Abstract

We numerically investigate the generation of wavelength-tunable few-cycle pulses in the visible spectral region through soliton-plasma interactions. We found that in a He-filled single-ring photonic crystal fiber (SR-PCF), soliton-plasma interactions could shift the optical spectra of pulses propagating in the fiber to shorter wavelengths. Through adjusting the single pulse energy launched into the fiber, the central wavelength of these blueshifting pulses could be continuously tuned over hundreds of nanometers, while maintaining a high energy conversion efficiency of >57%. Moreover, we observed that during the nonlinear pulse propagation in the SR-PCF, soliton self-compression effects enhanced the plasma density in the fiber at high pulse energies, which could modulate the phase-matching condition of ultraviolet (UV) dispersive wave (DW) generation. Furthermore, we employed the recently-developed model to study numerically the loss and dispersion of the SR-PCF in its resonant and anti-resonant spectral regions, and demonstrated the remarkable influence of the core-cladding resonance on the process of soliton-plasma interactions. The numerical results demonstrated here pave the way to develop wavelength-tunable, few-cycle light sources in the visible region, which may have considerable application potential in pump-probe spectroscopy and strong-field physics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly-tunable, visible ultrashort pulses generation by soliton-plasma interactions in gas-filled single-ring photonic crystal fibers

Zhiyuan Huang, Yifei Chen, Fei Yu, Dakun Wu, Ding Wang, Ruirui Zhao, Yu Zhao, Shoufei Gao, Yingying Wang, Pu Wang, and Yuxin Leng
Opt. Express 27(21) 30798-30809 (2019)

Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]

John C. Travers, Wonkeun Chang, Johannes Nold, Nicolas Y. Joly, and Philip St. J. Russell
J. Opt. Soc. Am. B 28(12) A11-A26 (2011)

Continuously wavelength-tunable blueshifting soliton generated in gas-filled photonic crystal fibers

Z. Y. Huang, Y. F. Chen, F. Yu, D. Wang, R. R. Zhao, Y. Zhao, S. F. Gao, Y. Y. Wang, P. Wang, M. Pang, and Y. X. Leng
Opt. Lett. 44(7) 1805-1808 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
    [Crossref] [PubMed]
  2. A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
    [Crossref] [PubMed]
  3. A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
    [Crossref] [PubMed]
  4. N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
    [Crossref] [PubMed]
  5. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  6. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984).
    [Crossref]
  7. C. Rolland and P. B. Corkum, “Compression of high-power optical pulses,” J. Opt. Soc. Am. B 5(3), 641–647 (1988).
    [Crossref]
  8. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
    [Crossref]
  9. I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
    [Crossref]
  10. R. Zeltner, R. Pennetta, S. Xie, and P. S. J. Russell, “Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber,” Opt. Lett. 43(7), 1479–1482 (2018).
    [Crossref] [PubMed]
  11. C. P. Lin, Y. Wang, Y. J. Huang, C. R. Liao, Z. Y. Bai, M. X. Hou, Z. Y. Li, and Y. P. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photon. Res. 5(2), 129–133 (2017).
    [Crossref]
  12. S. J. Weng, L. Pei, J. S. Wang, T. G. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photon. Res. 5(2), 103–107 (2017).
    [Crossref]
  13. M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
    [Crossref]
  14. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
    [Crossref]
  15. M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5(6), 710–727 (2017).
    [Crossref]
  16. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
    [Crossref]
  17. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  18. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
    [Crossref]
  19. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
    [Crossref] [PubMed]
  20. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  21. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  22. M. H. Frosz, P. Roth, M. C. Günendi, and P. St. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5(2), 88–91 (2017).
    [Crossref]
  23. F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
    [Crossref] [PubMed]
  24. F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
    [Crossref] [PubMed]
  25. K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
    [Crossref] [PubMed]
  26. T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
    [Crossref] [PubMed]
  27. D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
    [Crossref] [PubMed]
  28. V. V. Yakovlev, B. Kohler, and K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19(23), 2000–2002 (1994).
    [Crossref] [PubMed]
  29. Y. Li, Y. H. Liang, D. H. Dai, J. L. Yang, H. Z. Zhong, and D. Y. Fan, “Frequency-domain parametric downconversion for efficient broadened idler generation,” Photon. Res. 5(6), 669–675 (2017).
    [Crossref]
  30. G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photon. Res. 5(3), 151–155 (2017).
  31. G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000 nm range,” Photon. Res. 6(5), 368–372 (2018).
    [Crossref]
  32. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
    [Crossref] [PubMed]
  33. X. Liu, J. Laegsgaard, R. Iegorov, A. S. Svane, F. Ö. Ilday, H. Tu, S. A. Boppart, and D. Turchinovich, “Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation,” Photon. Res. 5(6), 750–761 (2017).
    [Crossref] [PubMed]
  34. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
    [Crossref] [PubMed]
  35. W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
    [Crossref] [PubMed]
  36. M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” arXiv:180610416 (2018).
  37. M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
    [Crossref]
  38. F. Tani, M. H. Frosz, J. C. Travers, and P. St J Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42(9), 1768–1771 (2017).
    [Crossref] [PubMed]
  39. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
    [Crossref] [PubMed]
  40. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
    [Crossref]
  41. S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
    [Crossref] [PubMed]
  42. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  43. C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
    [Crossref]
  44. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
    [Crossref]
  45. S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
    [Crossref] [PubMed]
  46. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).
  47. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).
  48. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).
  49. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  50. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008).
    [Crossref] [PubMed]
  51. M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
    [Crossref] [PubMed]
  52. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  53. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
    [Crossref]
  54. F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
    [Crossref]
  55. D. J. Kane and R. Trebino, “Characterization of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993).
    [Crossref]
  56. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993).
    [Crossref]
  57. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
    [Crossref] [PubMed]
  58. K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11(9), 1595–1608 (1994).
    [Crossref]

