Abstract

The influences of dot material component, barrier material component, aspect ratio and carrier density on the refractive index changes of TE mode and TM mode of columnar quantum dot are analyzed, and a multiparameter adjustment method is proposed to realize low polarization dependence of refractive index change. Then the quantum dots with low polarization dependence of refractive index change (<1.5%) within C-band (1530 nm - 1565 nm) are designed, and it shows that quantum dots with different material parameters are anticipated to have similar characteristics of low polarization dependence.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical study of polarization insensitivity of carrier-induced refractive index change of multiple quantum well

Qingyuan Miao, Qunjie Zhou, Jun Cui, Ping-An He, and Dexiu Huang
Opt. Express 22(26) 31893-31898 (2014)

Physical model for high indium content InGaN/GaN self-assembled quantum dot ridge-waveguide lasers emitting at red wavelengths (λ ~ 630 nm)

Guan-Lin Su, Thomas Frost, Pallab Bhattacharya, and John M. Dallesasse
Opt. Express 23(10) 12850-12865 (2015)

Polarization characteristics of semipolar (112̄2) InGaN/GaN quantum well structures grown on relaxed InGaN buffer layers and comparison with experiment

Seoung-Hwan Park, Dhaneshwar Mishra, Y. Eugene Pak, K. Kang, Chang Yong Park, Seung-Hyun Yoo, Yong-Hee Cho, Mun-Bo Shim, and Sungjin Kim
Opt. Express 22(12) 14850-14858 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. M. El-Saeed, A. A. El-Aziz, H. A. Fayed, and M. H. Aly, “Optical logic gates based on semiconductor optical amplifier Mach–Zehnder interferometer: design and simulation,” Opt. Eng. 55(2), 025104 (2016).
    [Crossref]
  2. H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
    [Crossref]
  3. J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
    [Crossref]
  4. N. Ohata, T. Yamatoya, T. Saito, T. Miyahara, Y. Morita, E. Ishimura, A. Sugitatsu, and H. Aruga, “Input-power and polarization insensitive all-optical wavelength converter with monolithically integrated monitor PD and gain-controlled SOA,” J. Lightwave Technol. 33(1), 267–274 (2015).
    [Crossref]
  5. D. A. May-Arrioja, N. Bickel, and P. L. Wa, “A 1×3 optical switch by carrier induced beam-steering on InP,” Proc. SPIE 6572, 65720O (2007).
  6. S. Ravindran, A. Datta, K. Alameh, and Y. T. Lee, “GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change,” Opt. Express 20(14), 15610–15627 (2012).
    [Crossref] [PubMed]
  7. X. Yang and W. Wu, “Principle and applications of semiconductor optical amplifiers-based turbo-switches,” Front. Optoelectron. 9(3), 346–352 (2016).
  8. B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
    [Crossref]
  9. M. J. Connelly, “Theoretical calculations of the carrier induced refractive index change in tensile-strained InGaAsP for use in 1550 nm semiconductor optical amplifiers,” Appl. Phys. Lett. 93(18), 181111 (2008).
    [Crossref]
  10. M. J. Connelly, “Modeling of nonlinear polarization rotation in tensile-strained semiconductor optical amplifiers using Mueller matrices and carrier density induced refractive index change calculations,” Opt. Commun. 308(1), 70–73 (2013).
    [Crossref]
  11. J.-I. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1(2), 408–415 (1995).
    [Crossref]
  12. H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
    [Crossref]
  13. M. Röwe, P. Michler, J. Gutowski, V. Kümmler, A. Lell, and V. Härle, “Influence of the carrier density on the optical gain and refractive index change in InGaN laser structures,” Phys. Status Solidi, A Appl. Res. 200(1), 135–138 (2003).
    [Crossref]
  14. S. P. Hegarty, B. Corbett, J. G. Mclnerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41(7), 416–418 (2005).
    [Crossref]
  15. J. Andrzejewski, G. Sęk, E. O’Reilly, A. Fiore, and J. Misiewicz, “Eight-band k.p calculations of the composition contrast effect on the linear polarization properties of columnar quantum dots,” J. Appl. Phys. 107(7), 073509 (2010).
    [Crossref]
  16. N. Yasuoka, H. Ebe, K. Kawaguchi, M. Ekawa, S. Sekiguchi, K. Morito, O. Wada, M. Sugawara, and Y. Arakawa, “Polarization-insensitive quantum dot semiconductor optical amplifiers using strain-controlled columnar quantum dots,” J. Lightwave Technol. 30(1), 68–75 (2012).
    [Crossref]
  17. T. Kita, P. Jayavel, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, “Polarization controlled edge emission from columnar InAs/GaAs self‐assembled quantum dots,” Phys. Status Solidi, C Conf. Crit. Rev. 0(4), 1137–1140 (2003).
    [Crossref]
  18. S.-H. Park, D. Ahn, Y.-T. Lee, and S.-L. Chuang, “Electronic properties of InGaAs/GaAs strained coupled quantum dots modeled by eight-band k·p theory,” Jpn. J. Appl. Phys. 42(1), 144–149 (2003).
    [Crossref]
  19. M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
    [Crossref]
  20. S. B. Ardakani and H. Kaatuzian, “Theoretical estimation of optical absorption coefficient inside an InAs/InGaAs semiconductor quantum dot,” Proc. SPIE 8308, 83080L (2011).
    [Crossref]
  21. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
    [Crossref]
  22. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (John Wiley & Sonc, Inc., Hoboken, 2009).

