Abstract

We demonstrate a flat optical lens based on plasmonic reflectarray metasurface, which consists of a planar array of hyperbolic-shaped aluminum (Al) nanoantenna separated from an Al ground plane by a SiO2 spacer. The gradual change in the width of the Al nanoantenna enables unique broadband (400-700 nm) to focus on the visible band because of its hyperbolic reflection-phase profile. The focal length of metalens is quickly decreased with the increase of wavelength in the short wavelength region (400-550 nm), compensating the chromatic aberration in traditional lenses. In long wavelength region (550-700 nm), the focal length has only a slight change, thereby minimizing chromatic aberration. Furthermore, the proposed metalens creates a small focal spot beyond diffraction limit, while maintaining high focusing efficiency. Our method of simple and anisotropic nanoantenna is used to realize wide phase tuning range offers a novel strategy to design braodband metalens, and our metalens has widespread applications in compact camera, telescope, and microscope.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonics metalens independent from the incident polarizations

Wei Wang, Zhongyi Guo, Rongzhen Li, Jingran Zhang, Yan Li, Yi Liu, Xinshun Wang, and Shiliang Qu
Opt. Express 23(13) 16782-16791 (2015)

Ultra-thin, planar, broadband, dual-polarity plasmonic metalens

Wei Wang, Zhongyi Guo, Rongzhen Li, Jingran Zhang, Yi Liu, Xinshun Wang, and Shiliang Qu
Photon. Res. 3(3) 68-71 (2015)

Arbitrary focusing lens by holographic metasurface

Rongzhen Li, Zhongyi Guo, Wei Wang, Jingran Zhang, Keya Zhou, Jianlong Liu, Shiliang Qu, Shutian Liu, and Jun Gao
Photon. Res. 3(5) 252-255 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics (Addison Wesley, 2002).
  2. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref] [PubMed]
  3. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref] [PubMed]
  4. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref] [PubMed]
  5. Y. Ra’di, D. L. Sounas, and A. Alù, “Metagratings: beyond the limits of graded metasurfaces for wave front control,” Phys. Rev. Lett. 119(6), 067404 (2017).
    [Crossref] [PubMed]
  6. Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
    [Crossref] [PubMed]
  7. F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
    [Crossref] [PubMed]
  8. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  9. M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
    [Crossref]
  10. F. Qin, K. Huang, J. Wu, J. Teng, C. W. Qiu, and M. Hong, “A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance,” Adv. Mater. 29(8), 1602721 (2017).
    [Crossref] [PubMed]
  11. N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
    [Crossref] [PubMed]
  12. Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high-order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
    [Crossref]
  13. K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
    [Crossref] [PubMed]
  14. X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
    [Crossref] [PubMed]
  15. J. Jiao, Q. Zhao, X. Li, G. F. Liang, X. P. Huang, and X. G. Luo, “Enhancement of focusing energy of ultra-thin planar lens through plasmonic resonance and coupling,” Opt. Express 22(21), 26277–26284 (2014).
    [Crossref] [PubMed]
  16. A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
    [Crossref] [PubMed]
  17. S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional meta-mirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
    [Crossref]
  18. M. Kang, T. Feng, H. T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express 20(14), 15882–15890 (2012).
    [Crossref] [PubMed]
  19. W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
    [Crossref] [PubMed]
  20. H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, X. Chen, and W. Lu, “Reflective metalens with sub-diffraction-limited and multifunctional focusing,” Sci. Rep. 7(1), 12632 (2017).
    [Crossref] [PubMed]
  21. Y. C. Cheng and K. Staliunas, “Near-field flat focusing mirrors,” Appl. Phys. Rev. 5(1), 011101 (2018).
    [Crossref]
  22. Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “Flat focusing mirror,” Sci. Rep. 4(1), 6326 (2014).
    [Crossref] [PubMed]
  23. K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar diffractive lenses: fundamentals, functionalities, and applications,” Adv. Mater. 30(26), e1704556 (2018).
    [Crossref] [PubMed]
  24. S. R. Biswas, C. E. Gutiérrez, A. Nemilentsau, I. H. Lee, S.-H. Oh, P. Avouris, and T. Low, “Tunable graphene metasurface reflectarray for cloaking,” Phys. Rev. Appl. 9(3), 034021 (2018).
    [Crossref]
  25. Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface- based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
    [Crossref]
  26. B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
    [Crossref] [PubMed]
  27. H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
    [Crossref] [PubMed]
  28. S. Gao, W. Yue, C. S. Park, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light,” ACS Photonics 4(2), 322–328 (2017).
    [Crossref]
  29. P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
    [Crossref] [PubMed]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
    [Crossref] [PubMed]
  32. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
    [Crossref] [PubMed]
  33. S. Zhang, M. H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
    [Crossref] [PubMed]
  34. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [Crossref] [PubMed]
  35. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
    [Crossref] [PubMed]
  36. A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-efficiency broadband mid-infrared flat lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
    [Crossref]
  37. H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
    [Crossref] [PubMed]