2018 (7)

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

R. Zeltner, R. Pennetta, S. Xie, and P. S. J. Russell, “Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber,” Opt. Lett. 43(7), 1479–1482 (2018).
[Crossref] [PubMed]

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000 nm range,” Photon. Res. 6(5), 368–372 (2018).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
[Crossref]

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

2017 (12)

F. Tani, M. H. Frosz, J. C. Travers, and P. St J Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42(9), 1768–1771 (2017).
[Crossref] [PubMed]

X. Liu, J. Laegsgaard, R. Iegorov, A. S. Svane, F. Ö. Ilday, H. Tu, S. A. Boppart, and D. Turchinovich, “Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation,” Photon. Res. 5(6), 750–761 (2017).
[Crossref] [PubMed]

M. H. Frosz, P. Roth, M. C. Günendi, and P. St. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5(2), 88–91 (2017).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

Y. Li, Y. H. Liang, D. H. Dai, J. L. Yang, H. Z. Zhong, and D. Y. Fan, “Frequency-domain parametric downconversion for efficient broadened idler generation,” Photon. Res. 5(6), 669–675 (2017).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photon. Res. 5(3), 151–155 (2017).

C. P. Lin, Y. Wang, Y. J. Huang, C. R. Liao, Z. Y. Bai, M. X. Hou, Z. Y. Li, and Y. P. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photon. Res. 5(2), 129–133 (2017).
[Crossref]

S. J. Weng, L. Pei, J. S. Wang, T. G. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photon. Res. 5(2), 103–107 (2017).
[Crossref]

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
[Crossref] [PubMed]

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5(6), 710–727 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

2016 (1)

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

2015 (4)

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

2014 (2)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (5)

2010 (1)

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
[Crossref]

2009 (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

2008 (1)

2007 (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

2004 (1)

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
[Crossref] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

2001 (1)

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

2000 (1)

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
[Crossref] [PubMed]

1998 (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
[Crossref] [PubMed]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

1994 (2)

1993 (3)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

D. J. Kane and R. Trebino, “Characterization of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993).
[Crossref]

R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993).
[Crossref]

1992 (1)

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
[Crossref] [PubMed]

1988 (1)

1986 (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

1984 (1)

1967 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).

1966 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Akhmediev, N.

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Apolonski, A.

Archambault, J. L.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Bai, Z. Y.

Balciunas, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Baltuska, A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Bang, O.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Benabid, F.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Bergé, L.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Biancalana, F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

Biriukov, A. S.

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Black, R. J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Boppart, S. A.

Börzsönyi, A.

Bragg, A. E.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
[Crossref] [PubMed]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Buczynski, R.

Bures, J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Burnett, K.

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
[Crossref] [PubMed]

Cassataro, M.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

Chang, W.

M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

Cižmár, T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Corkum, P. B.

Couairon, A.

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Courtois, C.

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Cros, B.

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Cuschieri, A.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Dai, D. H.

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

DeLong, K. W.

Dianov, E. M.

Ding, W.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Du, J.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Eggleton, B. J.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Fan, D. Y.

Fan, G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref] [PubMed]

Fourcade-Dutin, C.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Frosz, M. H.

Gao, S. F.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Gerome, F.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Gu, S.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Günendi, M. C.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

M. H. Frosz, P. Roth, M. C. Günendi, and P. St. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5(2), 88–91 (2017).
[Crossref]

Han, D.

