Abstract

In this work, we demonstrated a normal incident PIN InGaAs/GaAsSb type-II multiple quantum wells (MQW) photodiode on InP substrate for 2 μm wavelength high-speed operation. The photodiode has a responsivity of 0.35 A/W at room temperature at 2 μm, and a 3 dB bandwidth of 3.7 GHz. A carrier dynamic model is developed to study the bandwidth of the multiple quantum wells photodiode. Simulation results match the experimental data well, and analysis shows that hole transport limits the 3 dB bandwidth performance. By optimizing the MQW design, higher bandwidth performance (>10 GHz) can be achieved.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed uni-traveling carrier photodiode for 2  μm wavelength application

Yaojiang Chen, Zhiyang Xie, Jian Huang, Zhuo Deng, and Baile Chen
Optica 6(7) 884-889 (2019)

High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate

Shengqiang Xu, Wei Wang, Yi-Chiau Huang, Yuan Dong, Saeid Masudy-Panah, Hong Wang, Xiao Gong, and Yee-Chia Yeo
Opt. Express 27(4) 5798-5813 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  2. T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
    [Crossref]
  3. A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lit. Technol. 27(3), 343–355 (2009).
    [Crossref]
  4. N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
    [Crossref]
  5. R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.
  6. B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
    [Crossref]
  7. B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
    [Crossref] [PubMed]
  8. B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
    [Crossref]
  9. B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
    [Crossref]
  10. B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
    [Crossref]
  11. B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
    [Crossref]
  12. Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).
  13. Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
    [Crossref] [PubMed]
  14. L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
    [Crossref]
  15. D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
    [Crossref]
  16. R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
    [Crossref]
  17. A. Beling and J. C. Campbell, “Photodetectors,” in Fibre Optic Communication Key Devices, H. Venghaus and N. Grote, eds., 2nd ed. (Springer International Publishing Switzerland, 2017), pp. 249–290.
  18. B. Chen and L. H. Archie, “Carrier dynamics in InP-based PIN photodiodes with InGaAs/GaAsSb type-II quantum wells,” J. Phys. D Appl. Phys. 46(31), 315103 (2013).
    [Crossref]
  19. H. Schneider and Kv. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B Condens. Matter 38(9), 6160–6165 (1988).
    [Crossref] [PubMed]
  20. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
    [Crossref]
  21. G. Zhou and P. Runge, “Modeling of multiple-quantum-well p-i-n photodiodes,” IEEE J. Quantum Electron. 50(4), 220–227 (2014).
    [Crossref]
  22. B. Chen and A. L. Holmes, “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
    [Crossref]
  23. B. Chen, “Optical gain analysis of GaAs-based InGaAs/GaAsSbBi type-II quantum wells lasers,” Opt. Express 25(21), 25183–25192 (2017).
    [Crossref] [PubMed]
  24. B. Chen, “Active region design and gain characteristics of InP-based dilute bismide type-II quantum wells for mid-IR lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
    [Crossref]
  25. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).
  26. J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
    [Crossref]
  27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2013).
  28. R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
    [Crossref]
  29. R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
    [Crossref]

2018 (4)

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

2017 (3)

2015 (1)

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

2014 (1)

G. Zhou and P. Runge, “Modeling of multiple-quantum-well p-i-n photodiodes,” IEEE J. Quantum Electron. 50(4), 220–227 (2014).
[Crossref]

2013 (3)

B. Chen and A. L. Holmes, “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

B. Chen and L. H. Archie, “Carrier dynamics in InP-based PIN photodiodes with InGaAs/GaAsSb type-II quantum wells,” J. Phys. D Appl. Phys. 46(31), 315103 (2013).
[Crossref]

B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

2012 (1)

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

2011 (3)

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

2009 (2)

A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lit. Technol. 27(3), 343–355 (2009).
[Crossref]

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

2005 (2)

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

2001 (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).

1995 (1)

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

1991 (2)

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

1988 (1)

H. Schneider and Kv. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B Condens. Matter 38(9), 6160–6165 (1988).
[Crossref] [PubMed]

1967 (1)

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[Crossref]

Abedin, M. N.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Addamane, S.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

Addamane, S. J.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

Arai, S.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Archie, L. H.

