. 4 (a) Scheme of the experimental setup. Two 87Rb atoms are driven by two laser beams, respectively. (b) Internal energy levels of the corresponding atoms.
Fig. 5
Fig. 5 The fidelity of the KLM state |E1〉 as a function of Ωt with different experimental parameters and δ = 0.02Ω. The initial states are all ρ0 = |00〉〈00|.
Fig. 6
Fig. 6 The fidelity of the general bipartite KLM state |t2〉 as a function of Ωt with different m. The relevant parameters are chosen as the experimental parameters (Δ, Ω, γ)/2π = (900, 20, 0.1)MHz and δ = 0.02Ω. The initial states are all in ρ0 = |00〉〈00|.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

| E 1 = ( | 00 + | 10 + | 11 ) / 3 .
H I = Ω e i Δ t ( | r 1 0 | + | r 2 1 | ) + j = 1 , 2 ω j e i δ t | 1 j 0 | + H . c . + U r r | r r r r | ,
H I = Ω ( | r 1 0 | + | r 2 1 | ) + ω ( | 1 1 0 | | 1 2 0 | ) + H . c . Δ ( | r 1 r | + | r 2 r | ) + δ ( | 1 1 1 | | 0 2 0 | ) + U r r | r r r r | .
ρ ˙ = i [ H I , ρ ] + i = 1 4 L i ρ L i 1 2 ( L i L i ρ + ρ L i L i ) .
H eff = 2 Ω 2 Δ | r r 01 | + ω ( | 00 11 | ) ( | 10 01 | ) + H . c . + δ ( | 11 11 | | 00 00 | ) + Ω 2 Δ ( | 0 1 0 | + | 1 2 1 | ) + ( U r r 2 Δ + 2 Ω 2 Δ ) | r r r r | .
H eff = Ω eff | r r 01 | + ω ( | 00 11 | ) ( 10 | 01 | ) + H . c . + δ ( | 11 11 | | 00 00 | ) ,
L eff 1 ( 2 ) = γ 2 | r 0 ( 1 ) r r | , L eff 3 ( 4 ) = γ 2 | 0 ( 1 ) r r r | ,
L eff 5 ( 6 ) = γ 2 | 0 ( 1 ) 0 r 0 | , L eff 7 ( 8 ) = γ 2 | 0 ( 1 ) 1 r 1 | ,
L eff 9 ( 10 ) = γ 2 | 00 ( 1 ) 0 r | , L eff 11 ( 12 ) = γ 2 | 10 ( 1 ) 1 r | .
ρ ˙ = i [ H eff , ρ ] + k = 1 12 L eff k ρ L eff k 1 2 ( L eff k L eff k ρ + ρ L eff k L eff k ) .
𝒩 ( ρ A , B ) = ρ A , B T A 1 2 ,
ρ A , B T A = Tr ρ A , B T A ρ A , B T A ,
| E 2 = 1 15 ( | 00 3 | 01 2 | 10 + | 11 ) ,
| E 3 = 1 5 ( θ + | 00 + | 01 | 10 θ | 11 ) ,
| E 4 = 1 5 ( θ | 00 | 01 + | 10 θ + | 11 ) ,
| E 1 = 1 2 + m 2 | 00 + m 2 + m 2 | 10 + 1 2 + m 2 | 11 ,
| E 2 = 1 ( 2 + m 2 ) ( 4 + m 2 ) [ m | 00 ( 2 + m 2 ) | 01 2 | 10 + m | 11 ] ,
| E 3 = 1 4 + m 2 ( θ + | 00 + | 01 | 10 θ | 11 ) ,
| E 4 = 1 4 + m 2 ( θ | 00 | 01 + | 10 θ + | 11 ) ,

Metrics