2018 (8)

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref] [PubMed]

Y. C. Cheng and K. Staliunas, “Near-field flat focusing mirrors,” Appl. Phys. Rev. 5(1), 011101 (2018).
[Crossref]

K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar diffractive lenses: fundamentals, functionalities, and applications,” Adv. Mater. 30(26), e1704556 (2018).
[Crossref] [PubMed]

S. R. Biswas, C. E. Gutiérrez, A. Nemilentsau, I. H. Lee, S.-H. Oh, P. Avouris, and T. Low, “Tunable graphene metasurface reflectarray for cloaking,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional meta-mirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-efficiency broadband mid-infrared flat lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

2017 (8)

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
[Crossref] [PubMed]

S. Gao, W. Yue, C. S. Park, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light,” ACS Photonics 4(2), 322–328 (2017).
[Crossref]

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, X. Chen, and W. Lu, “Reflective metalens with sub-diffraction-limited and multifunctional focusing,” Sci. Rep. 7(1), 12632 (2017).
[Crossref] [PubMed]

F. Qin, K. Huang, J. Wu, J. Teng, C. W. Qiu, and M. Hong, “A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance,” Adv. Mater. 29(8), 1602721 (2017).
[Crossref] [PubMed]

Y. Ra’di, D. L. Sounas, and A. Alù, “Metagratings: beyond the limits of graded metasurfaces for wave front control,” Phys. Rev. Lett. 119(6), 067404 (2017).
[Crossref] [PubMed]

2016 (3)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

S. Zhang, M. H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

2015 (3)

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref] [PubMed]

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface- based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

2014 (3)

Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “Flat focusing mirror,” Sci. Rep. 4(1), 6326 (2014).
[Crossref] [PubMed]

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high-order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

J. Jiao, Q. Zhao, X. Li, G. F. Liang, X. P. Huang, and X. G. Luo, “Enhancement of focusing energy of ultra-thin planar lens through plasmonic resonance and coupling,” Opt. Express 22(21), 26277–26284 (2014).
[Crossref] [PubMed]

2013 (2)

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

2012 (4)

M. Kang, T. Feng, H. T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express 20(14), 15882–15890 (2012).
[Crossref] [PubMed]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

2010 (2)

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

2009 (1)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Aieta, F.

Alù, A.

Y. Ra’di, D. L. Sounas, and A. Alù, “Metagratings: beyond the limits of graded metasurfaces for wave front control,” Phys. Rev. Lett. 119(6), 067404 (2017).
[Crossref] [PubMed]

Avouris, P.

S. R. Biswas, C. E. Gutiérrez, A. Nemilentsau, I. H. Lee, S.-H. Oh, P. Avouris, and T. Low, “Tunable graphene metasurface reflectarray for cloaking,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Aydin, K.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Azad, A. K.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Biswas, S. R.

S. R. Biswas, C. E. Gutiérrez, A. Nemilentsau, I. H. Lee, S.-H. Oh, P. Avouris, and T. Low, “Tunable graphene metasurface reflectarray for cloaking,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Boroviks, S.

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional meta-mirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

Bozhevolnyi, S. I.

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional meta-mirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Butun, S.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Cai, B.

Cao, G.