B. Chen and L. H. Archie, “Carrier dynamics in InP-based PIN photodiodes with InGaAs/GaAsSb type-II quantum wells,” J. Phys. D Appl. Phys. 46(31), 315103 (2013).
[Crossref]

Babcock, S. E.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Balakrishnan, G.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

Beling, A.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lit. Technol. 27(3), 343–355 (2009).
[Crossref]

Birks, T.

Bo, B.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Bowers, J.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Bowers, J. E.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Campbell, J. C.

A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lit. Technol. 27(3), 343–355 (2009).
[Crossref]

Chao, R.

Chao, R.-L.

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Chen, B.

B. Chen, “Optical gain analysis of GaAs-based InGaAs/GaAsSbBi type-II quantum wells lasers,” Opt. Express 25(21), 25183–25192 (2017).
[Crossref] [PubMed]

B. Chen, “Active region design and gain characteristics of InP-based dilute bismide type-II quantum wells for mid-IR lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
[Crossref]

B. Chen and A. L. Holmes, “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

B. Chen and L. H. Archie, “Carrier dynamics in InP-based PIN photodiodes with InGaAs/GaAsSb type-II quantum wells,” J. Phys. D Appl. Phys. 46(31), 315103 (2013).
[Crossref]

B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Chen, Y.

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Chi, Y.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Choi, Y.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Collins, J. E.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Collins, S.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Corbett, B.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Couny, F.

Cunningham, J. E.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

De Young, R.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Emmons, R. B.

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[Crossref]

Farr, L.

Fleissner, J.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Fox, A. M.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

Fuchs, F.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Giboney, K.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Gleeson, M.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Gocalinska, A.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Goll, J. H.

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

Gossard, A. C.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

Gunning, F. C. G.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Han, W.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Hawkins, R. T.

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

Holmes, A.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

Holmes, A. L.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

B. Chen and A. L. Holmes, “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Holmes, W. Y. J. A. L.

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

Huang, J. Y. T.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Inoue, D.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Ismail, S.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Jan, W. Y.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

Jiang, W.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Jiang, W. Y.

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Jones, M. D.

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

Jung, D.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

Kennedy, M. J.

Kim, C. S.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Klitzing, Kv.

H. Schneider and Kv. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B Condens. Matter 38(9), 6160–6165 (1988).
[Crossref] [PubMed]

Knight, J.

Koch, G. J.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Kuech, T. F.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Lau, K. M.

Lewis, J.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Li, Q.

Liang, D.

Livescu, G.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

Mack, T. L.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Mangan, B.

Mason, M.

Mawst, L. J.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Meyer, J. R.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).

Miller, D. A. B.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

Nishiyama, N.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Norman, J.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

Notari, A.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Nudds, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

O’Brien, P.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

O’Callaghan, J.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Onat, B. M.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Pavarelli, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Pelucchi, E.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Pepper, S. H.

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

Peters, F. H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).

Refaat, T. F.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Rehm, R.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Roberts, P.

Robinson, G.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Rodwell, M.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Rubio, M.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Runge, P.

G. Zhou and P. Runge, “Modeling of multiple-quantum-well p-i-n photodiodes,” IEEE J. Quantum Electron. 50(4), 220–227 (2014).
[Crossref]

Sabert, H.

Schmitz, J.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Schneider, H.

H. Schneider and Kv. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B Condens. Matter 38(9), 6160–6165 (1988).
[Crossref] [PubMed]

Shang, C.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

Shi, J.-W.

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Silvestre, P.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Singh, U. N.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Song, X.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

St J Russell, P.

Stephens, R.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

Thiagarajan, P.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Tomlinson, A.

Tossoun, B.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

Vurgaftman, I.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).

Walther, M.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Wan, Y.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

Wang, C.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Wang, Y.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Wey, Y. G.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Williams, D.

Wun, J.-M.

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Yan, X.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Yang, H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Yang, X.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Ye, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Yuan, J.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Zang, J.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

Zhang, C.

Zhang, H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Zhang, Z.

Zhou, G.