2016 (2)

E. M. El-Saeed, A. A. El-Aziz, H. A. Fayed, and M. H. Aly, “Optical logic gates based on semiconductor optical amplifier Mach–Zehnder interferometer: design and simulation,” Opt. Eng. 55(2), 025104 (2016).
[Crossref]

X. Yang and W. Wu, “Principle and applications of semiconductor optical amplifiers-based turbo-switches,” Front. Optoelectron. 9(3), 346–352 (2016).

2015 (1)

2013 (1)

M. J. Connelly, “Modeling of nonlinear polarization rotation in tensile-strained semiconductor optical amplifiers using Mueller matrices and carrier density induced refractive index change calculations,” Opt. Commun. 308(1), 70–73 (2013).
[Crossref]

2012 (2)

2011 (1)

S. B. Ardakani and H. Kaatuzian, “Theoretical estimation of optical absorption coefficient inside an InAs/InGaAs semiconductor quantum dot,” Proc. SPIE 8308, 83080L (2011).
[Crossref]

2010 (1)

J. Andrzejewski, G. Sęk, E. O’Reilly, A. Fiore, and J. Misiewicz, “Eight-band k.p calculations of the composition contrast effect on the linear polarization properties of columnar quantum dots,” J. Appl. Phys. 107(7), 073509 (2010).
[Crossref]

2009 (1)

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

2008 (1)

M. J. Connelly, “Theoretical calculations of the carrier induced refractive index change in tensile-strained InGaAsP for use in 1550 nm semiconductor optical amplifiers,” Appl. Phys. Lett. 93(18), 181111 (2008).
[Crossref]

2007 (1)

D. A. May-Arrioja, N. Bickel, and P. L. Wa, “A 1×3 optical switch by carrier induced beam-steering on InP,” Proc. SPIE 6572, 65720O (2007).

2005 (1)

S. P. Hegarty, B. Corbett, J. G. Mclnerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41(7), 416–418 (2005).
[Crossref]

2004 (2)

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

2003 (3)

T. Kita, P. Jayavel, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, “Polarization controlled edge emission from columnar InAs/GaAs self‐assembled quantum dots,” Phys. Status Solidi, C Conf. Crit. Rev. 0(4), 1137–1140 (2003).
[Crossref]

S.-H. Park, D. Ahn, Y.-T. Lee, and S.-L. Chuang, “Electronic properties of InGaAs/GaAs strained coupled quantum dots modeled by eight-band k·p theory,” Jpn. J. Appl. Phys. 42(1), 144–149 (2003).
[Crossref]

M. Röwe, P. Michler, J. Gutowski, V. Kümmler, A. Lell, and V. Härle, “Influence of the carrier density on the optical gain and refractive index change in InGaN laser structures,” Phys. Status Solidi, A Appl. Res. 200(1), 135–138 (2003).
[Crossref]

1999 (1)

H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
[Crossref]

1995 (1)

J.-I. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1(2), 408–415 (1995).
[Crossref]

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

1986 (1)

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[Crossref]

Ahn, D.

S.-H. Park, D. Ahn, Y.-T. Lee, and S.-L. Chuang, “Electronic properties of InGaAs/GaAs strained coupled quantum dots modeled by eight-band k·p theory,” Jpn. J. Appl. Phys. 42(1), 144–149 (2003).
[Crossref]

Alameh, K.

Alamo, J. A. D.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Aly, M. H.