H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, X. Chen, and W. Lu, “Reflective metalens with sub-diffraction-limited and multifunctional focusing,” Sci. Rep. 7(1), 12632 (2017).
[Crossref] [PubMed]

Capasso, F.

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

S. Zhang, M. H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Chanda, D.

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-efficiency broadband mid-infrared flat lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

Chen, H. T.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Chen, J. W.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

Chen, T. Y.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

Chen, W. T.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, X.

H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, X. Chen, and W. Lu, “Reflective metalens with sub-diffraction-limited and multifunctional focusing,” Sci. Rep. 7(1), 12632 (2017).
[Crossref] [PubMed]

Cheng, Y. C.

Y. C. Cheng and K. Staliunas, “Near-field flat focusing mirrors,” Appl. Phys. Rev. 5(1), 011101 (2018).
[Crossref]

Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “Flat focusing mirror,” Sci. Rep. 4(1), 6326 (2014).
[Crossref] [PubMed]

Choi, D. Y.

S. Gao, W. Yue, C. S. Park, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light,” ACS Photonics 4(2), 322–328 (2017).
[Crossref]

Chu, C. H.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

Chum, C. C.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high-order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Cojocaru, C.

Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “Flat focusing mirror,” Sci. Rep. 4(1), 6326 (2014).
[Crossref] [PubMed]

Cui, T. J.

Deshpande, R. A.

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional meta-mirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Ding, F.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

Drazdys, R.

Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “Flat focusing mirror,” Sci. Rep. 4(1), 6326 (2014).
[Crossref] [PubMed]

Efimov, A. V.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Eriksen, R. L.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Feng, T.

Franklin, D.

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-efficiency broadband mid-infrared flat lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

Gabay, I.

Gao, H.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Gao, S.

S. Gao, W. Yue, C. S. Park, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light,” ACS Photonics 4(2), 322–328 (2017).
[Crossref]

Garcia-Vidal, F. J.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref] [PubMed]

Ghosh, S.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Groever, B.

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
[Crossref] [PubMed]

Gu, J.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface- based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Gutiérrez, C. E.

S. R. Biswas, C. E. Gutiérrez, A. Nemilentsau, I. H. Lee, S.-H. Oh, P. Avouris, and T. Low, “Tunable graphene metasurface reflectarray for cloaking,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Han, J.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface- based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

Hong, M.

K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar diffractive lenses: fundamentals, functionalities, and applications,” Adv. Mater. 30(26), e1704556 (2018).
[Crossref] [PubMed]

F. Qin, K. Huang, J. Wu, J. Teng, C. W. Qiu, and M. Hong, “A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance,” Adv. Mater. 29(8), 1602721 (2017).
[Crossref] [PubMed]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref] [PubMed]

Huang, K.

K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar diffractive lenses: fundamentals, functionalities, and applications,” Adv. Mater. 30(26), e1704556 (2018).
[Crossref] [PubMed]

F. Qin, K. Huang, J. Wu, J. Teng, C. W. Qiu, and M. Hong, “A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance,” Adv. Mater. 29(8), 1602721 (2017).
[Crossref] [PubMed]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref] [PubMed]

Huang, X. P.

Huang, Y. W.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

Hyun, J. K.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Jiao, J.

Kang, M.

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

S. Zhang, M. H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

Kicas, S.

Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “Flat focusing mirror,” Sci. Rep. 4(1), 6326 (2014).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Kim, E. S.

S. Gao, W. Yue, C. S. Park, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light,” ACS Photonics 4(2), 322–328 (2017).
[Crossref]

Kim, M. H.

Krauss, T. F.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

Lauhon, L. J.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Lee, I. H.

S. R. Biswas, C. E. Gutiérrez, A. Nemilentsau, I. H. Lee, S.-H. Oh, P. Avouris, and T. Low, “Tunable graphene metasurface reflectarray for cloaking,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Lee, M. H.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Lee, S. S.

S. Gao, W. Yue, C. S. Park, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light,” ACS Photonics 4(2), 322–328 (2017).
[Crossref]

Leong, E. S. P.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high-order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Leuenberger, M. N.