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Hasan, M. I.

He, W.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

Heidt, A.

Heiner, Z.

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

Hou, M. X.

Hu, Z.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Huang, Y. J.

Iaconis, C.

Iegorov, R.

Ilday, F. Ö.

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Jiang, D. L.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Jiang, X.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

Kalashnikov, M. P.

Kane, D. J.

Kasparian, J.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Keding, R.

Kinsler, P.

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
[Crossref]

Klimczak, M.

Knight, J. C.

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Kobayashi, T.

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Kohler, B.

Kosolapov, A. F.

Köttig, F.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

Kovács, A. P.

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Krausz, F.

Lacroix, S.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Laegsgaard, J.

Leite, I. T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Leng, Y.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Li, J.

Li, R.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Li, Y.

Y. Li, Y. H. Liang, D. H. Dai, J. L. Yang, H. Z. Zhong, and D. Y. Fan, “Frequency-domain parametric downconversion for efficient broadened idler generation,” Photon. Res. 5(6), 669–675 (2017).
[Crossref]

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Li, Z. Y.

Liang, Y. H.

Liao, C. R.

Lin, C. P.

Liu, X.

Liu, Y.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Mak, K. F.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Markos, C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Marquès, J. R.

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Martynkien, T.

Matthieussent, G.

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Mergo, P.

Miyatake, T.

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

Neumark, D. M.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
[Crossref] [PubMed]

Ning, T. G.

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Nold, J.

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

Novoa, D.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Osvay, K.

Pang, M.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

Paulus, G. G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Pei, L.

Pennetta, R.

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Pervak, V.

Plotnichenko, V. G.

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Pronin, O.

Pryamikov, A. D.

Rae, S. C.

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
[Crossref] [PubMed]

Rolland, C.

Roth, P.

Russell, P. S. J.

R. Zeltner, R. Pennetta, S. Xie, and P. S. J. Russell, “Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber,” Opt. Lett. 43(7), 1479–1482 (2018).
[Crossref] [PubMed]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Russell, P. St. J.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

M. H. Frosz, P. Roth, M. C. Günendi, and P. St. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5(2), 88–91 (2017).
[Crossref]

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref] [PubMed]

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Saleh, M. F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Seidel, M.

Semjonov, S. L.

Shank, C. V.

Shi, T.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Šiler, M.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Siwicki, B.

Skupin, S.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Sobon, G.

Sotor, J.

St J Russell, P.

Stolen, R. H.

Stolow, A.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
[Crossref] [PubMed]

Svane, A. S.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Tamaya, T.

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
[Crossref] [PubMed]

Tamiaki, H.

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Tanaka, K.

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
[Crossref] [PubMed]

Tang, X.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Tani, F.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

F. Tani, M. H. Frosz, J. C. Travers, and P. St J Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42(9), 1768–1771 (2017).
[Crossref] [PubMed]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

Tarnowski, K.

Terent’ev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Tomaszewska, D.

Tomlinson, W. J.

Travers, J. C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

F. Tani, M. H. Frosz, J. C. Travers, and P. St J Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42(9), 1768–1771 (2017).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

Trebino, R.

Tu, H.

Turchinovich, D.

Turtaev, S.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Voronin, A. A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Wadsworth, W. J.

Walmsley, I. A.

Wang, J. S.

Wang, P.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Wang, Y.

Wang, Y. P.

Wang, Y. Y.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Weiss, T.

Weng, S. J.

Wilson, K. R.

Witting, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Wolf, J. P.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Wong, G. K. L.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

Xie, S.

Yakovlev, V. V.

Yang, J.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Yang, J. L.

Yoshikawa, N.

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
[Crossref] [PubMed]

Yu, F.

Zeltner, R.

Zewail, A. H.

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
[Crossref] [PubMed]

Zhang, X.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Zhang, Z.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Zheltikov, A. M.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Zhong, H. Z.

