Abstract

We propose a new method of phase-singularities manipulation in optical vortices carrying orbital angular momentum (OAM), namely, quadrant-separable multi-singularity manipulation (QSMSM). In QSMSM, the positions of partial vortices in a quadrant region can be manipulated, while the singularities in other regions remain unchanged. The basic model of the multi-singularity OAM beam is obtained by the principle of coherent superposition of two Hermite–Gaussian modes with spatial mismatch. The actual multi-singularity beams are generated by external modulation with a spatial light modulator. The distribution of vortices trajectory can be controlled by the energy mismatch degree and the spatial mismatch degree. The vortices in a quadrant region can be independently manipulated by partially controlling the energy mismatch degree. The technology of partially tuning singularities in QSMSM improves the flexibility of vortices control and has great potential in applications of optical tweezers and optical modulators.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens

A. Volyar, M. Bretsko, Ya. Akimova, and Yu. Egorov
Appl. Opt. 58(21) 5748-5755 (2019)

Polarization controllable generation of flat superimposed OAM states based on metasurface

Ming Chen, Wenwen Gao, Houquan Liu, Chuanxin Teng, Shijie Deng, Hongchang Deng, and Libo Yuan
Opt. Express 27(15) 20133-20144 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
    [Crossref]
  2. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  3. J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
    [Crossref]
  4. J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  5. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
    [Crossref] [PubMed]
  6. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [Crossref] [PubMed]
  7. S. Fu, T. Wang, Z. Zhang, Y. Zhai, and C. Gao, “Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions,” Opt. Express 25(17), 20098–20108 (2017).
    [Crossref] [PubMed]
  8. M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
    [Crossref] [PubMed]
  9. M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7(3), 17146 (2018).
    [Crossref]
  10. R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
    [Crossref] [PubMed]
  11. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  12. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
    [Crossref]
  13. M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
    [Crossref]
  14. J. A. Anguita, J. Herreros, and I. B. Djordjevic, “Coherent multimode OAM superpositions for multidimensional modulation,” IEEE Photonics J. 6(2), 1 (2014).
    [Crossref]
  15. J. A. Anguita, J. Herreros, and J. E. Cisternas, “Generation and detection of multiple coaxial vortex beams for free-space optical communications,” CLEO Technical Digest, JTu2K.5. (2012).
  16. C. Chang, Y. Gao, J. Xia, S. Nie, and J. Ding, “Shaping of optical vector beams in three dimensions,” Opt. Lett. 42(19), 3884–3887 (2017).
    [Crossref] [PubMed]
  17. X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
    [Crossref]
  18. M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
    [Crossref]
  19. K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
    [Crossref] [PubMed]
  20. E. Abramochkin and T. Alieva, “Closed-form expression for mutual intensity evolution of Hermite-Laguerre-Gaussian Schell-model beams,” Opt. Lett. 42(19), 4032–4035 (2017).
    [Crossref] [PubMed]
  21. E. Abramochkin and V. G. Volostnikov, “Generalized Hermite-Laguerre-Gauss beams,” Phys. Wave Phenom. 18(1), 14–22 (2010).
    [Crossref]
  22. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian modes of the paraxial wave equation and stable resonators,” J. Opt. Soc. Am. A 21(5), 873–880 (2004).
    [Crossref] [PubMed]
  23. J. B. Bentley, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, “Generation of helical Ince-Gaussian beams with a liquid-crystal display,” Opt. Lett. 31(5), 649–651 (2006).
    [Crossref] [PubMed]
  24. Y. Shen, Z. Wan, X. Fu, Q. Liu, and M. Gong, “Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser,” J. Opt. Soc. Am. A 35(12), 2940–2944 (2018).
    [Crossref]
  25. S. C. Chu, C. S. Yang, and K. Otsuka, “Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer,” Opt. Express 16(24), 19934–19949 (2008).
    [Crossref] [PubMed]
  26. C. F. Kuo and S. C. Chu, “Numerical study of the properties of optical vortex array laser tweezers,” Opt. Express 21(22), 26418–26431 (2013).
    [Crossref] [PubMed]
  27. H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
    [Crossref]
  28. L. Li, C. Chang, X. Yuan, C. Yuan, S. Feng, S. Nie, and J. Ding, “Generation of optical vortex array along arbitrary curvilinear arrangement,” Opt. Express 26(8), 9798–9812 (2018).
    [Crossref] [PubMed]
  29. X. Li, H. Ma, H. Zhang, Y. Tai, H. Li, M. Tang, J. Wang, J. Tang, and Y. Cai, “Close-packed optical vortex lattices with controllable structures,” Opt. Express 26(18), 22965–22975 (2018).
    [Crossref] [PubMed]
  30. W. Z. Wuhong Zhang and L. C. Lixiang Chen, “High-harmonic-generation-inspired preparation of optical vortex arrays with arbitrary-order topological charges,” Chin. Opt. Lett. 16(3), 030501 (2018).
    [Crossref]
  31. D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
    [Crossref] [PubMed]
  32. C. Rosales-Guzmán, N. Bhebhe, and A. Forbes, “Simultaneous generation of multiple vector beams on a single SLM,” Opt. Express 25(21), 25697–25706 (2017).
    [Crossref] [PubMed]
  33. A. Dudley, N. Majola, N. Chetty, and A. Forbes, “Implementing digital holograms to create and measure complex-plane optical fields,” Am. J. Phys. 84(2), 106–112 (2016).
    [Crossref]
  34. A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B 4(2), S47–S51 (2002).
    [Crossref]
  35. L. Stoyanov, G. Maleshkov, M. Zhekova, I. Stefanov, D. N. Neshev, G. G. Paulus, and A. Dreischuh, “Far-field pattern formation by manipulating the topological charges of square-shaped optical vortex lattices,” J. Opt. Soc. Am. B 35(2), 402–409 (2018).
    [Crossref]
  36. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt. 46(15), 2893–2898 (2007).
    [Crossref] [PubMed]
  37. S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Appl. Opt. 46(32), 7862–7867 (2007).
    [Crossref] [PubMed]
  38. Y. Shen, Y. Meng, X. Fu, and M. Gong, “Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser,” Opt. Lett. 43(2), 291–294 (2018).
    [Crossref] [PubMed]