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-efficiency broadband mid-infrared flat lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

Li, G.

H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, X. Chen, and W. Lu, “Reflective metalens with sub-diffraction-limited and multifunctional focusing,” Sci. Rep. 7(1), 12632 (2017).
[Crossref] [PubMed]

Li, J.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

M. Kang, T. Feng, H. T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express 20(14), 15882–15890 (2012).
[Crossref] [PubMed]

Li, X.

Li, Z.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Liang, G. F.

Liang, H.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

Liao, C. Y.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Lin, Q.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

Liu, H.

K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar diffractive lenses: fundamentals, functionalities, and applications,” Adv. Mater. 30(26), e1704556 (2018).
[Crossref] [PubMed]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref] [PubMed]

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high-order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Liu, L.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

Liu, Y. J.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high-order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Low, T.

S. R. Biswas, C. E. Gutiérrez, A. Nemilentsau, I. H. Lee, S.-H. Oh, P. Avouris, and T. Low, “Tunable graphene metasurface reflectarray for cloaking,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Lu, W.

H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, X. Chen, and W. Lu, “Reflective metalens with sub-diffraction-limited and multifunctional focusing,” Sci. Rep. 7(1), 12632 (2017).
[Crossref] [PubMed]

Luk’yanchuk, B.

K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar diffractive lenses: fundamentals, functionalities, and applications,” Adv. Mater. 30(26), e1704556 (2018).
[Crossref] [PubMed]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref] [PubMed]

Luo, X. G.

Mansuripur, T.

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Meem, M.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref] [PubMed]

Menon, R.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref] [PubMed]

Mohammad, N.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref] [PubMed]

Mortensen, N. A.

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional meta-mirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

Nemilentsau, A.

S. R. Biswas, C. E. Gutiérrez, A. Nemilentsau, I. H. Lee, S.-H. Oh, P. Avouris, and T. Low, “Tunable graphene metasurface reflectarray for cloaking,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Nielsen, M. G.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

Odom, T. W.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Oh, S.-H.

S. R. Biswas, C. E. Gutiérrez, A. Nemilentsau, I. H. Lee, S.-H. Oh, P. Avouris, and T. Low, “Tunable graphene metasurface reflectarray for cloaking,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Palacios, E.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Park, C. S.

S. Gao, W. Yue, C. S. Park, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light,” ACS Photonics 4(2), 322–328 (2017).
[Crossref]

Peckus, M.

Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “Flat focusing mirror,” Sci. Rep. 4(1), 6326 (2014).
[Crossref] [PubMed]

Pors, A.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

Qin, F.

K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar diffractive lenses: fundamentals, functionalities, and applications,” Adv. Mater. 30(26), e1704556 (2018).
[Crossref] [PubMed]

F. Qin, K. Huang, J. Wu, J. Teng, C. W. Qiu, and M. Hong, “A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance,” Adv. Mater. 29(8), 1602721 (2017).
[Crossref] [PubMed]

Qiu, C. W.

K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar diffractive lenses: fundamentals, functionalities, and applications,” Adv. Mater. 30(26), e1704556 (2018).
[Crossref] [PubMed]

F. Qin, K. Huang, J. Wu, J. Teng, C. W. Qiu, and M. Hong, “A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance,” Adv. Mater. 29(8), 1602721 (2017).
[Crossref] [PubMed]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref] [PubMed]

Ra’di, Y.

Y. Ra’di, D. L. Sounas, and A. Alù, “Metagratings: beyond the limits of graded metasurfaces for wave front control,” Phys. Rev. Lett. 119(6), 067404 (2017).
[Crossref] [PubMed]

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Rousso, D.

Safaei, A.

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-efficiency broadband mid-infrared flat lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

She, A.

Shen, B.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref] [PubMed]

Shi, Z.

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Singleton, J.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Sounas, D. L.

Y. Ra’di, D. L. Sounas, and A. Alù, “Metagratings: beyond the limits of graded metasurfaces for wave front control,” Phys. Rev. Lett. 119(6), 067404 (2017).
[Crossref] [PubMed]

Staliunas, K.