ACS Nano (1)

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Chem. Rev. (1)

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

D. J. Kane and R. Trebino, “Characterization of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993).
[Crossref]

J. Lightwave Technol. (2)

M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
[Crossref]

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

J. Phys. Chem. B (1)

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Nat. Commun. (3)

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Nat. Photonics (4)

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

F. Tani, M. H. Frosz, J. C. Travers, and P. St J Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42(9), 1768–1771 (2017).
[Crossref] [PubMed]

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref] [PubMed]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

R. Zeltner, R. Pennetta, S. Xie, and P. S. J. Russell, “Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber,” Opt. Lett. 43(7), 1479–1482 (2018).
[Crossref] [PubMed]

V. V. Yakovlev, B. Kohler, and K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19(23), 2000–2002 (1994).
[Crossref] [PubMed]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
[Crossref] [PubMed]

Photon. Res. (9)

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000 nm range,” Photon. Res. 6(5), 368–372 (2018).
[Crossref]

M. H. Frosz, P. Roth, M. C. Günendi, and P. St. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5(2), 88–91 (2017).
[Crossref]

S. J. Weng, L. Pei, J. S. Wang, T. G. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photon. Res. 5(2), 103–107 (2017).
[Crossref]

C. P. Lin, Y. Wang, Y. J. Huang, C. R. Liao, Z. Y. Bai, M. X. Hou, Z. Y. Li, and Y. P. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photon. Res. 5(2), 129–133 (2017).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photon. Res. 5(3), 151–155 (2017).

Y. Li, Y. H. Liang, D. H. Dai, J. L. Yang, H. Z. Zhong, and D. Y. Fan, “Frequency-domain parametric downconversion for efficient broadened idler generation,” Photon. Res. 5(6), 669–675 (2017).
[Crossref]

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5(6), 710–727 (2017).
[Crossref]

X. Liu, J. Laegsgaard, R. Iegorov, A. S. Svane, F. Ö. Ilday, H. Tu, S. A. Boppart, and D. Turchinovich, “Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation,” Photon. Res. 5(6), 750–761 (2017).
[Crossref] [PubMed]

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

Phys. Plasmas (1)

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Phys. Rev. A (2)

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
[Crossref] [PubMed]

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
[Crossref]

Phys. Rev. Lett. (3)

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Rev. Mod. Phys. (2)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Science (3)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
[Crossref] [PubMed]