E. M. El-Saeed, A. A. El-Aziz, H. A. Fayed, and M. H. Aly, “Optical logic gates based on semiconductor optical amplifier Mach–Zehnder interferometer: design and simulation,” Opt. Eng. 55(2), 025104 (2016).
[Crossref]

Andrzejewski, J.

J. Andrzejewski, G. Sęk, E. O’Reilly, A. Fiore, and J. Misiewicz, “Eight-band k.p calculations of the composition contrast effect on the linear polarization properties of columnar quantum dots,” J. Appl. Phys. 107(7), 073509 (2010).
[Crossref]

Arakawa, Y.

Ardakani, S. B.

S. B. Ardakani and H. Kaatuzian, “Theoretical estimation of optical absorption coefficient inside an InAs/InGaAs semiconductor quantum dot,” Proc. SPIE 8308, 83080L (2011).
[Crossref]

Aruga, H.

Asada, M.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[Crossref]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Bickel, N.

D. A. May-Arrioja, N. Bickel, and P. L. Wa, “A 1×3 optical switch by carrier induced beam-steering on InP,” Proc. SPIE 6572, 65720O (2007).

Bimberg, D.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Chuang, S.-L.

S.-H. Park, D. Ahn, Y.-T. Lee, and S.-L. Chuang, “Electronic properties of InGaAs/GaAs strained coupled quantum dots modeled by eight-band k·p theory,” Jpn. J. Appl. Phys. 42(1), 144–149 (2003).
[Crossref]

Connelly, M. J.

M. J. Connelly, “Modeling of nonlinear polarization rotation in tensile-strained semiconductor optical amplifiers using Mueller matrices and carrier density induced refractive index change calculations,” Opt. Commun. 308(1), 70–73 (2013).
[Crossref]

M. J. Connelly, “Theoretical calculations of the carrier induced refractive index change in tensile-strained InGaAsP for use in 1550 nm semiconductor optical amplifiers,” Appl. Phys. Lett. 93(18), 181111 (2008).
[Crossref]

Corbett, B.

S. P. Hegarty, B. Corbett, J. G. Mclnerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41(7), 416–418 (2005).
[Crossref]

Datta, A.

de Waardt, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

Delansay, P.

J.-I. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1(2), 408–415 (1995).
[Crossref]

Dorren, H. J. S.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

Ebe, H.

N. Yasuoka, H. Ebe, K. Kawaguchi, M. Ekawa, S. Sekiguchi, K. Morito, O. Wada, M. Sugawara, and Y. Arakawa, “Polarization-insensitive quantum dot semiconductor optical amplifiers using strain-controlled columnar quantum dots,” J. Lightwave Technol. 30(1), 68–75 (2012).
[Crossref]

T. Kita, P. Jayavel, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, “Polarization controlled edge emission from columnar InAs/GaAs self‐assembled quantum dots,” Phys. Status Solidi, C Conf. Crit. Rev. 0(4), 1137–1140 (2003).
[Crossref]

Ekawa, M.

El-Aziz, A. A.

E. M. El-Saeed, A. A. El-Aziz, H. A. Fayed, and M. H. Aly, “Optical logic gates based on semiconductor optical amplifier Mach–Zehnder interferometer: design and simulation,” Opt. Eng. 55(2), 025104 (2016).
[Crossref]

El-Saeed, E. M.

E. M. El-Saeed, A. A. El-Aziz, H. A. Fayed, and M. H. Aly, “Optical logic gates based on semiconductor optical amplifier Mach–Zehnder interferometer: design and simulation,” Opt. Eng. 55(2), 025104 (2016).
[Crossref]

Enders, P. M.

H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
[Crossref]

Erbert, G.

H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
[Crossref]

Fayed, H. A.

E. M. El-Saeed, A. A. El-Aziz, H. A. Fayed, and M. H. Aly, “Optical logic gates based on semiconductor optical amplifier Mach–Zehnder interferometer: design and simulation,” Opt. Eng. 55(2), 025104 (2016).
[Crossref]

Fiore, A.

J. Andrzejewski, G. Sęk, E. O’Reilly, A. Fiore, and J. Misiewicz, “Eight-band k.p calculations of the composition contrast effect on the linear polarization properties of columnar quantum dots,” J. Appl. Phys. 107(7), 073509 (2010).
[Crossref]

Gutowski, J.

M. Röwe, P. Michler, J. Gutowski, V. Kümmler, A. Lell, and V. Härle, “Influence of the carrier density on the optical gain and refractive index change in InGaN laser structures,” Phys. Status Solidi, A Appl. Res. 200(1), 135–138 (2003).
[Crossref]

Han, S.-K.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Härle, V.