Y. C. Cheng and K. Staliunas, “Near-field flat focusing mirrors,” Appl. Phys. Rev. 5(1), 011101 (2018).
[Crossref]

Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “Flat focusing mirror,” Sci. Rep. 4(1), 6326 (2014).
[Crossref] [PubMed]

Su, X.

H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, X. Chen, and W. Lu, “Reflective metalens with sub-diffraction-limited and multifunctional focusing,” Sci. Rep. 7(1), 12632 (2017).
[Crossref] [PubMed]

Sun, G.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

Sun, Q.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Taylor, A. J.

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Teng, J.

K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar diffractive lenses: fundamentals, functionalities, and applications,” Adv. Mater. 30(26), e1704556 (2018).
[Crossref] [PubMed]

F. Qin, K. Huang, J. Wu, J. Teng, C. W. Qiu, and M. Hong, “A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance,” Adv. Mater. 29(8), 1602721 (2017).
[Crossref] [PubMed]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref] [PubMed]

Teng, J. H.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high-order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Tian, Z.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface- based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Troccoli, M.

Trull, J.

Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “Flat focusing mirror,” Sci. Rep. 4(1), 6326 (2014).
[Crossref] [PubMed]

Tsai, D. P.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

Tsai, W. Y.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

Vázquez-Guardado, A.

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-efficiency broadband mid-infrared flat lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Vilaseca, R.

Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “Flat focusing mirror,” Sci. Rep. 4(1), 6326 (2014).
[Crossref] [PubMed]

Wang, H. T.

Wang, P.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface- based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Wang, X.

Wang, Y.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Wu, J.

F. Qin, K. Huang, J. Wu, J. Teng, C. W. Qiu, and M. Hong, “A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance,” Adv. Mater. 29(8), 1602721 (2017).
[Crossref] [PubMed]

Wu, P. C.

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

Xie, X.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, Y.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface- based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Yang, H.

H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, X. Chen, and W. Lu, “Reflective metalens with sub-diffraction-limited and multifunctional focusing,” Sci. Rep. 7(1), 12632 (2017).
[Crossref] [PubMed]

Yang, J. C.

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

Ye, H.

K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar diffractive lenses: fundamentals, functionalities, and applications,” Adv. Mater. 30(26), e1704556 (2018).
[Crossref] [PubMed]

Yu, N.

Yu, X.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Yue, W.

S. Gao, W. Yue, C. S. Park, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light,” ACS Photonics 4(2), 322–328 (2017).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface- based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zhang, S.

Zhang, W.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface- based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zhang, X.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface- based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zhao, Q.

Zhao, Z.

H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, X. Chen, and W. Lu, “Reflective metalens with sub-diffraction-limited and multifunctional focusing,” Sci. Rep. 7(1), 12632 (2017).
[Crossref] [PubMed]

Zhou, J.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

Zhou, L.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

S. Gao, W. Yue, C. S. Park, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light,” ACS Photonics 4(2), 322–328 (2017).
[Crossref]

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional meta-mirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

Adv. Mater. (2)

K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar diffractive lenses: fundamentals, functionalities, and applications,” Adv. Mater. 30(26), e1704556 (2018).
[Crossref] [PubMed]

F. Qin, K. Huang, J. Wu, J. Teng, C. W. Qiu, and M. Hong, “A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance,” Adv. Mater. 29(8), 1602721 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high-order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface- based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

A. Safaei, A. Vázquez-Guardado, D. Franklin, M. N. Leuenberger, and D. Chanda, “High-efficiency broadband mid-infrared flat lens,” Adv. Opt. Mater. 6(13), 1800216 (2018).
[Crossref]

Appl. Phys. Lett. (1)

A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, “Ultra-thin metasurface microwave flat lens for broadband applications,” Appl. Phys. Lett. 110(22), 224101 (2017).
[Crossref] [PubMed]

Appl. Phys. Rev. (1)

Y. C. Cheng and K. Staliunas, “Near-field flat focusing mirrors,” Appl. Phys. Rev. 5(1), 011101 (2018).
[Crossref]

Nano Lett. (9)

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17(5), 3188–3194 (2017).
[Crossref] [PubMed]