2018 (8)

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7(3), 17146 (2018).
[Crossref]

Y. Shen, Z. Wan, X. Fu, Q. Liu, and M. Gong, “Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser,” J. Opt. Soc. Am. A 35(12), 2940–2944 (2018).
[Crossref]

L. Li, C. Chang, X. Yuan, C. Yuan, S. Feng, S. Nie, and J. Ding, “Generation of optical vortex array along arbitrary curvilinear arrangement,” Opt. Express 26(8), 9798–9812 (2018).
[Crossref] [PubMed]

X. Li, H. Ma, H. Zhang, Y. Tai, H. Li, M. Tang, J. Wang, J. Tang, and Y. Cai, “Close-packed optical vortex lattices with controllable structures,” Opt. Express 26(18), 22965–22975 (2018).
[Crossref] [PubMed]

W. Z. Wuhong Zhang and L. C. Lixiang Chen, “High-harmonic-generation-inspired preparation of optical vortex arrays with arbitrary-order topological charges,” Chin. Opt. Lett. 16(3), 030501 (2018).
[Crossref]

D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
[Crossref] [PubMed]

L. Stoyanov, G. Maleshkov, M. Zhekova, I. Stefanov, D. N. Neshev, G. G. Paulus, and A. Dreischuh, “Far-field pattern formation by manipulating the topological charges of square-shaped optical vortex lattices,” J. Opt. Soc. Am. B 35(2), 402–409 (2018).
[Crossref]

Y. Shen, Y. Meng, X. Fu, and M. Gong, “Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser,” Opt. Lett. 43(2), 291–294 (2018).
[Crossref] [PubMed]

2017 (5)

2016 (3)

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
[Crossref]

A. Dudley, N. Majola, N. Chetty, and A. Forbes, “Implementing digital holograms to create and measure complex-plane optical fields,” Am. J. Phys. 84(2), 106–112 (2016).
[Crossref]

2014 (1)

J. A. Anguita, J. Herreros, and I. B. Djordjevic, “Coherent multimode OAM superpositions for multidimensional modulation,” IEEE Photonics J. 6(2), 1 (2014).
[Crossref]

2013 (4)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

C. F. Kuo and S. C. Chu, “Numerical study of the properties of optical vortex array laser tweezers,” Opt. Express 21(22), 26418–26431 (2013).
[Crossref] [PubMed]

2012 (3)

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

2011 (3)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
[Crossref]

M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
[Crossref]

2010 (1)

E. Abramochkin and V. G. Volostnikov, “Generalized Hermite-Laguerre-Gauss beams,” Phys. Wave Phenom. 18(1), 14–22 (2010).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

2004 (2)

2002 (1)

A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B 4(2), S47–S51 (2002).
[Crossref]

1993 (1)

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Abramochkin, E.