M. Röwe, P. Michler, J. Gutowski, V. Kümmler, A. Lell, and V. Härle, “Influence of the carrier density on the optical gain and refractive index change in InGaN laser structures,” Phys. Status Solidi, A Appl. Res. 200(1), 135–138 (2003).
[Crossref]

Hasama, T.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

Hegarty, S. P.

S. P. Hegarty, B. Corbett, J. G. Mclnerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41(7), 416–418 (2005).
[Crossref]

Huyet, G.

S. P. Hegarty, B. Corbett, J. G. Mclnerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41(7), 416–418 (2005).
[Crossref]

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Ishikawa, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

Ishimura, E.

Jayavel, P.

T. Kita, P. Jayavel, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, “Polarization controlled edge emission from columnar InAs/GaAs self‐assembled quantum dots,” Phys. Status Solidi, C Conf. Crit. Rev. 0(4), 1137–1140 (2003).
[Crossref]

Ju, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

Kaatuzian, H.

S. B. Ardakani and H. Kaatuzian, “Theoretical estimation of optical absorption coefficient inside an InAs/InGaAs semiconductor quantum dot,” Proc. SPIE 8308, 83080L (2011).
[Crossref]

Kang, J.-M.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Kawaguchi, K.

Kawashima, H.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

Khoe, G. D.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

Kim, J.-Y.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Kim, T.-Y.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Kita, T.

T. Kita, P. Jayavel, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, “Polarization controlled edge emission from columnar InAs/GaAs self‐assembled quantum dots,” Phys. Status Solidi, C Conf. Crit. Rev. 0(4), 1137–1140 (2003).
[Crossref]

Kitamura, M.

J.-I. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1(2), 408–415 (1995).
[Crossref]

Kümmler, V.

M. Röwe, P. Michler, J. Gutowski, V. Kümmler, A. Lell, and V. Härle, “Influence of the carrier density on the optical gain and refractive index change in InGaN laser structures,” Phys. Status Solidi, A Appl. Res. 200(1), 135–138 (2003).
[Crossref]

Kwon, H.-C.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Ledentsov, N. N.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Lee, S.-H.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Lee, Y. T.

Lee, Y.-T.

S.-H. Park, D. Ahn, Y.-T. Lee, and S.-L. Chuang, “Electronic properties of InGaAs/GaAs strained coupled quantum dots modeled by eight-band k·p theory,” Jpn. J. Appl. Phys. 42(1), 144–149 (2003).
[Crossref]

Lell, A.

M. Röwe, P. Michler, J. Gutowski, V. Kümmler, A. Lell, and V. Härle, “Influence of the carrier density on the optical gain and refractive index change in InGaN laser structures,” Phys. Status Solidi, A Appl. Res. 200(1), 135–138 (2003).
[Crossref]

Li, Z.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

May-Arrioja, D. A.

D. A. May-Arrioja, N. Bickel, and P. L. Wa, “A 1×3 optical switch by carrier induced beam-steering on InP,” Proc. SPIE 6572, 65720O (2007).

Mclnerney, J. G.

S. P. Hegarty, B. Corbett, J. G. Mclnerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41(7), 416–418 (2005).
[Crossref]

McPeake, D.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Michler, P.

M. Röwe, P. Michler, J. Gutowski, V. Kümmler, A. Lell, and V. Härle, “Influence of the carrier density on the optical gain and refractive index change in InGaN laser structures,” Phys. Status Solidi, A Appl. Res. 200(1), 135–138 (2003).
[Crossref]

Mishra, A. K.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

Misiewicz, J.

J. Andrzejewski, G. Sęk, E. O’Reilly, A. Fiore, and J. Misiewicz, “Eight-band k.p calculations of the composition contrast effect on the linear polarization properties of columnar quantum dots,” J. Appl. Phys. 107(7), 073509 (2010).
[Crossref]

Miyahara, T.

Miyamoto, Y.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[Crossref]

Morita, Y.

Morito, K.

Nakata, Y.

T. Kita, P. Jayavel, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, “Polarization controlled edge emission from columnar InAs/GaAs self‐assembled quantum dots,” Phys. Status Solidi, C Conf. Crit. Rev. 0(4), 1137–1140 (2003).
[Crossref]

O’Reilly, E.

J. Andrzejewski, G. Sęk, E. O’Reilly, A. Fiore, and J. Misiewicz, “Eight-band k.p calculations of the composition contrast effect on the linear polarization properties of columnar quantum dots,” J. Appl. Phys. 107(7), 073509 (2010).
[Crossref]

O’Reilly, E. P.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Ohata, N.