Sov. Phys. JETP (3)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” arXiv:180610416 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The fundamental core mode of SR-PCF calculated through FEM at 800 nm. a and d denote the core radius and the wall thickness. D and g represent the outer diameter of the anti-resonant tubes and the perimeter gap. Here a = 18 µm, d = 150 nm, D = 24.4 µm, and g = 1.8 µm. (b) The wavelength-dependent dispersion of the fundamental mode of SR-PCF, calculated using Eq. (5), and with helium at 6 bar. N and A denote the normal and anomalous dispersion that are separated by red dashed line. ZDP is the zero dispersion point and the corresponding ZDW is 293 nm.
Fig. 2
Fig. 2 Simulated evolutions of a 30-fs Gaussian pulse with 12-µJ energy, centered at 800 nm, propagating in a 30-cm long and 36-µm core diameter helium-filled SR-PCF with fiber loss of 0.1 dB/m at 6 bar when ionization is not included (a)-(c) and when it is included (d)-(f). (a) and (d) Temporal evolutions, (b) and (e) spectral evolutions, (c) and (f) frequency chirping evolutions. The red dashed line show the pulses at the maximum peak power point. N and A denote normal and anomalous dispersion, they are separated by the ZDW (293 nm) marked in black dashed line. The dashed white line indicate the pump wavelength. (i) shows the UV DW emission. The white numbers 1-3 represent the different spectral bands.
Fig. 3
Fig. 3 (a) Numerically calculated pulse duration (blue solid line) and average wavelength (red solid line) for different positions in fiber when ionization is included. (b) The calculated plasma density (green solid line) and pulse energy (orange solid line) for different fiber positions. The red dashed line show the maximum peak power point. Electric field intensity (blue solid line) and frequency chirping (red solid line) at the maximum peak power point are shown without (c) and with (d) the influence of ionization.
Fig. 4
Fig. 4 Temporal (a), spectral (b) and frequency chirping (c) evolutions with input pulse energy of 13.3 µJ. N and A represent normal and anomalous dispersion that are separated by the ZDW (293 nm) marked in black dashed line. The dashed white line indicate the pump wavelength. The numbers 1-5 show the different spectral bands that are also marked in Figs. 5(b) and 5(d). The white letters A and B indicate the first and second soliton-self compression within fiber, respectively.
Fig. 5
Fig. 5 Simulated temporal (a) and spectral (b) evolutions after propagating a 30-cm long and 36-µm core diameter SR-PCF filled with 6 bar of helium as a function of input energy (30-fs and 800-nm Gaussian pulse) from 12 µJ to 13.3 µJ. Corresponding normalized temporal (c) and spectral (d) intensities. (i) and (ii) show the oscillations at the back edge of the pulses and UV DW emission, respectively. The black dashed line mark the ZDW (293 nm), N and A indicate normal and anomalous dispersion. The numbers 1-5 correspond to the different spectral bands. The UV DW emission occurs on linear scale for input energy from 12.9 µJ to 13.3 µJ, which is labeled with the red double arrowed line.
Fig. 6
Fig. 6 (a) Numerically calculated pulse duration (blue square line) and energy transmission (red square line) at the output of fiber as a function of input energy. (b) Soliton wavelength (green circle line) marked by number 1 in Fig. 5(d) and corresponding conversion efficiency (orange circle line). (c) Peak power (blue triangle line) and plasma density (red triangle line) of output pulses. (d) Electric field intensity (blue solid line) and its envelope (red solid line) at the output of fiber are shown with (upper plot) and without (lower plot) a super-Gaussian filter for input energy of 12.8 µJ.
Fig. 7
Fig. 7 The simulation parameters come from Figs. 1 and 4, and the core-cladding resonance induced loss and dispersion are considered. (a) The loss (blue solid line) of the fundamental mode calculated by BR model with wall thickness of 150 nm. (b) The calculated dispersion (red solid line) through the empirical formulae from Eq. (15). (c) and (d) correspond to the temporal and spectral evolutions with different positions in fiber. (i) shows an emission of narrow spectral peak.
Fig. 8
Fig. 8 As Fig. 7, but the wall thickness is increased to 250 nm. (a) The loss (blue solid line) of the fundamental mode calculated by BR model with wall thickness of 250 nm. (b) The calculated dispersion (red solid line) by the empirical formulae from Eq. (15). (c) and (d) are the temporal and spectral evolutions with different propagation length. (ii) shows a wider and stronger emission of narrow spectral peak.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E ˜ ( z , ω ) z = i ( β ( ω ) ω v p ) E ˜ ( z , ω ) α ( ω ) 2 E ˜ ( z , ω ) + i ω 2 2 c 2 ε 0 β ( ω ) F { P N L ( z , t ) } ,
P N L ( z , t ) = ε 0 χ ( 3 ) E ( z , t ) 3 + P i o n ( z , t ) ,
P i o n ( z , t ) = t ρ ( z , t ) t U i E ( z , t ) d t + e 2 m e t ρ ( z , t ) E ( z , t ) d t d t ,
ρ t = W ( I ) ( ρ n t ρ ) + σ U i ρ I f ( ρ ) ,
β ( ω ) = k 0 n e f f = k 0 n g a s 2 ( ω , P , T ) u n m 2 k 0 2 a 2 k 0 [ 1 + 1 2 P T 0 P 0 T δ ( ω ) 1 2 u n m 2 k 0 2 a 2 ] ,
Δ ω ( z , t ) = ω ( z , t ) ω 0 = ϕ S P M t = k 0 n 2 Δ z I ( z , t ) t ,
Δ ω ( z , t ) = ϕ S P M t ϕ p l a s m a t = k 0 n 2 Δ z I ( z , t ) t + k 0 Δ z 2 n 0 ρ c r ρ ( z , t ) t ,
λ q = 2 d n g 2 ( λ q ) 1 / q ,
α B R H = ( α B R T E + α B R T M ) ,
α B R T E = 2 u n m / { a 2 k 0 [ 4 cos 2 ( δ d ) + ( κ / δ + δ / κ ) 2 sin 2 ( δ d ) ] } ,
α B R T M = 2 u n m / { a 2 k 0 [ 4 cos 2 ( δ d ) + ( n g 2 κ / δ + δ / n g 2 κ ) 2 sin 2 ( δ d ) ] } ,
( δ / κ ) * = ( δ / κ ) [ 1 + ( κ / δ ) tan h ( n g n ˜ g Z g 2 δ d ) ] / [ 1 + ( δ / κ ) tan h ( n g n ˜ g Z g 2 δ d ) ] ,
( δ / n g 2 κ ) * = ( δ / n g 2 κ ) [ 1 + ( n g 2 κ / δ ) tan h ( n g n ˜ g Z g 2 δ d ) ] / [ 1 + ( δ / n g 2 κ ) tan h ( n g n ˜ g Z g 2 δ d ) ] ,
α B R H = f F E M α B R H .
n e f f L = n g a s 2 [ u n m λ / ( 2 π a e f f ) ] 2 + q σ q λ 2 / λ q 2 ,
f 1 = 1.095 exp [ 0.097041 / ( a / g ) ] ,
f 2 = 0.007584 n t u b e exp [ 0.76246 / ( a / g ) ] 0.002 n t u b e + 0.012 ,
σ q [ d / ( n g a ) ] 2.303 A / n g [ ( q + 2 ) / ( 3 q ) ] 3.57 A ,

Metrics