Abstract

We use light from a visible laser diode to directly tune silicon-on-chip microresonators by thermo-optical effect. We show that this direct tuning is local, non invasive and has a much smaller time constant than global temperature tuning methods. Such an approach could prove to be highly effective for Kerr comb generation in microresonators pumped by quantum cascade lasers, which cannot be easily tuned to achieve comb generation and soliton-mode locked states.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Control of integrated micro-resonator wavelength via balanced homodyne locking

Jonathan A. Cox, Anthony L. Lentine, Douglas C. Trotter, and Andrew L. Starbuck
Opt. Express 22(9) 11279-11289 (2014)

Fully self-referenced frequency comb consuming 5 watts of electrical power

Paritosh Manurkar, Edgar F. Perez, Daniel D. Hickstein, David R. Carlson, Jeff Chiles, Daron A. Westly, Esther Baumann, Scott A. Diddams, Nathan R. Newbury, Kartik Srinivasan, Scott B. Papp, and Ian Coddington
OSA Continuum 1(1) 274-282 (2018)

Mid-infrared silicon photonic waveguides and devices [Invited]

Yi Zou, Swapnajit Chakravarty, Chi-Jui Chung, Xiaochuan Xu, and Ray T. Chen
Photon. Res. 6(4) 254-276 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref] [PubMed]
  2. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
    [Crossref] [PubMed]
  3. M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
    [Crossref]
  4. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
    [Crossref] [PubMed]
  5. D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
    [Crossref]
  6. P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
    [Crossref]
  7. A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
    [Crossref]
  8. T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
    [Crossref]
  9. S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).
  10. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
    [Crossref]
  11. X. Xue, Y. Xuan, C. Wang, P.-H. Wang, Y. Liu, B. Niu, D. E. Leaird, M. Qi, and A. M. Weiner, “Thermal tuning of Kerr frequency combs in silicon nitride microring resonators,” Opt. Express 24, 687–698 (2016).
    [Crossref] [PubMed]
  12. C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
    [Crossref] [PubMed]
  13. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref] [PubMed]
  14. R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
    [Crossref]
  15. S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
    [Crossref]
  16. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref] [PubMed]
  17. C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
    [Crossref]
  18. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49, 2606–2616 (2010).
    [Crossref]
  19. J. Yang, E. Ziade, and A. J. Schmidt, “Modeling optical absorption for thermoreflectance measurements,” J. Appl. Phys. 119, 095107 (2016).
    [Crossref]
  20. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
    [Crossref]
  21. B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4×4 gb/s parallel electronic bus to wdm optical link silicon photonic translator,” IEEE Photon. Technol. Lett 19, 456–458 (2007).
    [Crossref]

2018 (1)

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

2017 (3)

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

2016 (4)

2015 (1)

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

2014 (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

2013 (2)

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).

2012 (2)

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

2011 (3)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref] [PubMed]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

2010 (1)

2007 (1)

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4×4 gb/s parallel electronic bus to wdm optical link silicon photonic translator,” IEEE Photon. Technol. Lett 19, 456–458 (2007).
[Crossref]

2004 (2)

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Anand, S.

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Belyanin, A.

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

Bergman, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4×4 gb/s parallel electronic bus to wdm optical link silicon photonic translator,” IEEE Photon. Technol. Lett 19, 456–458 (2007).
[Crossref]

Blaser, S.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Bothe, K.

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Bowers, J. E.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Brendel, R.

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Bulu, I.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Capasso, F.

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

Cardenas, J.

Carmon, T.

Chevalier, P.

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

Christian Peest, P.

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Cooke, D.

Del’Haye, P.

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).

Diddams, S. A.

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Draggoo, V. G.

Elhadj, S.

Faist, J.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Gaeta, A. L.

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Griffith, A. G.

Guss, G. M.

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Hugi, A.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Jang, J. K.

Ji, X.

Joshi, C.

Kazakov, D.

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

Kippenberg, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Klenner, A.

Kröger, I.

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Lascola, K.

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

Leaird, D. E.

Lee, B. G.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4×4 gb/s parallel electronic bus to wdm optical link silicon photonic translator,” IEEE Photon. Technol. Lett 19, 456–458 (2007).
[Crossref]

Levy, J. S.

Lim, S.

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Lipson, M.