Ahmed, N.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Alieva, T.

Allen, L.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Alpmann, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
[Crossref]

M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
[Crossref]

Anguita, J. A.

J. A. Anguita, J. Herreros, and I. B. Djordjevic, “Coherent multimode OAM superpositions for multidimensional modulation,” IEEE Photonics J. 6(2), 1 (2014).
[Crossref]

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Bandres, M. A.

Bansal, A. K.

D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
[Crossref] [PubMed]

Barnett, S. M.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Bentley, J. B.

Bhebhe, N.

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Cai, Y.

Chang, C.

Chetty, N.

A. Dudley, N. Majola, N. Chetty, and A. Forbes, “Implementing digital holograms to create and measure complex-plane optical fields,” Am. J. Phys. 84(2), 106–112 (2016).
[Crossref]

Chu, D.

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

Chu, J.

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

Chu, S. C.

Davis, J. A.

Denz, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
[Crossref]

M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
[Crossref]

Dholakia, K.

D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
[Crossref] [PubMed]

Ding, J.

Djordjevic, I. B.

J. A. Anguita, J. Herreros, and I. B. Djordjevic, “Coherent multimode OAM superpositions for multidimensional modulation,” IEEE Photonics J. 6(2), 1 (2014).
[Crossref]

Dolinar, S.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dreischuh, A.

Dudley, A.

A. Dudley, N. Majola, N. Chetty, and A. Forbes, “Implementing digital holograms to create and measure complex-plane optical fields,” Am. J. Phys. 84(2), 106–112 (2016).
[Crossref]

Erhard, M.

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7(3), 17146 (2018).
[Crossref]

Esseling, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Fazal, I. M.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Feng, S.

Fickler, R.

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7(3), 17146 (2018).
[Crossref]

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Forbes, A.

C. Rosales-Guzmán, N. Bhebhe, and A. Forbes, “Simultaneous generation of multiple vector beams on a single SLM,” Opt. Express 25(21), 25697–25706 (2017).
[Crossref] [PubMed]

A. Dudley, N. Majola, N. Chetty, and A. Forbes, “Implementing digital holograms to create and measure complex-plane optical fields,” Am. J. Phys. 84(2), 106–112 (2016).
[Crossref]

Fu, S.

Fu, X.

Y. Shen, Y. Meng, X. Fu, and M. Gong, “Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser,” Opt. Lett. 43(2), 291–294 (2018).
[Crossref] [PubMed]

Y. Shen, Z. Wan, X. Fu, Q. Liu, and M. Gong, “Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser,” J. Opt. Soc. Am. A 35(12), 2940–2944 (2018).
[Crossref]

Gao, C.

Gao, Y.

Glackin, J. M. E.

D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
[Crossref] [PubMed]

Gong, M.

Y. Shen, Z. Wan, X. Fu, Q. Liu, and M. Gong, “Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser,” J. Opt. Soc. Am. A 35(12), 2940–2944 (2018).
[Crossref]

Y. Shen, Y. Meng, X. Fu, and M. Gong, “Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser,” Opt. Lett. 43(2), 291–294 (2018).
[Crossref] [PubMed]

Grier, D.

Gutiérrez-Vega, J. C.

Herreros, J.

J. A. Anguita, J. Herreros, and I. B. Djordjevic, “Coherent multimode OAM superpositions for multidimensional modulation,” IEEE Photonics J. 6(2), 1 (2014).
[Crossref]

Huang, H.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Krauss, T. F.

D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
[Crossref] [PubMed]

Krenn, M.

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7(3), 17146 (2018).
[Crossref]

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Kuo, C. F.

Ladavac, K.

Lapkiewicz, R.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Lavery, M. P. J.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Li, H.

X. Li, H. Ma, H. Zhang, Y. Tai, H. Li, M. Tang, J. Wang, J. Tang, and Y. Cai, “Close-packed optical vortex lattices with controllable structures,” Opt. Express 26(18), 22965–22975 (2018).
[Crossref] [PubMed]

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Li, L.