Park, S.-H.

S.-H. Park, D. Ahn, Y.-T. Lee, and S.-L. Chuang, “Electronic properties of InGaAs/GaAs strained coupled quantum dots modeled by eight-band k·p theory,” Jpn. J. Appl. Phys. 42(1), 144–149 (2003).
[Crossref]

Ravindran, S.

Röwe, M.

M. Röwe, P. Michler, J. Gutowski, V. Kümmler, A. Lell, and V. Härle, “Influence of the carrier density on the optical gain and refractive index change in InGaN laser structures,” Phys. Status Solidi, A Appl. Res. 200(1), 135–138 (2003).
[Crossref]

Saito, T.

Sek, G.

J. Andrzejewski, G. Sęk, E. O’Reilly, A. Fiore, and J. Misiewicz, “Eight-band k.p calculations of the composition contrast effect on the linear polarization properties of columnar quantum dots,” J. Appl. Phys. 107(7), 073509 (2010).
[Crossref]

Sekiguchi, S.

Shim, J.-I.

J.-I. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1(2), 408–415 (1995).
[Crossref]

Simoyama, T.

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Suematsu, Y.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[Crossref]

Sugawara, M.

N. Yasuoka, H. Ebe, K. Kawaguchi, M. Ekawa, S. Sekiguchi, K. Morito, O. Wada, M. Sugawara, and Y. Arakawa, “Polarization-insensitive quantum dot semiconductor optical amplifiers using strain-controlled columnar quantum dots,” J. Lightwave Technol. 30(1), 68–75 (2012).
[Crossref]

T. Kita, P. Jayavel, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, “Polarization controlled edge emission from columnar InAs/GaAs self‐assembled quantum dots,” Phys. Status Solidi, C Conf. Crit. Rev. 0(4), 1137–1140 (2003).
[Crossref]

Sugitatsu, A.

Uskov, A. V.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Wa, P. L.

D. A. May-Arrioja, N. Bickel, and P. L. Wa, “A 1×3 optical switch by carrier induced beam-steering on InP,” Proc. SPIE 6572, 65720O (2007).

Wada, O.

N. Yasuoka, H. Ebe, K. Kawaguchi, M. Ekawa, S. Sekiguchi, K. Morito, O. Wada, M. Sugawara, and Y. Arakawa, “Polarization-insensitive quantum dot semiconductor optical amplifiers using strain-controlled columnar quantum dots,” J. Lightwave Technol. 30(1), 68–75 (2012).
[Crossref]

T. Kita, P. Jayavel, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, “Polarization controlled edge emission from columnar InAs/GaAs self‐assembled quantum dots,” Phys. Status Solidi, C Conf. Crit. Rev. 0(4), 1137–1140 (2003).
[Crossref]

Wenzel, H.

H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
[Crossref]

Wu, W.

X. Yang and W. Wu, “Principle and applications of semiconductor optical amplifiers-based turbo-switches,” Front. Optoelectron. 9(3), 346–352 (2016).

Yamaguchi, M.

J.-I. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1(2), 408–415 (1995).
[Crossref]

Yamatoya, T.

Yang, X.

X. Yang and W. Wu, “Principle and applications of semiconductor optical amplifiers-based turbo-switches,” Front. Optoelectron. 9(3), 346–352 (2016).

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

Yasuoka, N.

Appl. Phys. Lett. (2)

M. J. Connelly, “Theoretical calculations of the carrier induced refractive index change in tensile-strained InGaAsP for use in 1550 nm semiconductor optical amplifiers,” Appl. Phys. Lett. 93(18), 181111 (2008).
[Crossref]

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Electron. Lett. (1)

S. P. Hegarty, B. Corbett, J. G. Mclnerney, and G. Huyet, “Free-carrier effect on index change in 1.3 μm quantum-dot lasers,” Electron. Lett. 41(7), 416–418 (2005).
[Crossref]

Front. Optoelectron. (1)

X. Yang and W. Wu, “Principle and applications of semiconductor optical amplifiers-based turbo-switches,” Front. Optoelectron. 9(3), 346–352 (2016).