Liu, H. C.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Liu, Y.

Loncar, M.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Luke, K.

Mansuripur, T. S.

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

Mashanovich, G. Z.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Matthews, M. J.

Mejia, E. A.

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

Meyer, J. R.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Miller, S. A.

Nedeljkovic, M.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Niu, B.

Okawachi, Y.

Padmaraju, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Papp, S. B.

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).

Peters, J. D.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Piccardo, M.

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

Qi, M.

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Saha, K.

Schinke, C.

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Schirmacher, A.

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Schmidt, A. J.

J. Yang, E. Ziade, and A. J. Schmidt, “Modeling optical absorption for thermoreflectance measurements,” J. Appl. Phys. 119, 095107 (2016).
[Crossref]

Schmidt, J.

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Shankar, R.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

Small, B. A.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4×4 gb/s parallel electronic bus to wdm optical link silicon photonic translator,” IEEE Photon. Technol. Lett 19, 456–458 (2007).
[Crossref]

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

Spott, A.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Stanton, E. J.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Vahala, K. J.

Villares, G.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Vogt, M. R.

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Volet, N.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

Wang, C.

X. Xue, Y. Xuan, C. Wang, P.-H. Wang, Y. Liu, B. Niu, D. E. Leaird, M. Qi, and A. M. Weiner, “Thermal tuning of Kerr frequency combs in silicon nitride microring resonators,” Opt. Express 24, 687–698 (2016).
[Crossref] [PubMed]

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Wang, P.-H.

Wang, Y.

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

Wegner, P. J.

Weiner, A. M.

Wen, Y. H.

Winter, S.

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Xie, F.

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

Xu, Q.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4×4 gb/s parallel electronic bus to wdm optical link silicon photonic translator,” IEEE Photon. Technol. Lett 19, 456–458 (2007).
[Crossref]

Xuan, Y.

Xue, X.

Yang, J.

J. Yang, E. Ziade, and A. J. Schmidt, “Modeling optical absorption for thermoreflectance measurements,” J. Appl. Phys. 119, 095107 (2016).
[Crossref]

Yang, L.

Yang, S. T.

Yu, M.

Zah, C.-E.

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

Ziade, E.

J. Yang, E. Ziade, and A. J. Schmidt, “Modeling optical absorption for thermoreflectance measurements,” J. Appl. Phys. 119, 095107 (2016).
[Crossref]

AIP Adv. (1)

C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5, 067168 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

P. Chevalier, M. Piccardo, S. Anand, E. A. Mejia, Y. Wang, T. S. Mansuripur, F. Xie, K. Lascola, A. Belyanin, and F. Capasso, “Watt-level widely tunable single-mode emission by injection-locking of a multimode fabry-perot quantum cascade laser,” Appl. Phys. Lett. 112, 061109 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

IEEE Photon. J. (1)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photon. J. 3, 1171–1180 (2011).
[Crossref]

IEEE Photon. Technol. Lett (1)

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4×4 gb/s parallel electronic bus to wdm optical link silicon photonic translator,” IEEE Photon. Technol. Lett 19, 456–458 (2007).
[Crossref]

J. Appl. Phys. (1)

J. Yang, E. Ziade, and A. J. Schmidt, “Modeling optical absorption for thermoreflectance measurements,” J. Appl. Phys. 119, 095107 (2016).
[Crossref]

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).
[Crossref]

Nat. Photonics (2)

D. Kazakov, M. Piccardo, Y. Wang, P. Chevalier, T. S. Mansuripur, F. Xie, C.-E. Zah, K. Lascola, A. Belyanin, and F. Capasso, “Self-starting harmonic frequency comb generation in a quantum cascade laser,” Nat. Photonics 11, 789–792 (2017).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Nature (2)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Optica (2)

Phys. Rev. X (1)