Li, X.

X. Li, H. Ma, H. Zhang, Y. Tai, H. Li, M. Tang, J. Wang, J. Tang, and Y. Cai, “Close-packed optical vortex lattices with controllable structures,” Opt. Express 26(18), 22965–22975 (2018).
[Crossref] [PubMed]

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

Liu, Q.

Y. Shen, Z. Wan, X. Fu, Q. Liu, and M. Gong, “Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser,” J. Opt. Soc. Am. A 35(12), 2940–2944 (2018).
[Crossref]

Lixiang Chen, L. C.

Ma, H.

X. Li, H. Ma, H. Zhang, Y. Tai, H. Li, M. Tang, J. Wang, J. Tang, and Y. Cai, “Close-packed optical vortex lattices with controllable structures,” Opt. Express 26(18), 22965–22975 (2018).
[Crossref] [PubMed]

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Majola, N.

A. Dudley, N. Majola, N. Chetty, and A. Forbes, “Implementing digital holograms to create and measure complex-plane optical fields,” Am. J. Phys. 84(2), 106–112 (2016).
[Crossref]

Maleshkov, G.

Meng, Y.

Miyamoto, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Morita, R.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Neshev, D. N.

Nie, S.

Nie, Z.

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Omatsu, T.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Otsuka, K.

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Padgett, M. J.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Paulus, G. G.

Pietrzyk, M. E.

D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
[Crossref] [PubMed]

Plick, W. N.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Ramelow, S.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Ren, Y.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Rosales-Guzmán, C.

Samuel, I. D. W.

D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
[Crossref] [PubMed]

Schaeff, C.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Senthilkumaran, P.

Shen, Y.

Y. Shen, Y. Meng, X. Fu, and M. Gong, “Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser,” Opt. Lett. 43(2), 291–294 (2018).
[Crossref] [PubMed]

Y. Shen, Z. Wan, X. Fu, Q. Liu, and M. Gong, “Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser,” J. Opt. Soc. Am. A 35(12), 2940–2944 (2018).
[Crossref]

Smithwick, Q.

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

Speirits, F. C.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Stefanov, I.

Stellinga, D.

D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
[Crossref] [PubMed]

Stoyanov, L.

Tai, Y.

X. Li, H. Ma, H. Zhang, Y. Tai, H. Li, M. Tang, J. Wang, J. Tang, and Y. Cai, “Close-packed optical vortex lattices with controllable structures,” Opt. Express 26(18), 22965–22975 (2018).
[Crossref] [PubMed]

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Takahashi, F.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Tang, J.

X. Li, H. Ma, H. Zhang, Y. Tai, H. Li, M. Tang, J. Wang, J. Tang, and Y. Cai, “Close-packed optical vortex lattices with controllable structures,” Opt. Express 26(18), 22965–22975 (2018).
[Crossref] [PubMed]

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Tang, M.

X. Li, H. Ma, H. Zhang, Y. Tai, H. Li, M. Tang, J. Wang, J. Tang, and Y. Cai, “Close-packed optical vortex lattices with controllable structures,” Opt. Express 26(18), 22965–22975 (2018).
[Crossref] [PubMed]

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Tur, M.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Turnbull, G. A.

D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
[Crossref] [PubMed]

van der Veen, H. E. L. O.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B 4(2), S47–S51 (2002).
[Crossref]

Volostnikov, V. G.

E. Abramochkin and V. G. Volostnikov, “Generalized Hermite-Laguerre-Gauss beams,” Phys. Wave Phenom. 18(1), 14–22 (2010).
[Crossref]

Vyas, S.

Wan, Z.

Y. Shen, Z. Wan, X. Fu, Q. Liu, and M. Gong, “Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser,” J. Opt. Soc. Am. A 35(12), 2940–2944 (2018).
[Crossref]

Wang, J.

X. Li, H. Ma, H. Zhang, Y. Tai, H. Li, M. Tang, J. Wang, J. Tang, and Y. Cai, “Close-packed optical vortex lattices with controllable structures,” Opt. Express 26(18), 22965–22975 (2018).
[Crossref] [PubMed]

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
[Crossref]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, T.

Wang, Y.