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett. 17(1), 445–452 (2017).
[Crossref] [PubMed]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17(8), 4902–4907 (2017).
[Crossref] [PubMed]

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultra-high numerical aperture metalens at visible wavelengths,” Nano Lett. 18(7), 4460–4466 (2018).
[Crossref] [PubMed]

H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10(10), 4111–4116 (2010).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C. W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Appl. (1)

S. R. Biswas, C. E. Gutiérrez, A. Nemilentsau, I. H. Lee, S.-H. Oh, P. Avouris, and T. Low, “Tunable graphene metasurface reflectarray for cloaking,” Phys. Rev. Appl. 9(3), 034021 (2018).
[Crossref]

Phys. Rev. Lett. (1)

Y. Ra’di, D. L. Sounas, and A. Alù, “Metagratings: beyond the limits of graded metasurfaces for wave front control,” Phys. Rev. Lett. 119(6), 067404 (2017).
[Crossref] [PubMed]

Rep. Prog. Phys. (2)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref] [PubMed]

Sci. Rep. (3)

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref] [PubMed]

H. Yang, G. Li, X. Su, G. Cao, Z. Zhao, X. Chen, and W. Lu, “Reflective metalens with sub-diffraction-limited and multifunctional focusing,” Sci. Rep. 7(1), 12632 (2017).
[Crossref] [PubMed]

Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “Flat focusing mirror,” Sci. Rep. 4(1), 6326 (2014).
[Crossref] [PubMed]

Science (2)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Other (3)

E. Hecht, Optics (Addison Wesley, 2002).

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic drawing of plasmonic metasurface based on hyperbolic-shaped Al nanoantenna reflective array with geometric parameters of Py = 200 nm, H1 = 20 nm, H2 = 50 nm, and H3 = 200 nm. L and W (x) represent the length and width at the position of x of Al antenna, respectively. A y-polarized plane wave with a unitary electric field is incident normally from the top of the structure.
Fig. 2
Fig. 2 (a) Reflection phase Φ extracted from FDTD simulation data (marked with diamonds) at different widths of rectangular Al nanorod in Al-SiO2-Al configuration with incident wavelength of 550 nm. The length of rectangular Al nanorod is set as1800 nm, and the lattice and height sizes of Al-SiO2-Al resonantor are the same as those in Fig. 1. The blue dot-dashed line indicates the linear phase variation (Φ = kW, k = 4.19×10−2 rad/nm). (b) Width of Al nanoantenna as a function of position x. The inset shows the schematic of hyperbolic-shaped Al nanoantenna with L = 3.6 µm. (c) Simulated 2D map for phase shift of Al plasmonic metasurface as a function of wavelength and position x. The geometrical parameters of Al nanoantenna are the same as those in (b). The other parameters are the same as those in Fig. 1. (d) Spatial phase variations of reflected light derived from Eq. (1) (red curve) and obtained by FDTD simulations (marked with stars).
Fig. 3
Fig. 3 Field intensity (|E|2) distributions of focusing effect in the xz plane for y-polarized incident light at the wavelengths of 400 (a), 550 (b), 580 (c) and 700 nm (d). The white and red dashed lines in (a) represent the designed and actual focal plane, respectively. (e) Focal length (blue curve with triangle) and FWHM (green curve with circle) as functions of incident wavelength. (f) Focusing efficiency of metalens as a function of incident wavelength.
Fig. 4
Fig. 4 Field intensity (|E|2) distributions of metalens in the xz plane ((a) and (b)) and along the focal line ((c) and (d)). (a) and (c) correspond to the designed width of L = 5.4 µm. (b) and (d) correspond to the designed focal length of f = 4.4 µm. The white and red dashed lines in (a) and (b) represent the designed and actual focal planes, respectively. The other parameters are the same as those in Fig. 3(b). The insets in (a) and (b) show the respective schematics.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ( x )= 2π λ ( f x 2 + f 2 )+2nπ+ Φ 0
W( x )= Φ( x ) k = 1 k [ 2π λ ( f x 2 + f 2 )+2nπ+ Φ 0 ]

Metrics