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of a silicon on insulator (SOI) resonator device showing the waveguide and the ring resonator. The SiO2 layer is 4 micron thick, the top and bottom silicon layers are respectively 3.3 μ m and 500 μ m thick. (b) Schematic of the silicon on sapphire (SOS) resonator device showing the waveguide, the ring resonator and the unetched neighboring silicon. The sapphire layer is 650μm thick and the silicon is 1μm thick. (c) The transmission of the waveguide coupled to the resonator under study is measured as function of the quantum cascade laser (QCL) frequency with a HgCdTe (MCT) detector. The temperature of the submount is stabilized and tuned to different set-pointsusing a thermo-electric cooler (TEC) and a temperature controller. while tuning the temperature of the submount. Plot of the position of the ring resonance in wavenumber units as a function of the submount temperature: (d) for the SOI resonators and (e) for the SOS resonators. Inset: the transmitted QCL signal is plotted as a function of the wavenumber at three different temperatures, showing the shift of the resonance.
Fig. 2
Fig. 2 (a) Schematic of the optical setup: a laser diode, a collimating lens and a focusing lens are added to the previous setup shown in Fig. 1(a). The laser position and the position of its focal point can be adjusted with a 3D-controlled stage. The position of the resonance is measured while changing the optical power of the heating laser for (b) the SOI resonator and (c) the SOS resonator. For both resonators, the resonance is tuned by about 0.4 c m 1 with 60 mW. Bottom-left inset: the transmitted QCL signal plotted as a function of the wavenumber at three different optical powers, shows the shift of the resonance. Top-right inset: the quality factor of the resonance with a 10% error bar is plotted as a function of the optical power of the heating laser.
Fig. 3
Fig. 3 (a) Uni-dimensional model of a SOI stack heated by light. The temperature profile is plotted as a function of the height z in the layer. (b) Three-dimensional thermo-optical model of the ring resonator showing the expected shift of the resonance for a beam centered on the resonator with a variable waist. Inset: temperature map of a cross-section of the resonator for two values of the waist. (c) For a beam with dimension w x = 40 μ m, wy=13μm, the temperature profile along the resonator is plotted as a function of the angular coordinate for different beam positions. (d) Map showing the expected resonance shift as a function of the beam position on the sample.
Fig. 4
Fig. 4 The simulated resonance shift for the SOS resonator is plotted as function of the position of the spot on the resonator sample for different sizes of spot wx, wy: (a) w x = 40 μ m, w y = 13 μ m and (b) w x = 49 μ m, w y = 106 μ m. The resonance shift is measured as a function of the position and plotted for two configurations corresponding to the measured spot sizes: (c) w x = 40 μ m, w y = 13 μ m and (d) w x = 49 μm,  w   y = 106 μ m. (e) The four previous maps are shown superposed with the silicon ring and waveguide.
Fig. 5
Fig. 5 (a-b) The ring resonance is modulated and the QCL frequency is fixed. The transmitted signal varies accordingly with the detuning of the resonator. The relative value of both the normalized laser power and transmitted optical power signals are plotted, first over time, and then one as a function of the other in (c) for the SOI resonator, and in (d) for the SOS resonator. The color of the curves correspond to the dots shown in (e-f). The normalized response of the resonator, defined as the product of the normalized laser power and of the out-coupled signal from the resonator, is plotted as function of the modulation frequency for: (e) the SOI resonator, (f) the SOS resonator. In inset of (e) and (f) we plotted the phase difference between the laser power and the detected mid-IR signal and the modulation depth of the mid-IR signal. This modulation depth corresponds to the peak-to-peak amplitude of the mid-IR signal normalized by the peak-to-peak amplitude of the laser power.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

K Δ T = S ρ C p
S Si = α Si P 0 π w 2 e α Si z e r 2 w 2 S SiO 2 = α SiO 2 P 0   ' π w 2 e α SiO 2 z e r 2 w 2
S Si = α S i P 0 π w x w y e α Si z e ( ( x x 0 ) 2 w x 2 + ( y y 0 ) 2 w y 2 ) S SiO 2 = α S i O 2 P 0   ' π w x w y e α SiO 2 z e ( ( x x 0 ) 2 w x 2 + ( y y 0 ) 2 w y 2 )
Δ ν p ν p = ν p ( T 0 ) ν p ( T ) ν p ( T 0 ) = 1 2 π R n ( T 0 ) 1 0 2 π n ( T r ( θ ) ) R d θ 1 2 π R n ( T 0 ) = 1 2 π n ( T 0 ) 0 2 π n ( T r ( θ ) ) d θ
S Si = α Si P 0 π w x w y e α Si z e ( ( x x 0 ) 2 w x 2 + ( y y 0 ) 2 w y 2 )

Metrics