G. Zhou and P. Runge, “Modeling of multiple-quantum-well p-i-n photodiodes,” IEEE J. Quantum Electron. 50(4), 220–227 (2014).
[Crossref]

Zhou, L.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Appl. Phys. Lett. (2)

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Crystals (Basel) (1)

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

IEEE J. Quantum Electron. (3)

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

G. Zhou and P. Runge, “Modeling of multiple-quantum-well p-i-n photodiodes,” IEEE J. Quantum Electron. 50(4), 220–227 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (3)

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

IEEE Trans. Electron Dev. (1)

B. Chen, “Active region design and gain characteristics of InP-based dilute bismide type-II quantum wells for mid-IR lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

J. Appl. Phys. (2)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[Crossref]

J. Lit. Technol. (4)

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lit. Technol. 27(3), 343–355 (2009).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

J. Phys. D Appl. Phys. (2)

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

B. Chen and L. H. Archie, “Carrier dynamics in InP-based PIN photodiodes with InGaAs/GaAsSb type-II quantum wells,” J. Phys. D Appl. Phys. 46(31), 315103 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum Electron. (2)

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

B. Chen and A. L. Holmes, “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Schneider and Kv. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B Condens. Matter 38(9), 6160–6165 (1988).
[Crossref] [PubMed]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2013).

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

A. Beling and J. C. Campbell, “Photodetectors,” in Fibre Optic Communication Key Devices, H. Venghaus and N. Grote, eds., 2nd ed. (Springer International Publishing Switzerland, 2017), pp. 249–290.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Dark current density of a diode in different temperature. (b) Arrhenius plot of the dark current at −1 V bias. (b) Spectral responsivity measured in different temperature at 0 V.
Fig. 2
Fig. 2 (a) DC response of a 40 μm diameter diode at voltage of −5 V. (b) X-ray diffraction (XRD) patterns of the MQW.
Fig. 3
Fig. 3 (a) Equivalent circuit model of a PIN photodiode. Rs is the series resistance, Cj is the junction capacitance. Rj is the diode body resistance which is mega ohms at reverse bias. Ip is the photocurrent. (b) S11 parameter fitting result. The blue curve is the measured S11 of a 40 μm diameter diode at −5 V bias. The red curve is the fitting curve. (c) Frequency response of equivalent circuit with the fitting results. (d) Capacitance measured by LCR meter.
Fig. 4
Fig. 4 (a) Setup of frequency response measurement. (b) Measured frequency response of a 40 μm diameter diode.
Fig. 5
Fig. 5 Band diagram of InGaAs/GaAsSb type-II MQW. For 2 μm wavelength light absorption, the photo-generated electrons are initialized in the well, and then escape to continuous states, or tunnel to adjacent wells.
Fig. 6
Fig. 6 (a) Impulse response currents in different bias voltages. The total current is summation of electron current and hole current. The hole currents are plotted in 10 times scaled so that the tail can be observed. (b) Power spectral density of the response currents. The solid lines are power spectral density of total current in (a). The dots lines are power spectral density of electron currents, and the dash lines are power spectral density of hole currents.
Fig. 7
Fig. 7 (a) Effect of pe on bandwidth in different bias voltages (ph is fixed at 0.9). The bandwidths almost remain constants when pe varies. (b) Effect of ph on bandwidth in different bias voltages (pe is fixed at 0.9). The bandwidths rise significantly when ph increases.
Fig. 8
Fig. 8 Comparison of measured bandwidth with simulation results. In simulation, pe was fixed at 0.9 because it has little effect on bandwidth.
Fig. 9
Fig. 9 (a) Bandwidth variation with respect to the thickness of GaAsSb layer in −4 V bias voltage. In simulation, pe and ph were fixed at 0.9 and 0.95. (b) The hole bound state energy level (H1) variation when reducing GaAsSb thickness.
Fig. 10
Fig. 10 (a) Bandwidth variation with respect to In-composition in InGaAs. The Sb-composition in GaAsSb also varies to maintain zero strain. (b) The energy band variation when adjusting the material composition.

Tables (2)

Tables Icon

Table 1 Epitaxial layer structure

Tables Icon

Table 2 Key parameters used in simulation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f 3dB = 1 1 f T 2 + 1 f RC 2 ,
d q k dt = G k ( 1 τ E,l + 1 τ E,r + 1 τ T,l + 1 τ T,r + 1 τ ) q k + 1 τ T,r q k1 + 1 τ T,l q k+1 + 1p t D q ' k1 ,
dq ' k dt = 1 τ E,r q k + 1 τ E,l q k+1 + p t D q ' k1 1 t D q ' k .
τ E,l,r = 2π m * L w 2 k B T exp( H l,r k B T )
τ T,l,r = 2 m * L w 2 π exp( 2 L b 2 m *,b H l,r ),
H l,r = E l,r qF L w
i p = k x k W ( d q k dt + dq ' k dt ).

Metrics