IEEE J. Quantum Electron. (2)

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G. D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quant. 10(5), 1079–1092 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J.-I. Shim, M. Yamaguchi, P. Delansay, and M. Kitamura, “Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides,” IEEE J. Sel. Top. Quantum Electron. 1(2), 408–415 (1995).
[Crossref]

H. Wenzel, G. Erbert, and P. M. Enders, “Improved theory of the refractive-index change in quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
[Crossref]

J. Appl. Phys. (1)

J. Andrzejewski, G. Sęk, E. O’Reilly, A. Fiore, and J. Misiewicz, “Eight-band k.p calculations of the composition contrast effect on the linear polarization properties of columnar quantum dots,” J. Appl. Phys. 107(7), 073509 (2010).
[Crossref]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (1)

S.-H. Park, D. Ahn, Y.-T. Lee, and S.-L. Chuang, “Electronic properties of InGaAs/GaAs strained coupled quantum dots modeled by eight-band k·p theory,” Jpn. J. Appl. Phys. 42(1), 144–149 (2003).
[Crossref]

Opt. Commun. (1)

M. J. Connelly, “Modeling of nonlinear polarization rotation in tensile-strained semiconductor optical amplifiers using Mueller matrices and carrier density induced refractive index change calculations,” Opt. Commun. 308(1), 70–73 (2013).
[Crossref]

Opt. Eng. (1)

E. M. El-Saeed, A. A. El-Aziz, H. A. Fayed, and M. H. Aly, “Optical logic gates based on semiconductor optical amplifier Mach–Zehnder interferometer: design and simulation,” Opt. Eng. 55(2), 025104 (2016).
[Crossref]

Opt. Express (1)

Opt. Quantum Electron. (1)

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Phys. Status Solidi, A Appl. Res. (1)

M. Röwe, P. Michler, J. Gutowski, V. Kümmler, A. Lell, and V. Härle, “Influence of the carrier density on the optical gain and refractive index change in InGaN laser structures,” Phys. Status Solidi, A Appl. Res. 200(1), 135–138 (2003).
[Crossref]

Phys. Status Solidi, C Conf. Crit. Rev. (1)

T. Kita, P. Jayavel, O. Wada, H. Ebe, Y. Nakata, and M. Sugawara, “Polarization controlled edge emission from columnar InAs/GaAs self‐assembled quantum dots,” Phys. Status Solidi, C Conf. Crit. Rev. 0(4), 1137–1140 (2003).
[Crossref]

Proc. SPIE (2)

D. A. May-Arrioja, N. Bickel, and P. L. Wa, “A 1×3 optical switch by carrier induced beam-steering on InP,” Proc. SPIE 6572, 65720O (2007).

S. B. Ardakani and H. Kaatuzian, “Theoretical estimation of optical absorption coefficient inside an InAs/InGaAs semiconductor quantum dot,” Proc. SPIE 8308, 83080L (2011).
[Crossref]

Other (1)

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (John Wiley & Sonc, Inc., Hoboken, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of columnar quantum dot.
Fig. 2
Fig. 2 The refractive index change spectra of TE mode and TM mode corresponding to different dot material components.
Fig. 3
Fig. 3 The refractive index change spectra of TE mode and TM mode corresponding to different barrier material components.
Fig. 4
Fig. 4 The refractive index change spectra of TE mode and TM mode corresponding to different aspect ratio η. (a) η = 0.1, (b) η = 0.5, (c) η = 0.9, (d) η = 1.3.
Fig. 5
Fig. 5 The refractive index change spectra of TE mode and TM mode corresponding to different carrier density.
Fig. 6
Fig. 6 Refractive index change spectra. (a) 1st group, (b) 2nd group.
Fig. 7
Fig. 7 The spectrum of ρ within C-band

Tables (4)

Tables Icon

Table 1 Band structure parameters.

Tables Icon

Table 2 The parameters obtained under different dot material components.

Tables Icon

Table 3 Biaxial strain at the center of quantum dot and the momentum matrix elements in the transition from conduction band ground state to valence band ground state.

Tables Icon

Table 4 Two sets of material parameters of quantum dot.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ψ c = i=1 8 F c i (r) u i (r)
ψ v = i=1 8 F v i (r) u i (r)
α(ω)= C 0 1 V n c n v | e ^ · p ^ cv | 2 γ/π ( E c E v ω) 2 + γ 2 ( f v f c )
p ^ cv = ψ c | p ^ | ψ v = i=1 8 F c i | p ^ | F v i + i,j=1 8 F c i | F v j u i | p ^ | u j
n BF = 2c e 2 P 0 α( E ,N) α 0 ( E ,0) E 2 E 2 d E
n FCA = e 2 λ 2 N 8 π 2 c 2 ε 0 n r m r
n= n BF + n FCA

Metrics