D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
[Crossref] [PubMed]

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B 4(2), S47–S51 (2002).
[Crossref]

Willner, A. E.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdemann, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
[Crossref]

M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
[Crossref]

Woerdman, J. P.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wuhong Zhang, W. Z.

Xia, J.

Yan, Y.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, C. S.

Yang, J.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yuan, C.

Yuan, X.

Yue, Y.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7(3), 17146 (2018).
[Crossref]

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B 4(2), S47–S51 (2002).
[Crossref]

Zhai, Y.

Zhang, H.

Zhang, Z.

Zhekova, M.

ACS Nano (1)

D. Stellinga, M. E. Pietrzyk, J. M. E. Glackin, Y. Wang, A. K. Bansal, G. A. Turnbull, K. Dholakia, I. D. W. Samuel, and T. F. Krauss, “An Organic Vortex Laser,” ACS Nano 12(3), 2389–2394 (2018).
[Crossref] [PubMed]

Am. J. Phys. (1)

A. Dudley, N. Majola, N. Chetty, and A. Forbes, “Implementing digital holograms to create and measure complex-plane optical fields,” Am. J. Phys. 84(2), 106–112 (2016).
[Crossref]

Ann. Phys. (1)

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
[Crossref]

M. Woerdemann, C. Alpmann, and C. Denz, “Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams,” Appl. Phys. Lett. 98(11), 111101 (2011).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Photonics J. (1)

J. A. Anguita, J. Herreros, and I. B. Djordjevic, “Coherent multimode OAM superpositions for multidimensional modulation,” IEEE Photonics J. 6(2), 1 (2014).
[Crossref]

J. Opt. (1)

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

J. Opt. B (1)

A. Vaziri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angular momentum for applications in quantum experiments,” J. Opt. B 4(2), S47–S51 (2002).
[Crossref]

J. Opt. Soc. Am. A (2)

Y. Shen, Z. Wan, X. Fu, Q. Liu, and M. Gong, “Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser,” J. Opt. Soc. Am. A 35(12), 2940–2944 (2018).
[Crossref]

M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian modes of the paraxial wave equation and stable resonators,” J. Opt. Soc. Am. A 21(5), 873–880 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Light Sci. Appl. (1)

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7(3), 17146 (2018).
[Crossref]

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Opt. Commun. (1)

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Photon. Res. (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Phys. Wave Phenom. (1)

E. Abramochkin and V. G. Volostnikov, “Generalized Hermite-Laguerre-Gauss beams,” Phys. Wave Phenom. 18(1), 14–22 (2010).
[Crossref]

Science (2)

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338(6107), 640–643 (2012).
[Crossref] [PubMed]

Other (1)

J. A. Anguita, J. Herreros, and J. E. Cisternas, “Generation and detection of multiple coaxial vortex beams for free-space optical communications,” CLEO Technical Digest, JTu2K.5. (2012).

Supplementary Material (5)

NameDescription
» Visualization 1       Singularities evolution with spatial mismatch
» Visualization 2       Singularities evolution with energy mismatch
» Visualization 3       The quadrant-separable singularity manipulation along the radial direction
» Visualization 4       The quadrant-separable singularity manipulation along the angular direction
» Visualization 5       Singularities evolution with different initial phase difference

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 The simulated superposed mode of HG0,1 and HG1,0 with energy match and spatial match but with different initial phase difference (from a to i, the initial phase difference is 0–2π). (a) and (b) is the intensity and phase of the superposed mode, respectively.
Fig. 2
Fig. 2 The simulated multi-singularity mode superposed by HG0,1 and HG1,0 modes with spatial mismatch for different initial phase difference (from a to i in (a) and (b), the initial phase difference is 0–2π). (a) and (b) is the intensity and phase of the superposed mode, respectively. (c) is the intensity and phase for initial phase difference of π/2 (a, c) and 3π/2(-π/2) (b, d).
Fig. 3
Fig. 3 Phase distribution of HG0,1(x, y, z1) and HG1,0(x, y, z2) in different propagation distance, a>0.
Fig. 4
Fig. 4 The curve satisfying the criterion (i), the curve satisfying the criterion (ii), and the position of new singularities are (1), (2) and (3) for group (a) and group (b), respectively. when the spatial mismatch degree is same as Fig. 2 and the Gouy phase of group (a) and group (b) are π / 2 and 3 π / 2 , respectively. Sub Fig. (3) is the intersection of sub Fig. (1) and (2) for group(a) and group(b).
Fig. 5
Fig. 5 The singularities evolution with (a) increased energy mismatch; (b) increased spatial mismatch.
Fig. 6
Fig. 6 The quadrant-separable multi-singularity manipulation. (a) singularity manipulation along the angular direction with increased partial energy mismatch; (b) singularity manipulation along the radial direction with increased partial spatial mismatch. The singularities of interest are marked in the red color.
Fig. 7
Fig. 7 Schematic of the experimental setup: PBS, polarization beam splitter; SLM, Spatial Light Modulator; HWP, Half-Wave Plate; BS, beam splitter; CCD, charge coupled device.
Fig. 8
Fig. 8 Singularities evolution with spatial mismatch. The positions of all blocks are stationary in every subgraph for the reference. (a)→(f): z2 is 1 × 105 λ, 1.6 × 105 λ, 2.2 × 105 λ, 2.8 × 105 λ, 3.4 × 105 λ, 4.6 × 105 λ, respectively (See recoded media Visualization 1).
Fig. 9
Fig. 9 Singularities evolution with energy mismatch. The positions of all blocks are stationary in every subgraph for the reference. (a)→(f): tanγ is 0.5, 0.7, 0.9, 1.1, 1.3 and 1.5, respectively.
Fig. 10
Fig. 10 The quadrant-separable multi-singularity manipulation. Singularities enclosed in the black blocks are movable while those in the yellow blocks are fixed. (a) singularity manipulation along the radial direction; (b) singularity manipulation along the angular direction. The distance between the new singularity in second quadrant region and the central singularity is defined as r0 when z2-z1 is 3 × 104 λ, as indicated in Fig. 10(a)-a.
Fig. 11
Fig. 11 Position accuracy of singularities under the angular manipulation
Fig. 12
Fig. 12 Accuracy of singularities under the radial manipulation.
Fig. 13
Fig. 13 Schematic of the effective range of singularities manipulation. The black color indicates the region that singularities cannot reach.
Fig. 14
Fig. 14 Singularities evolution with different initial phase difference (0-2π), see recoded media Visualization 5.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

LG p , l ( r , φ , z ) = C p , l LG w ( 2 r w ) | l | exp ( r 2 w 2 ) L p | l | ( 2 r 2 w 2 ) exp ( i l φ ) exp [ i k z + i k r 2 2 R i ( 2 p + | l | + 1 ) ψ ] ,
R ( z ) = ( z R 2 + z 2 ) / z ,
k w 2 ( z ) = 2 ( z R 2 + z 2 ) / z R = k w 0 2 ( z R 2 + z 2 ) / z R 2 ,
ψ ( z ) = arc tan ( z / z R )
LG p , ± l ( x , y , z ) = k = 0 N ( ± i ) k b ( n , m , k ) HG N k , k ( x , y , z ) ,
b ( n , m , k ) = [ ( N k ) ! k ! 2 N n ! m ! ] 1 / 2 1 k ! d k d t k [ ( 1 t ) n ( 1 + t ) m ] | t = 0 ,
HG n , m ( x , y , z ) = C n , m HG w exp ( x 2 + y 2 w 2 ) H n ( 2 x w ) H m ( 2 y w ) exp [ i k z + i k x 2 + y 2 2 R i ( m + n + 1 ) ψ ] ,
E = HG 0 , 1 ( x , y , z 1 ) + tan γ × exp ( i φ ) × HG 1 , 0 ( x , y , z 2 ) ,
HG 1 , 0 = K π w ( z 1 ) × exp [ r 2 w ( z 1 ) 2 ] × exp [ -2 i ψ ( z 1 ) ] × exp ( i φ ) × 2 x w ( z 1 ) × exp [ i k r 2 2 R ( z 2 ) ] ,
E =HG 0,1 ( x , y , z 1 ) + tan γ × exp ( i φ ) × HG 1 , 0 ( x , y , z 2 ) , = 1 π w ( z 1 ) × exp [ r 2 w ( z 1 ) 2 ] × exp [ 2 i ψ ( z 1 ) ] × { 2 y w ( z 1 ) × exp [ i k r 2 2 R ( z 1 ) ] + tan Γ × exp ( i φ ) × 2 y w ( z 1 ) × exp [ i k r 2 2 R ( z 2 ) ] }

Metrics